
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 13/22 pp158–173
DOI: 10 .26599 /TST.2023 .9010009
Volume 29, Number 1, February 2024

C The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

A Server Placement Algorithm for Reducing Risk and Improving
Power Utilization in Data Centers

Rui Chen, Huikang Huang, Xiaoxuan Luo, and Weiwei Lin�

Abstract: As the power demand in data centers is increasing, the power capacity of the power supply system has

become an essential resource to be optimized. Although many data centers use power oversubscription to make full

use of the power capacity, there are unavoidable power supply risks associated with it. Therefore, how to improve

the data center power capacity utilization while ensuring power supply security has become an important issue.

To solve this problem, we first define it and propose a risk evaluation metric called Weighted Power Supply Risk

(WPSRisk). Then, a method, named Hybrid Genetic Algorithm with Ant Colony System (HGAACS) , is proposed to

improve power capacity utilization and reduce power supply risks by optimizing the server placement in the power

supply system. HGAACS uses historical power data of each server to find a better placement solution by population

iteration. HGAACS possesses not only the remarkable local search ability of Ant Colony System (ACS), but also

enhances the global search capability by incorporating genetic operators from Genetic Algorithm (GA). To verify the

performance of HGAACS, we experimentally compare it with five other placement algorithms. The experimental

results show that HGAACS can perform better than other algorithms in both improving power utilization and reducing

the risk of power supply system.

Key words: server placement; power utilization; power supply risk; swarm intelligence algorithm

1 Introduction

In recent years, the rapidly growing demand of
computing capacity in various enterprises has led to
a surge in data center energy consumption, and also
need to deploy more servers to satisfy the computing
capacity, which makes it necessary to scale up data

�Rui Chen, Huikang Huang, and Xiaoxuan Luo are with the
School of Computer Science and Engineering, South China
University of Technology, Guangzhou 510006, China. E-mail:
cssion@mail.scut.edu.cn; huikanghuang0321@gmail.com;
714197010@qq.com.
�Weiwei Lin is with the School of Computer Science

and Engineering, South China University of Technology,
Guangzhou 510006, China, and also with Peng
Cheng Laboratory, Shenzhen 518066, China. E-mail:
linww@scut.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2022-12-18; revised: 2023-01-15;
accepted: 2023-02-16

centers. However, the supporting infrastructures are
very expensive, resulting in high capital expense for data
centers, almost proportional to the size of the power
capacity that can be provided, ranging from $ 10 to $ 20
per watt[1]. Global expense spending on data center
construction is predicted to reach $ 207.44 billion in
2022[2], and this high expenditure makes it practical to
improve the power capacity utilization of infrastructures
of existing data centers.

Power overprovisioning[3] is a major reason for
underutilization of power resources (power infrastructure
and power budget). Therefore, power oversubscription
is commonly used in modern data centers[3–5]. Power
oversubscription means that the theoretical total
maximum power of the computing devices deployed at
a power supply node is higher than the power threshold
that depends on the power supply infrastructure, thus
mitigating power capacity waste. However, while power

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 159

oversubscription increases power utilization, it poses
power supply risks as well. As the level of power
oversubscription increases, the power supply risk also
rises and will become more vulnerable to power
attacks[6], resulting in circuit breaker tripping and
damage to IT devices. According to estimates in Ref. [7],
the losses of data center downtime are high and average
cost has increased from $ 505 502 in 2010 to $ 740 357
in 2016. Therefore, how to cope with power supply risk
is essential for data centers with power oversubscription.

In addition, the problem of power budget
fragmentation cannot be ignored. In data centers, servers
with similar workloads are often grouped together in
the same power supply node, such as a rack or a Power
Distribution Unit (PDU). This means that many servers
with the same power consumption pattern experience
a notable surge in power demand simultaneously. To
avoid the risk of overload, it is crucial to equip power
supply nodes with sufficient power resources. However,
during periods of low workload levels, power resources
at the power supply nodes are wasted. Evidently, to
improve the power utilization, besides the adoption of
power oversubscription, the power budget fragmentation
should be actively addressed.

A large number of studies have been proposed to
cope with the power supply risks associated with power
oversubscription, including power capping, Energy
Storage Devices (ESDs) supplement, and workload
scheduling. Power capping is a popular way to control
the power requests of servers through power control
techniques (e.g., DVFS, RAPL[8], and Thunderbolt[9]).
However, power capping inevitably leads to a Quality of
Service (QoS) degradation, especially in multi-tenant
data centers, which can violate the Service Level
Agreement (SLA) and lead the enterprise to pay out
money to customers[10]. Using ESDs supplement is able
to meet the demand of peak shaving for a short time.
However, the capacity and lifetime of the battery are
issues to be considered[11–15]. Workload scheduling can
effectively avoid the possibility of peak overlap through
an optimal scheduling strategy, as well as reduce power
budget fragmentation, but it is necessary to consider
whether QoS meets user requirements[16, 17].

In term of scheduling with greater granularity, it
is crucial to consider that servers executing specific
services often demonstrate periodic power consumption
patterns. By placing servers strategically, we can
effectively minimize the overlap of peak power usage
and alleviate the fragmentation of the power budget. To

resolve the conflict between improving power utilization
and reducing power supply risk in data centers, we
propose a server placement algorithm called Hybrid
Genetic Algorithm with Ant Colony System (HGAACS).
Based on the historical power data of each server, the
swarm intelligence algorithm HGAACS, which is a
mixture of Genetic Algorithm (GA) and Ant Colony
System (ACS), is used to solve for the better server
placement solution, which enables increased power
utilization and more secure power supply without
changing the power infrastructure of data center.

Specifically, the main contributions of this article are
as follows:

(1) We propose a new power supply risk evaluation
metric, namely Weighted Power Supply Risk
(WPSRisk), which takes into account not only
the probability of overload, but also the impact of
overload magnitude on power supply risk.

(2) We propose HGAACS, a hybrid swarm
intelligence algorithm that combines ACS and GA to
optimize server placement considering risk and power
utilization. HGAACS enhances the global search ability
of the algorithm and generates high-quality solutions by
performing selection, mutation, and crossover operations
on the solutions at each iteration.

(3) The HGAACS algorithm is experimentally
validated on different data center entities and compared
with other placement algorithms. The results show that
HGAACS is able to improve power utilization and
reduce power supply risks more effectively than other
algorithms.

The rest of the article is organized as follows.
Section 2 presents the related work. Section 3 defines
the server placement problem. Section 4 details the
overall flow of HGAACS and the specific design of
the algorithm. Section 5 shows the performance of
HGAACS in simulation experiments and compares it
with several other algorithms. We finally conclude the
research in Section 6. Table 1 gives the variables and
the corresponding explanations commonly used in this
paper.

