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Multipass Streaming Algorithms for Regularized
Submodular Maximization

Qingin Gong, Suixiang Gao, Fengmin Wang, and Ruiqi Yang�

Abstract: In this work, we study a k-Cardinality Constrained Regularized Submodular Maximization (k-CCRSM)

problem, in which the objective utility is expressed as the difference between a non-negative submodular and a

modular function. No multiplicative approximation algorithm exists for the regularized model, and most works have

focused on designing weak approximation algorithms for this problem. In this study, we consider the k-CCRSM

problem in a streaming fashion, wherein the elements are assumed to be visited individually and cannot be entirely

stored in memory. We propose two multipass streaming algorithms with theoretical guarantees for the above problem,

wherein submodular terms are monotonic and nonmonotonic.
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1 Introduction

Submodular maximization has a lengthy history both in
theoretical and applied aspects. It encompasses problems
of interest in numerous applications, such as data
summarization[2–4], influence maximization in social
computing[5–7], sensor placement in environmental
monitoring[8–10], system recommendation[11–13], and
team formation[14–16], to a name a few.

Representative application data summarization is a
fundamental task in machine learning that aims to find a
diverse set of elements by maximizing a utility function
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formally described by submodularity.
The optimization problem involves finding a subset

S 2 I that maximizes f .S/ given a universe of finite
elements of V , a submodular function f W 2V ! RC,
and k-cardinality constraint I D fS � V W jS j 6 kg.
The monotonicity of utility functions is encountered in
a variety of scenarios and heavily affects algorithmic
performances. A set function f is monotone if f .A/ 6
f .B/ for any pair A � B � V: For the k-Cardinality
Constrained Regularized Submodular Maximization (k-
CCRSM) problem in an offline setting, a greedy-based
.1 � 1=e/ approximation[17] exists for the monotonic
case. Generally, the greedy-based algorithm chooses an
element with the maximum marginal gain during each
iteration. Interestingly, most of the designed algorithms
for submodular optimizations are heavily based on non-
negativity and monotonicity.

The monotonicity of the objective function encourages
the revenue of adding elements, but it may lead to
the risk of overfitting because adding elements can
never decrease the utility values. The regularized utility
function f .�/ � c.�/ was introduced by Ref. [13].
In this function, f .�/ denotes a submodular revenue
term, and c.�/ denotes a modular regular or penalty
term. This formula forces us to maintain a balance
between the submodular term and the regularized term
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to select highly cost-effective elements. The regularized
submodular maximization is formally defined as to find
a subset S � V , such that the utility f .S/ � c.S/
is maximized. We note that the regularized