2 Related Work

Power oversubscription can significantly improve power
utilization, but the risks associated with power overloads
must be considered. Since power overloads can cause
downtime depending on whether the circuit breaker
trips or not. Therefore, the tripping characteristics
of the circuit breaker need to be considered when

160 Tsinghua Science and Technology, February 2024, 29(1): 158–173

Table 1 List of variables.
Variable Description
serverj Server with index j in the server set
racki Rack with index i in the rack set
sPj Power of serverj
rPi Power of racki

Ai Asynchronous score of racki

Mi Set of the indexes of servers that have been assigned to racki

Ir Rated current of the circuit breaker
B Upper limit of oversubscription level
� Ratio of overload current to rated current of the circuit breaker

C.�/ Function of the lower limit of the tripping time for the ratio of overload current to rated current
riski Risk metric of racki

Pi .z/ Probability distribution function of the power of racki

limiti Rated power of the circuit breaker at racki

R Set of all racks
S Set of all servers
m Number of servers
n Number of racks
xij Record whether serveri is assigned to rackj

X Server placement solution
ri Peak power ratio of racki

serverCounti Number of servers in racki

NumLimiti Maximum number of servers that can be placed in racki

Solution Server placement solution obtained by HGAACS
Tk;i Pheromone between serverk and racki

�k;j Pheromone between serverk and serverj
pk;i Probability that serverk is assigned to racki

�k;i Heuristic value between serverk and racki

ini tDist ribution Initial server placement in each rack determined during the initial phase of HGAACS
AntSwarm Population obtained after constructing ant

��i Increment of pheromone among the servers in racki

K Maximum number of iterations
L Population size
T Length of the server history power consumption data sequence
Pc Crossover probability parameter
Pm Mutation probability parameter in GA
Pm1 Probability parameter of performing mutation mode 1 in HGAACS
Pm2 Probability parameter of performing mutation mode 2 in HGAACS
� Local pheromone evaporation coefficient
� Gobal pheromone evaporation coefficient
q0 Parameter for exploitation
˛ Parameter to determine the importance of pheromone information
ˇ Parameter to determine the importance of heuristic information
�0 Initial value of pheromone
c Power supply risk penalty factor

assessing the power supply risk. There are few works
to quantitatively assess the power supply risk due to
power oversubscription. In Ref. [18], the authors gave
the power supply risk evaluation metric of overload
probability for data centers with power oversubscription,
but the overload probability only considers the frequency

of power overloads, which cannot reflect the magnitude
of the overloads and the impact caused by the
characteristics of circuit breaker. Many researchers
noticed the effect of the tripping characteristics of
circuit breakers on power oversubscription. For example,
Fu et al.[19] first proposed that the utilization of the

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 161

delayed tripping characteristics of circuit breakers can
further improve the power utilization. Some researchers
designed power capping strategies based on the tripping
characteristics of circuit breakers in power management
systems[20, 21].

Apart from power oversubscription, many researchers
noted that reducing power budget fragmentation by
optimizing workload placement can improve power
utilization. Kumbhare et al.[17] proposed a prediction-
based VM placement technique to protect critical
workloads while increasing power oversubscription
levels. Jiang et al.[22] proposed a peak-aware job
scheduling method that can significantly reduce the peak
power of a cluster, smooth the power curve, and also
reduce energy expenses, while meeting task completion
deadlines. Zhang et al.[23] proposed an offline workload
placement strategy, namely Flex-Offline, which can
reduce the stranded power while ensuring the security of
power supply in any maintenance scenario.

For more granular workload placement, i.e., server
deployment, some researchers proposed hot-aware
server placement approaches oriented to reduce
the outlet temperature of servers to save cooling
energy[24, 25]. As for the research on power resource
optimization using temporal differences in workload
power consumption patterns, Hsu et al.[26] proposed
SmoothOperator, which uses the k-means to cluster
service instances or servers with periodic synchronous
power consumption patterns , and uses heuristics for
optimal placement to reduce the sum of peaks in power
supply nodes. However, SmoothOperator only considers
the degree of asynchrony in the power consumption
patterns and does not take into account the power
magnitude generated by the service instance or server
placement, which may result in excessive peak power
generated by individual power supply nodes, especially
in data centers with heterogeneous servers. In addition,
Yan et al.[27] proposed a GA-based algorithm for server
placement. The optimization objective combines the
reduction of local hot spots in server rooms and the
reduction of power budget fragmentation, which can
save the energy consumption of cooling as well as
improve the power utilization.

3 Problem Definition and Modeling

Server placement in data center, which is the placement
of servers into racks to create a “server-rack” mapping
relationship, is a bin packing problem. In data centers,
due to the presence of various types of workloads,

servers running different types of workloads tend to
display distinct power consumption patterns. If server
placement is performed regardless of these differences, it
may cause serious power budget fragmentation and may
even lead to power supply risks. Therefore, optimizing
server placement is of great importance for data centers
with power oversubscription. In this section, the power
budget fragmentation problem and the power supply
risk problem are described in detail, followed by a
description of the corresponding optimization objectives.

3.1 Power budget fragmentation

There are differences in power consumption patterns
among servers running different types of workloads. In
Ref. [26], the authors pointed out that the data center
at Facebook contains a Web cluster, a database cluster,
and a Hadoop cluster. There are differences in power
consumption patterns among the servers of these three
types of clusters. The authors also indicated that even
in the same service cluster, there are some variations in
the power consumption patterns of the servers due to
the imbalance in access to the servers. When a large
number of servers with synchronized power patterns are
placed in the same power supply node, the power budget
is rapidly consumed at that power supply node because
the power demands of these servers reaches high levels
at the same time. Even though the parent node has more
power budget remaining, the child node cannot join any
more workloads, which results in the power budget of
the parent node being locked, this wasted power margin
is called power budget fragments.

Taking into account the differences in power
consumption patterns among different types of
workloads, the placement of servers can be properly
planned to alleviate power budget fragments and thus
improve power utilization. Figure 1 illustrates the
influence of different server placements on power
utilization. As shown in the left part of Fig. 1, when
servers with synchronous power pattern are placed into
the same rack, the power curve of the rack fluctuates with
higher amplitude, making the available power budget of
the rack relatively small. In contrast, when servers with
asynchronous power patterns are placed into the same
rack as shown in the right part, the power curve of the
rack becomes smoother, freeing up more power budget
and thus allowing for better power utilization.

To mitigate power budget fragmentation, the degree of
asynchrony in power patterns among servers needs to be
quantified, so that the suitability of a server combination

162 Tsinghua Science and Technology, February 2024, 29(1): 158–173

Limit

Low utilization placement High utilization placement

Limit

Limit
Unavailable
budget Limit

Limit Limit

Fig. 1 Low power utilization compared with high power utilization server placement.

for placement in the same power node can be evaluated.
In this article, an asynchronous score[26] is used to assess,

Ai D � .Mi / D

P
j2Mi

peak.sPj /

peak.
P
j2Mi

sPj /
(1)

where Ai is the asynchronous score of racki , Mi is the
set of the indexes of servers that have been assigned
to racki , peak.sPj / is the peak power of serverj ,
and peak.

P
j2Mi

sPj / is the peak power sum of all
servers in Mi . A higher asynchronous score indicates
less power overlap among servers and more suitable to
be placed together. Conversely, it means that the more
power overlap, the less suitable to be assigned together.

3.2 Power supply risk

When more servers are deployed for power
oversubscription in a data center, there is a need
to balance the power utilization and power supply risk.
Quantitative metrics need to be used in this procedure
to assess the power supply risk of the power nodes.
Reference [18] used the overload probability as a risk
evaluation metric, i.e., the percentage of time that
a power overload occurs during the observed time.
Although the overload probability can reflect the power
supply risk partly, it does not consider the impact of the
power overload magnitude. For example, as shown in
Fig. 2, although the power curves of Figs. 2a and 2b
have the same overload probability, the power curve of
Fig. 2b poses a more serious power supply risk because
of its greater overload magnitude. To describe both the
impact of overload frequency and overload magnitude
on the supply risk, we propose an evaluation metric

(a) Small overload magnitude (b) Large overload magnitude

Fig. 2 Two power curves with the same overload frequency
but different overload amplitudes.

called WPSRisk based on the circuit breaker tripping
curve.

The WPSRisk indicates that the overload current
corresponding to the weight is calculated using the
tripping curve of the circuit breaker. To highlight the
significance of the overload magnitude on the risk to the
power supply, a higher overload current corresponds to
a greater weight. In Ref. [19], the authors stated that
the ideal upper limit of the safe power oversubscription
is the lower limit of the tolerance band of the circuit
breaker tripping curve. Specifically, as shown in Fig. 3,
the tripping curve is a tolerance band consisting of two
curves that describe how long a circuit breaker will trip at
different magnitudes of current for a continuous period
of time , where the horizontal axis is the ratio of the
overload current to the rated current of the circuit breaker,
and the vertical axis is the tripping time. We consider
the front half of the tripping curve, corresponding to the
thermal tripping for overload protection, which works on
the principle that the overcurrent causes the conductor

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 163

Fig. 3 Schneider EasyPact CVS100E (20A) tripping
curve[28] (both the horizontal and vertical axes are
logarithmic axes).

to heat up, so that the bimetallic strip is deformed by
heat, and when the deformation reaches a certain level it
will trigger a trip. We use the curve corresponding to the
lower limit of the tolerance band to calculate the weight
of the overload current.

In the actual data center production environment, the
overload current of the power supply node generally
does not surpass the rated current Ir of the circuit
breaker by a significant degree. In this article, the
current of the rack is limited to less than BIr when
performing the optimization of server placement (B is
a manually set parameter). Therefore, we only consider
the tripping curve below BIr when performing the risk
evaluation. To obtain a function of the lower limit curve
of the tolerance band, a linear interpolation can be used
between the horizontal axis 1:05 and B to obtain a
function C.�/ of the lower limit of the tripping time
with respect to � (where � is the ratio of overload current
to rated current). We set the weight corresponding to �
as the reciprocal of the lower limit of the tripping time
C.�/, indicating the rate of heat accumulation in the
circuit breaker at that overload current, with a larger
value implying a significant contribution to the power
supply risk. According to IEC 60947-2, the conventional
non-tripping current of a circuit breaker is 1.05 times
its rated current[29]. In other words, when the current
remains below this threshold (� D 1:05), no tripping
is guaranteed for at least two hours. Therefore, when
� < 1:05, the current can be seen as not causing a

risk to the supply, corresponding to a weight of 0. The
calculation of the weight K.�/ can be expressed as the
following segmentation function:

K.�/ D

(
0; 0 6 � 6 1:05I
1

C.�/
; 1:05 6 � 6 B

(2)

Based on the above weight calculation, we use the
power supply risk metric WPSRisk as shown in Eq.
(3), whose magnitude range is Œ0; 1�, with larger values
representing higher risk,

riski D

R C1
0

Pi .z/ �K.
z

limiti
/dz

K.B/
(3)

where riski is the risk metric of racki , Pi .z/ is the
Probability Distribution Function (PDF) of the power
of racki , which can be calculated from the historical
power data, and limiti is the rated power of the circuit
breaker at racki .

3.3 Optimization problem definition

The server placement optimization problem can be
formulated as follows: at the rack level, there are n
racks and there are currentlym servers to be deployed to
each rack. Let R D frack1; rack2; : : : ; rackng be the
set of all racks, S D fserver1; server2; : : : ; servermg
be the set of all servers, and X be a solution to this
placement optimization problem, which is a zero-one
matrix of dimension .m; n/, and each element xij inside
the matrix represents whether serveri is allocated to
rackj , as shown below:

xij D

(
1; if serveri is assigned to rackj I

0; otherwise;

8i 2 f1; 2; : : : ; mg and 8j 2 f1; 2; : : : ; ng (4)

The server placement method proposed in this article
takes into account both power utilization and power
supply risk in a bi-objective optimization, to minimize
both the sum of peaks and the maximum value of
the WPSRisk of the racks WPSRiskmax. The former
minimizing the sum of peaks means that the power
utilization of racks is improved. The latter using
WPSRiskmax instead of the average value WPSRiskavg

is to avoid the case, which most of the racks with small
risks while a small number of racks have extremely high
risks. In addition, to reduce the effect of the numerical
size of power values, we convert the minimized sum of
peaks into the minimized average peak power ratio. The
peak power ratio of racki is calculated in Eq. (5) and
the average peak power ratio is calculated in Eq. (6),

ri D
peak.rPi /

limiti
(5)

164 Tsinghua Science and Technology, February 2024, 29(1): 158–173

f1.X/ D

nP
iD1

ri

n
(6)

where rPi is the power of racki , limiti is the rated
power of the circuit breaker at racki , X is the server
placement solution, and ri is the peak power ratio of
racki . Since the rack current is limited to be less than
BIr , the value of ri is taken to be in the range Œ0; B�.
As another optimization objective, the WPSRiskmax is
expressed as

f2.X/ D max.riski /; 8i 2 f1; 2; : : : ; ng (7)

There are three main constraints to be considered
when performing server placement. (1) Each server is
need to be placed, (2) the peak power of each rack must
not exceed BIr , and (3) the number of servers placed
on each rack must not exceed the maximum number. In
summary, the server placement optimization problem
can be defined as follows:

minimize F.X/ D f1.X/C c � f2.X/ (8)

s.t.;
nX

jD1

xij D 1; 8i 2 f1; 2; : : : ; mg (9)

peak .rPi / 6 B � limiti ;

8i 2 f1; 2; : : : ; ng (10)

serverCounti 6 NumLimiti ;

8i 2 f1; 2; : : : ; ng (11)

where c is the power supply risk penalty factor,
serverCounti and NumLimiti are the number of
servers and the maximum number of servers that can
be placed in racki , respectively, and B represents the
upper limit of the power overrun level, which indicates
the maximum allowed ratio of the peak current of the
rack to the rated current of the circuit breaker.

4 HGAACS-Based Server Placement
Optimization

4.1 Algorithm design

In this article, we propose HGAACS algorithm that
combines ACS and GA for the server placement problem.
To improve the performance of the solution, HGAACS
enhances the global search ability at the later stage by
adding selection, mutation, and crossover to the ACS,
thus avoiding the search from stalling to some extent.
Moreover, the positive feedback mechanism of ACS also
improves the problem of weak local search ability in
GA. In addition, to improve the blindness of mutation,
we use priori knowledge to modify the mutation

to accommodate the server placement optimization
problem.

In the initialization phase of HGAACS, the pheromone
of each server-pair needs to be initialized to �0 and
an initial server is randomly set for each rack. After
the initialization is completed, Algorithm 1 starts
to iterate, and Fig. 4 shows the flow chart of the
HGAACS algorithm in one iteration. At the G-th
iteration, the initial solutions are first constructed by
ants and saved to SwarmG . After that, tournament
selection is performed on SwarmG , and the selected
population is mutated to get a new population and saved
to tSwarm1G . Next, the crossover is performed on
tSwarm1G , and the population after the crossover is
amended to obtain tSwarm2G . Finally, the optimal
solution in SwarmG , tSwarm1G , and tSwarm2G
is taken as the contemporary optimal solution X ibest ,
and if this solution is better than the current global
optimal solution, Xgbest is updated. In addition, the
global pheromone update is performed at the end of
each iteration. HGAACS needs to keep repeating the
above iterative process until the termination condition is
triggered. Algorithm 1 is the general flow pseudo-code
of the HGAACS-based server placement optimization
algorithm.

Algorithm 1 HGAACS workload placement
Input: sP , m, n
Output: Solution

1: for each .a; b/ 2 f1; 2; : : : ; mg �f1; 2; : : : ; mg do
2: �a;b D �0;
3: end for
4: for k from 1 to n do
5: Choose an unplaced server serverw ;
6: ini tDist ributionk D w;
7: end for
8: for G from 1 to K do
9: SwarmG ConstructAnts (ini tDist ribution);

10: Update F.Swarmt
G
/ of Swarmt

G
by Eq. (9) for t 2

f1; 2; : : : ; Lg;
11: tSwarm1G Selection(SwarmG);
12: tSwarm1G Mutation(tSwarm1G);
13: tSwarm2G Crossover(tSwarm1G);
14: Update F.tSwarm1t

G
/ of tSwarm1t

G
for

t 2 f1; 2; : : : ; Lg;
15: Update F.tSwarm2t

G
/ of tSwarm2t

G
for

t 2 f1; 2; : : : ; Lg;
16: Update X ibest and Xgbest by

.SwarmG ; tSwarm1G ; tSwarm2G/best ;
17: Apply global pheromone update rule;
18: end for
19: return Xgbest

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 165

Construct ant solution

Tournament selection

Mutation

Crossover

Update 𝑿𝑿𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 and 𝑿𝑿𝒈𝒈𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 … 𝑋𝑋𝑚𝑚−1 𝑋𝑋𝑚𝑚

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 … 𝑋𝑋𝑚𝑚−1 𝑋𝑋𝑚𝑚

Start the G-th iteration

Global pheromone update

𝑋𝑋1t1 𝑋𝑋2t1 𝑋𝑋3t1 … 𝑋𝑋𝑚𝑚−1
𝑡𝑡1 𝑋𝑋𝑚𝑚t1

𝑋𝑋1t2 𝑋𝑋2t2 𝑋𝑋3t2 … 𝑋𝑋𝑚𝑚−1
t2 𝑋𝑋𝑚𝑚t2

AntSwarm in the G-th iteration

Store

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑮𝑮

𝒊𝒊𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒕𝒕𝑮𝑮

𝒊𝒊𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒕𝒕𝑮𝑮

Store

Fig. 4 Iteration process of HGAACS.

4.2 ACS

In the HGAACS-based server placement algorithm
proposed in this work, the solution is first constructed
initially by ACS at each iteration. This section will
describe how the solution to the server placement
problem is constructed by ACS.
4.2.1 Pheromone structure
For the server placement optimization problem, since
each ant constructing a solution needs to assign each
server to an appropriate rack based on the historical
experience provided by the pheromone, a simple
approach is to create pheromone for the mapping
between servers and racks. However, for this problem,
the individual rack can be viewed as being homogeneous,
and it is not the racks themselves that affect the quality of
the distribution, but the set of servers that already exist
within each rack. Therefore, we adopt a pheromone
structure similar to that used in Refs. [30, 31], which
changes the direct recording of preferences between
servers and individual racks to the recording preferences
between servers and server sets. We use anm�mmatrix
to record the pheromones among individual servers
(where m is the number of servers). When calculating
the pheromone between serverk and racki , the average
of the pheromones between the servers already deployed
in racki and serverk is used, as shown below:

Tk;i D

P
j2Mi

�k;j

jMi j
(12)

where Tk;i is the pheromone between serverk and
racki , and �k;j is the pheromone between serverk and
serverj .
4.2.2 Constructing solutions
In ACS, ants search for solutions based on pheromones

as well as heuristic information. For the server placement
optimization problem, each ant needs to select an
appropriate rack for each server by using state transfer
rules when building the solution. ACS uses a method
called pseudo-random-proportional-rule for state transfer
as follows: When making the assignment of serverk ,
the probability pk assigned to each rack is first calculated
based on the rules using pheromones as well as heuristic
information firstly. Then, a uniform random number q in
range Œ0; 1� is generated. When q 6 q

0
, ACS performs

exploration: assign serverk to rackt with the largest
p

k;t
. Otherwise, biased exploration is performed: The

roulette wheel selection is used to select which rack to
assign based on the probability distribution pk . The state
transfer rule can be expressed as follows:

s D

8<: arg max
i2f1;2;:::; ng

p
k;i
; if q < q

0
I

S; otherwise
(13)

where s is the selected rack, q
0

is the parameter, S refers
to the rack determined by roulette wheel selection, and
p

k;i
is the probability that serverk is assigned to racki ,

which is calculated as follows:

wk;i D

8̂̂<̂
:̂
T ˛
k;i
� �

ˇ

k;i
; if serverk can be

assigned to racki I

0; otherwise

(14)

pk;i D
wk;i
nP

jD1

wk;j

(15)

In Eq. (14), Tk;i is the pheromone between serverk
and racki , which is calculated by Eq. (12), �k;i is
the heuristic value between serverk and racki , ˛ and
ˇ are parameters that together determine the relative
importance of historical experience and heuristic value

166 Tsinghua Science and Technology, February 2024, 29(1): 158–173

for ants to make decisions.
In this work, the asynchronous scoring defined in

Eq. (1) is used as heuristic value, so that servers are
assigned to racks with lower peak interval overlap in
priority. The calculation of the heuristic value is as
follows:

�k;i D� .fMi ; kg/ D

peak.rPi /C peak.sPk/

peak.rPi C sPk/
(16)

It should be noted that, as shown in Eq. (14), during
the process of server placement, it is necessary to check
whether the Formulas (10) and (11) are violated after
assigning this server to each rack. If there exists rackv
that does not meet the constraints in Formulas (10) and
(11), thenwk;v will be set to 0 in order to let pk;v become
0 as well, thus avoiding the rackv from being selected.

During the iterative process of ACS, the state transfer
rules in Eq. (13) are used to assign each server, so as
to construct the solution for each ant. The solutions
constructed by the ants is an L � m matrix (where
L is the population size), and each row in the matrix
is the solution of an individual ant, and each element
represents the serial number of the rack to which the
server is assigned and takes an integer in the range Œ1; n�.
The pseudo code in Algorithm 2 describes the process
of constructing solutions by ants.

4.2.3 Pheromone update
There are two pheromone update modes in ACS: local
pheromone update and global pheromone update.

(1) Local pheromone update: In ACS, each
ant needs to perform local pheromone update after
constructing a solution: update the pheromone between
each server-pair .servera; serverb/ on the same rack.
The update rule is as follows:

�a;b D .1 � �/ � �a;b C � � �0 (17)

where � the local pheromone evaporation coefficient,
and �0 is the initial value of pheromone.

(2) Global pheromone update: After all ants have
constructed their solutions, HGAACS needs to perform
selection, mutation, and crossover on the population in
turn. After completing these operations, the algorithm
starts the global pheromone update, which has the
feature of only performing pheromone updates on the
contemporary optimal solution. The update rule is as
follows:

�a;b D

8̂<̂
: .1 � �/��a;bC����i ;

if a; b 2Mi and

Mi 2 X
ibest
I

�a;b; otherwise
(18)

Algorithm 2 Construct ants
Input: ini tDist ribution
Output: AntSwarm

1: for i from 1 to L do
2: ServerDist ribution f�1;�1; : : : ;�1gm;
3: for k from 1 to n do
4: C ini tDist ributionk ;
5: ServerDist ributionC k;
6: end for
7: for j from 1 to m do
8: if ServerDist ributionj DD �1 then
9: for r from 1 to n do

10: Computer pj;r by Eq. (15);
11: end for
12: Generate a uniform random number q in Œ0; 1�;
13: if q < q0 then
14: s argmaxr2f1;2;:::;ngpj;r ;
15: else
16: Randomly choose a rack racktarget with

probability pj ;
17: s target ;
18: end if
19: ServerDist ributionj s;
20: end if
21: end for
22: AntSwarmi ServerDist ribution;
23: Apply local pheromone update rule in Eq. (17);
24: end for
25: return AntSwarm

where X ibest is the contemporary optimal solution, � is
the global pheromone evaporation coefficient, and��i is
the increment of pheromone among the servers in racki ,
which is calculated as follows:

��i D
1

F.X ibest /
C Ai (19)

where F.X ibest / is the value of the objective function
of the optimal individual, and Ai is the asynchronous
score defined in Eq. (1) and takes different values for
each rack, depending on the degree of power pattern
asynchrony among its servers. The higher the degree of
asynchrony, the larger the pheromone increment among
the servers on the rack.

4.3 GA

After the ants construct the solutions, HGAACS needs to
apply GA-related operations to the solutions: selection,
mutation, and crossover. This section explains the
encoding form of the population when performing these
operations, and the changes to the mutation operator and
crossover operator in our work.

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 167

4.3.1 Encoding scheme
In GA, the individual encoding scheme of the population
is the same as that of the solutions constructed by ants,
and the integer coding is used. The code length of an
individual is the number of servers m, and an integer
in the individual code corresponds to the index of the
rack assigned to the server. For example, in individual x,
xi D k represents the assignment of serveri to rackk .
Figure 5 is an example of applying this encoding scheme
to represent a server placement solution.

4.3.2 Mutation operator
In order to improve the search efficiency of the algorithm,
we use a priori knowledge to modify the mutation
operator in order to make the algorithm more adaptable
to the server placement problem. In the modified
mutation operator, there are two different modes of
mutation. Mutation mode 1: The operator randomly
select a server from the rack for migration, and then
randomly select another rack which can satisfy the
server placement constraints as the destination rack.
Mutation mode 2: A server is randomly selected and the
asynchronous score among the server and other racks is
calculated. Then the racks are sorted in descending order
according to the asynchronous score, and the server is
migrated to the first suitable rack.

When the population performs the mutation, for each
rack of each chromosome, there are probabilities ofPm1
and Pm2 to perform mutation mode 1 and mutation
mode 2, respectively. Additional, there is a probability
of 1 � Pm1 � Pm2 for no operation to be performed.
We use the Roulette Wheel method to determine which
operation to perform for each rack.

4.3.3 Crossover operator
The crossover operator in HGAACS uses two-point
crossover, as shown in Fig. 6. It should be noted that
after the crossover operation, the solutions that do not
meet the constraints may be generated, so it is necessary
to check the feasibility of each individual after the
crossover. For the infeasible individuals, the amending
operation is as follows: A server is randomly selected
from that illegitimate rack, and then migrated to another

Fig. 5 Individual encoding scheme.

Fig. 6 Example of crossover. The maximum number of
servers in rack2 is 3. After the completion of the crossover
operation, Chromosome 1 violates the constraint specified in
Formula (11). Therefore, in the amending operation, server1

is migrated from rack2 to rack3 for amending.

rack using a method similar to mutation mode 2 without
violating the constraints. If there is no other rack capable
of accommodating that server, then another server is
randomly selected to try to migrate. The above operation
will be repeated until the rack meets the constraints.

4.3.4 Time complexity analysis
The time complexity of HGAACS primarily depends on
three components: ACS, GA, and fitness computation.
We define the maximum number of iterations as K, the
population size as L, the number of racks as n, the
number of servers as m, and the length of the server
history power consumption data sequence as T . Then the
time complexity of the fitness calculation is O.K �L�
T � .mCn//. The time complexity of the ACS depends
on the process of constructing the ant solutions, which is
O.K �L�m� .mC n� T //. The time complexity of
the GA depends on the tournament selection, mutation,
and crossover, and since each rack after crossover needs
to be amended in the worst case, the time complexity
of the GA is O.K � L � .LC n2 � .lognC T ///. To
sum up, the total time complexity of the HGAACS is
O.K �L� .m2Cm�n�T CLCn2� .lognCT ///.

5 Experiment

5.1 Datasets and data pre-processing

The source of the original dataset for the experiments
is the Alibaba cluster dataset[32], which contains about
4000 machines. Since the input of the algorithm is time
series data of power consumption per machine, the data
used by in our experiments are mainly the following
three fields of the machine usage table in the dataset:
machine ID, timestamp, and CPU utilization. Since most

168 Tsinghua Science and Technology, February 2024, 29(1): 158–173

of the machines in this dataset are missing some data
from the second day, we select data for the experiments
with a total of 864 timestamps for six days, from the
third to the eighth day.

Since there is no information about the power
consumption of the machines and their models in the
dataset, we selected five server models from SPECpower
for power modeling to construct the data centers with
heterogeneous servers. Figure 7 shows the variation
of power with CPU utilization for these five types of
servers. Since CPU utilization is a major influence
on server power[3, 33], server power can be modeled
using the power data provided by SPECpower at
different load levels. In our experiments, we employ
linear interpolation to model server power sP as a
segmented function of CPU utilization u. This approach
is commonly used for power modeling in various works,
including CloudSim[34] and DCSim[35]. This power
modeling method can be expressed as follows:

P.u/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

k1uC b1; 0 6 u < 0:1I

k2uC b2; 0:1 6 u < 0:2I

k3uC b3; 0:2 6 u < 0:3I
:::

k10uC b10; 0:9 6 u < 1

(20)

In addition, most of the servers in the original
dataset have the same power consumption pattern,
and this power consumption pattern is noted as P1.
In order to obtain a dataset with more complex and
diverse power consumption patterns, we perform the
following five operations on the original data to get
different server power consumption patterns: rolling
50 timestamps, rolling 100 timestamps, rolling 700

Fig. 7 Power of the five types of servers for different CPU
utilization.

timestamps, inverting the sequence, and rolling 300
timestamps after inverting the sequence. We denote
the five different server power consumption patterns
obtained as P2, P3, P4, P5, and P6.

To test the performance of the proposed algorithm in
data centers of different sizes, we set up three different
sizes of data center entity types in our experiments,
containing 120, 240, and 360 servers, respectively. Two
test entities are set up for each size of data center, one
of which has three power consumption patterns, P1,
P2, and P3, and the number ratio between the three
power consumption patterns is 1:1:1. The other entity
is a combination of servers with six power consumption
patterns, P1, P2, P3, P4, P5, and P6, and the number
of the six patterns is the same. Table 2 shows the
information of all data center entities used in the
experiments. It’s worth noting that in each data center
entity, there is an equal number of servers for each type
of hardware.

5.2 Experimental setup

In our experiments, we compare the performance of
HGAACS with the following five server placement
algorithms: Random Placement, First Fit Decreasing
(FFD), SmoothOperator, GA-based server placement
algorithm, and ACS-based server placement algorithm.
A brief description of these algorithms is given below.

(1) Random Placement. It shuffles the order of all
servers and assigns them evenly to each rack.

(2) FFD[36]. It is a heuristic algorithm that assigns
servers by first sorting the racks in descending order by
available power budget and then deploying the server in
the first rack that can accommodate it.

(3) SmoothOperator[26]. It uses the k-means
algorithm to classify servers into several classes
according to the difference in power consumption
patterns, and then uses Round-Robin to evenly distribute
servers of the same class to each rack.

(4) GA-based server placement algorithm[27]. It
uses the same genetic operators as in the basic GA.

Table 2 Information about data center entities.
Data

center
Number of

servers
Number of

racks
Power consumption

pattern
D1 120 12 P1,P2,P3

D2 180 18 P1,P2,P3

D3 240 24 P1,P2,P3

D4 120 12 P1,P2,P3,P4,P5,P6

D5 180 18 P1,P2,P3,P4,P5,P6

D6 240 24 P1,P2,P3,P4,P5,P6

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 169

(5) ACS-based server placement algorithm[31].
ACS is applied to the VM Placement problem (VMP)
in Ref. [31], and we modify it to apply to the server
placement problem.

In order to verify the performance of the above
algorithms, each algorithm was experimented under
several different data center entities. Each algorithm
is run 10 times on each experimental setup, and the
algorithm performance is averaged over 10 runs. In
the experiments, the rack power threshold is 4 kW, the
maximum number of servers on a rack is 20, and the
upper limit of the power oversubscription level B is
1.5. In addition, we set all the circuit breakers used
in the racks to Schneider EasyPact CVS100E (20A),
whose tripping curve is shown in Fig. 3. Finally, the
algorithm performance and runtime of GA, ACS, and
HGAACS are closely related to the algorithm parameters.
Table 3 shows the main parameter settings that enable
each algorithm to achieve a high level of performance.

5.3 Experimental results

There are two algorithm performance evaluation metrics
for the experiments: the sum of peaks and WPSRiskmax.
The former represents power utilization and the latter
represents power supply risk. The value of the risk
penalty weight c in Eq. (8) has a significant impact
on the performance of GA, ACS, and HGAACS, so in
our experiments we tested 11 values of c from 0 to 1
in steps of 0.1. Figure 8 shows the effect of different
values of c on the two optimization objectives in the
experiments under the data center D4 (the result is the
average of ten runs).

According to Fig. 8, when c D 0, WPSRiskmax is
large for all three algorithms, while the sum of peaks

is small, due to its equivalent to performing a single-
objective server placement optimization with the goal
of minimizing the sum of peaks. When c > 0, a
dual-objective server placement optimization with the
objective of minimizing the sum of peaks as well as
minimizing WPSRiskmax is performed. Comparing the
case of c D 0, WPSRiskmax of all three algorithms
decreases significantly (using HGAACS as an example,
WPSRiskmax at c D 0:1 is only about 0.8% of that at
c D 0), while the sum of peaks increases only slightly
(also using HGAACS as an example, the sum of peaks
at c D 0:1 is only about 0.097% higher than that at
c D 0), and as c increases, WPSRiskmax generally shows
a decreasing trend, while the change of the sum of peaks
is irregular and small.

The results in Fig. 9 illustrate that all three algorithms
are able to get WPSRiskmax significantly lower at a small
cost (a slight increase in the sum of peaks) by setting c
to be greater than 0. Figure 9 shows the power over time
for all racks for one run of HGAACS in data center D4
when c is set to 0, 0.2, and 0.5, respectively. The values
of power supply risk in Figs. 9b and 9c are significantly
lower than those in Fig. 9a, which further illustrates that
the algorithms can significantly reduce the power supply
risk when setting c to a number greater than 0.

Tables 4 and 5 record the sum of peaks and
WPSRiskmax of the six algorithms under each data center
entity, respectively, and the data in this two tables are the
mean and standard deviation (std) of ten runs (the value
of c is set to 0.4).

Analysis of Table 4 shows that HGAACS outperforms
the other five algorithms for all six data center entities
in sum of peaks. the average sum of peaks of HGAACS
is reduced by 4.18% to 4.95% under the six data center

Table 3 Algorithm parameter.
Algorithm L K Pc Pm Pm1 Pm2 ˛ ˇ � � q0 �0

GA 200 100 0.85 0.1 – – – – – – – –
ACS 100 100 – – – – 4 2 0.01 0.02 0.8 0.1

HGAACS 100 100 0.7 – 0.1 0.05 4 2 0.01 0.02 0.8 0.1

Fig. 8 Sum of peaks and WPSRiskmax of the three algorithms for different values of c.

170 Tsinghua Science and Technology, February 2024, 29(1): 158–173

Fig. 9 Power curves for all racks in D4 obtained by HGAACS at different c value settings.

Table 4 Comparison of the sum of peaks for the six algorithms (mean ˙̇̇ std). (kW)
Data center Random placement FFD SmoothOperator GA ACS HGAACS

D1 52.48˙0.32 52.34˙0.44 51.12˙0.28 51.14˙0.15 50.00˙0.024 49.98˙0.017
D2 78.73˙0.52 78.79˙0.42 76.73˙0.30 77.34˙0.33 74.92˙0.049 74.83˙0.036
D3 104.97˙0.50 105.18˙0.48 102.84˙0.74 104.62˙0.45 100.61˙0.032 100.58˙0.013
D4 50.10˙0.33 49.93˙0.54 48.71˙0.19 49.00˙0.11 47.84˙0.052 47.73˙0.035
D5 75.16˙0.42 75.69˙0.62 73.07˙0.18 74.26˙0.38 71.82˙0.033 71.75˙0.040
D6 100.16˙0.47 100.05˙0.47 97.85˙0.29 99.52˙0.45 95.88˙0.057 95.78˙0.050

Table 5 Comparison of WPSRiskmax for the six algorithms (mean ˙̇̇ std).
Data center Random placement FFD SmoothOperator GA ACS HGAACS

D1 0.071˙0.043 0.0037˙0.002 0.043˙0.053 0.011˙0.004 0.0049˙0.0060 0.0023˙0.0020
D2 0.072˙0.035 0.0093˙0.010 0.032˙0.059 0.019˙0.009 0.0031˙0.0010 0.0020˙0.0007
D3 0.120˙0.060 0.0078˙0.004 0.022˙0.020 0.042˙0.009 0.0040˙0.0050 0.0012˙0.0006
D4 0.110˙0.092 0.0023˙0.002 0.099˙0.095 0.008˙0.005 0.0008˙0.0007 0.0005˙0.0004
D5 0.140˙0.010 0.0028˙0.002 0.026˙0.053 0.018˙0.009 0.0010˙0.0010 0.0004˙0.0003
D6 0.190˙0.047 0.0037˙0.003 0.052˙0.048 0.045˙0.015 0.0011˙0.0007 0.0006˙0.0004

entities compared to Random Placement. Compared
to FFD, the reduction is 4.27% – 5.21%. Compared
to SmoothOperator, the reduction is 1.81% – 2.48%.
Compared to GA, the reduction is 2.27% – 3.86%.
Compared with ACS, the average sum of peaks also
has a slight decrease, with a reduction of 0.03% – 0.23%.
Random Placement, FFD, SmoothOperator, and GA,
all four algorithms have a large standard deviation of
results, especially Random Placement and FFD, which
have a more unstable performance. In contrast, ACS and
HGAACS exhibit relatively small standard deviations,
which indicates that they are more stable.

Based on the analysis of the data in Table 5, it is clear
that HGAACS shows remarkable improvement in all
six data center entities for WPSRiskmax compared to the
other five algorithms. Comparing to Random Placement,
the average WPSRiskmax decreases from 96.76% to
99.71% under the six data center entities. Comparing to
FFD, the decrease is 37.84% – 85.71%. Comparing to
SmoothOperator, it decreases from 93.75% to 99.49%.

The main reason for such a significant improvement
is that SmoothOperator only considers the asynchrony
score among servers, and does not consider the relative
magnitude of power among them, which may assign
asynchronous but high-powered servers to the same
rack, resulting in individual peak power of the rack is
too high. Comparing to GA, the decrease is 79.09% –
98.67%. Comparing to ACS, the WPSRiskmax average
can also have a significant decrease from 37.5% to
70%. Both Random Placement and SmoothOperator
have large standard deviations, proving that they perform
very erratically on this metric. In contrast, HGAACS
demonstrates small standard deviations under each data
center entity, reflecting its ability to consistently achieve
stable and favorable results for WPSRiskmax.

By comprehensively analyzing the performance
of each algorithm in terms of sum of peaks and
WPSRiskmax, it can be seen that the HGAACS proposed
in this article has a great advantage over the other five
algorithms. Compared with Random Placement, FFD,

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 171

SmoothOperator, and GA, HGAACS has a significant
improvement in both peak power sum and WPSRiskmax.
Compared to ACS, despite only a slight improvement in
the sum of peaks, it achieves a significant enhancement
in WPSRiskmax.

To further compare the convergence ability of the
three swarm intelligence algorithms, GA, ACS, and
HGAACS, we collected data on the variation of the
fitness of these three algorithms for one run under the six
data center entities when setting c to 0.4, which is shown
in Fig. 10. Based on the analysis of Fig. 10, it is evident
that HGAACS outperforms GA and ACS in terms of
the number of iterations required to find highly fit
solutions. Additionally, HGAACS consistently achieves
the best fitness across data center entities of all sizes
and types, indicating its superior convergence speed
and search ability compared to GA and ACS. This is
because the combination of ACS and GA brings together
the strengths of both algorithms. ACS contributes its
excellent local search ability, while genetic operators,
like mutation and crossover, introduce perturbations that
enhance the algorithm’s global search ability. The use
of genetic operators prevents the search process from
getting stuck in later stages and empowers the algorithm
to explore and find better solutions effectively.

6 Conclusion and Outlook

In this article, we first analyze the demand for increased
power utilization in data centers and the potential power
supply risk issues associated with it. Then we propose
a power supply risk evaluation metric WPSRisk, and a
server placement algorithm HGAACS that can improve
the power utilization of the data center while taking into
account power supply security. We compare HGAACS
with five other algorithms, and the results show that
HGAACS is able to reduce the sum of peaks by 4.18% to
4.95% and WPSRiskmax by 96.78% to 99.72% compared
to random server placement in data centers of different
sizes and types. These results indicate an increase in
power utilization and the ability of the data center
to handle a larger number of workloads. Meanwhile,
compared with the placement method SmoothOperator
proposed in the existing work, the sum of peaks and
WPSRiskmax can be reduced by at least 1.81% and
93.75%, respectively, which reflects the performance
advantage of the HGAACS algorithm. Finally, server
placement optimization does not conflict with the
risk management measures commonly used in power
oversubscription data centers. Moreover, utilizing the
methods proposed in this paper for server placement can
effectively reduce power supply risks, thus mitigating

Fig. 10 Convergence analysis of GA, ACS, and HGAACS under each data centers entity (cDDD 0.4).

172 Tsinghua Science and Technology, February 2024, 29(1): 158–173

the negative impact of other risk response measures,
such as performance degradation and SLA due to power
capping.

Current research granularity in this article is the
placement of each server in the data center. In the future,
we plan to integrate it with workload scheduling to
further improve power utilization as well as to reduce
power supply risks.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (No. 62072187), the Guangdong
Major Project of Basic and Applied Basic Research
(No. 2019B030302002), the Guangzhou Science and
Technology Program Key Projects (No. 202007040002),
the Guangdong Marine Economic Development Special
Fund Project (No. GDNRC[2022]17), and the Guangzhou
Development Zone Science and Technology Project
(Nos. 2021GH10 and 2020GH10).

References

[1] L. A. Barroso, U. Hölzle, and P. Ranganathan, The
Datacenter as A Computer: Designing Warehouse-Scale
Machines. 3rd ed. Switzerland: Springer, 2019, p. 189.

[2] Gartner forecasts worldwide it spending to exceed $4
trillion in 2022, https://www.gartner.com/en/newsroom/press-
releases/2021-10-20-gartner-forecasts-worldwide-it-spending-
toexceed-4-trillion-in-2022, 2021.

[3] X. Fan, W. D. Weber, and L. A. Barroso, Power provisioning
for a warehouse-sized computer, in Proc. 34th Ann. Int.
Symp. Computer Architecture, San Diego, CA, USA, 2007,
pp. 13–23.

[4] M. A. Islam, S. Ren, and A. Wierman, Exploiting a
thermal side channel for power attacks in multi-tenant data
centers, in Proc. 2017 ACM SIGSAC Conf. on Computer
and Communications Security, Dallas, TX, USA, 2017, pp.
1079–1094.

[5] C. Li, Z. Wang, X. Hou, H. Chen, X. Liang, and M. Guo,
Power attack defense: Securing battery-backed data centers,
in Proc. 2016 ACM/IEEE 43rd Int. Symp. Computer
Architecture, Seoul, Republic of Korea, 2016, pp. 493–505.

[6] X. Hou, C. Li, J. Yang, W. Zheng, X. Liang, and
M. Guo, Integrated power anomaly defense: Towards
oversubscription-safe data centers, IEEE Trans. Cloud
Comput., vol. 10, no. 3, pp. 1875–1887, 2022.

[7] Cost of data center outages, https://www.vertiv.com/
globalassets/documents/reports/2016-cost-of-data-center-
outages-11-11511901.pdf, 2016.

[8] B. Rountree, D. H. Ahn, B. R. De Supinski, D. K.
Lowenthal, and M. Schulz, Beyond DVFS: A first look
at performance under a hardware-enforced power bound,
in Proc. 2012 IEEE 26th Int. Parallel and Distributed
Processing Symp. Workshops & PhD Forum, Shanghai,
China, 2012, pp. 947–953.

[9] S. Li, X. Wang, X. Zhang, V. Kontorinis, S. Kodakara, D.
Lo, and P. Ranganathan, Thunderbolt: Throughput-

optimized, quality-of-service-aware power capping at scale,
in Proc. 14th USENIX Conf. Operating Systems Design
and Implementation (OSDI 20), Vritual Event, 2020, pp.
1241–1255.

[10] S. Malla and K. Christensen, Reducing power use and
enabling oversubscription in multi-tenant data centers using
local price, in Proc. 2017 IEEE Int. Conf. Autonomic
Computing (ICAC), Columbus, OH, USA, 2017, pp. 161–
166.

[11] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar,
Benefits and limitations of tapping into stored energy for
datacenters, in Proc. 2011 38th Ann. Int. Symp. Computer
Architecture (ISCA), San Jose, CA, USA, 2011, pp. 341–
351.

[12] S. Govindan, D. Wang, A. Sivasubramaniam, and B.
Urgaonkar, Leveraging stored energy for handling power
emergencies in aggressively provisioned datacenters, in
Proc. Seventeenth Int. Conf. Architectural Support for
Programming Languages and Operating Systems, London,
UK, 2012, pp. 75–86.

[13] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H.
Homayoun, E. Pettis, D. M. Tullsen, and T. S. Rosing,
Managing distributed ups energy for effective power
capping in data centers, in Proc. 2012 39th Ann. Int. Symp.
Computer Architecture (ISCA), Portland, OR, USA, 2012,
pp. 488–499.

[14] B. Aksanli, E. Pettis, and T. Rosing, Architecting efficient
peak power shaving using batteries in data centers, in
Proc. 2013 IEEE 21st Int. Symp. Modelling, Analysis and
Simulation of Computer and Telecommunication Systems,
San Francisco, CA, USA, 2013, pp. 242–253.

[15] S. Malla, Q. Deng, Z. Ebrahimzadeh, J. Gasperetti, S. Jain,
P. Kondety, T. Ortiz, and D. Vieira, Coordinated priority-
aware charging of distributed batteries in oversubscribed
data centers, in Proc. 2020 53rd Ann. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Athens, Greece, 2020, pp. 839–
851.

[16] G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D.
Hu, L. Huang, X. Jin, and W. Xu, Increasing large-scale
data center capacity by statistical power control, in Proc.
Eleventh European Conf. Computer Systems, London, UK,
2016, p. 8.

[17] A. G. Kumbhare, R. Azimi, I. Manousakis, A. Bonde, F.
V. Frujeri, N. Mahalingam, P. A. Misra, S. A. Javadi, B.
Schroeder, M. Fontoura, and R. Bianchini, Prediction-based
power oversubscription in cloud platforms, in Proc. 2021
USENIX Ann. Technical Conf., USENIX ATC 21, Virtual
Event, 2021, pp. 473–487.

[18] S. Malla and K. Christensen, The effect of server energy
proportionality on data center power oversubscription,
Future Generat. Computer Syst., vol. 104, pp. 119–130,
2020.

[19] X. Fu, X. Wang, and C. Lefurgy, How much power
oversubscription is safe and allowed in data centers, in
Proc. 8th ACM Int. Conf. Autonomic Computing, Karlsruhe,
Germany, 2011, pp. 21–30.

[20] Q. Wu, Q. Deng, L. Ganesh, C. H. Hsu, Y. Jin, S. Kumar,
B. Li, J. Meza, and Y. J. Song, Dynamo: Facebook’s data
center-wide power management system, in Proc. 2016
ACM/IEEE 43rd Ann. Int. Symp. Computer Architecture,
Seoul, Republic of Korea, 2016, pp. 469–480.

Rui Chen et al.: A Server Placement Algorithm for Reducing Risk and Improving Power Utilization in Data Centers 173

[21] Y. Li, C. R. Lefurgy, K. Rajamani, M. S. Allen-Ware, G. J.
Silva, D. D. Heimsoth, S. Ghose, and O. Mutlu, A
scalable priority-aware approach to managing data center
server power, in Proc. 2019 IEEE Int. Symp. High
Performance Computer Architecture (HPCA), Washington,
DC, USA, 2019, pp. 701–714.

[22] Y. Jiang, Z. Huang, and D. H. K. Tsang, On power-peak-
aware scheduling for large-scale shared clusters, IEEE
Trans. Big Data, vol. 6, no. 2, pp. 412–426, 2020.

[23] C. Zhang, A. G. Kumbhare, I. Manousakis, D. Zhang,
P. A. Misra, R. Assis, K. Woolcock, N. Mahalingam, B.
Warrier, D. Gauthier, L. Kunnath, S. Solomon, O. Morales,
M. Fontoura, and R. Bianchini, Flex: High-availability
datacenters with zero reserved power, in Proc. 2021
ACM/IEEE 48th Ann. Int. Symp. Computer Architecture
(ISCA), Valencia, Spain, 2021, pp. 319–332.

[24] H. Sun, P. Stolf, J. M. Pierson, and G. Da Costa, Multi-
objective scheduling for heterogeneous server systems with
machine placement, in Proc. 2014 14th IEEE/ACM Int.
Symp. Cluster, Cloud and Grid Computing, Chicago, IL,
USA, 2014, pp. 334–343.

[25] M. H. Jamal, M. T. Chaudhry, U. Tahir, F. Rustam, S.
Hur, and I. Ashraf, Hotspot-aware workload scheduling
and server placement for heterogeneous cloud data centers,
Energies, vol. 15, no. 7, p. 2541, 2022.

[26] C. H. Hsu, Q. Deng, J. Mars, and L. Tang, SmoothOperator:
Reducing power fragmentation and improving power
utilization in large-scale datacenters, in Proc. Twenty-
Third Int. Conf. Architectural Support for Programming
Languages and Operating Systems, Williamsburg, VA, USA,
2018, pp. 535–548.

[27] L. Yan, W. Liu, and D. Bai, Temperature and power aware
server placement optimization for enterprise data center, in
Proc. 2018 IEEE 24th Int. Conf. Parallel and Distributed
Systems (ICPADS), Singapore, 2018, pp. 433–440.

[28] EasyPact CVS catalog, https://www.schneider-electric.cn/
zh/product-range/61052-easypact-cvs/#documents, 2022.

[29] IEC 60947–2: 2016-low-voltage switchgear and
controlgear–part 2: Circuit-breakers, https://webstore.iec.
ch/publication/25040, 2016.

[30] X. F. Liu, Z. H. Zhan, J. D. Deng, Y. Li, T. Gu, and J.
Zhang, An energy efficient ant colony system for virtual
machine placement in cloud computing, IEEE Trans. Evolut.
Comput., vol. 22, no. 1, pp. 113–128, 2018.

[31] H. Tabrizchi and M. K. Rafsanjani, Energy refining balance
with ant colony system for cloud placement machines, J.
Grid Comput., vol. 19, no. 1, p. 7, 2021.

[32] https://github.com/alibaba/clusterdata/tree/master/cluster-
trace-v2018, 2018.

[33] W. Lin, G. Wu, X. Wang, and K. Li, An artificial
neural network approach to power consumption model
construction for servers in cloud data centers, IEEE Trans.
Sustainable Comput., vol. 5, no. 3, pp. 329–340, 2020.

[34] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De
Rose, and R. Buyya, CloudSim: A toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms, Software Pract. Exper.,
vol. 41, no. 1, pp. 23–50, 2011.

[35] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, DCSim:
A data centre simulation tool for evaluating dynamic
virtualized resource management, in Proc. 2012 8th Int.
Conf. Network and Service Management (CNSM) and 2012
Workshop on Systems Virtualiztion Management (SVM), Las
Vegas, NV, USA, 2012, pp. 385–392.

[36] A. Alahmadi, A. Alnowiser, M. M. Zhu, D. R. Che, and P.
Ghodous, Enhanced first-fit decreasing algorithm for energy-
aware job scheduling in cloud, in Proc. 2014 Int. Conf.
Computational Science and Computational Intelligence,
Las Vegas, NV, USA, 2014, pp. 69–74.

Rui Chen received the BEng degree
in computer science from South China
University of Technology, China in 2022.
He is currently a master student in computer
science at South China University of
Technology. His research interests include
cloud computing and big data.

Weiwei Lin received the BEng and MEng
degrees from Nanchang University, China
in 2001 and 2004, respectively, and the PhD
degree in computer application from South
China University of Technology, China
in 2007. He was a visiting scholar at
Clemson University, USA from 2016 to
2017. Currently, he is a professor at the

School of Computer Science and Engineering, South China
University of Technology, China. His research interests include
distributed systems, cloud computing, big data computing, and
AI application technologies. He has published more than
150 papers in refereed journals and conference proceedings.
He is the reviewer for many international journals, including
TC; TCYB; TSC; TCC , etc. He is a senior member of CCF
and a member of the IEEE.

Huikang Huang received the BEng degree
in computer science and technology from
Hanshan Normal University, China in 2018,
and the MEng degree in computer science
and theory from South China Agricultural
University, China in 2021. Now, he is a
PhD candidate at the School of Computer
Science and Engineering, South China

University of Technology, China. His research interests mainly
focus on cloud computing.

Xiaoxuan Luo received the BEng degree
in computer science from South China
University of Technology, China in 2022,
where he is currently a PhD candidate. His
research interests include cloud computing
and energy-efficiency optimization.

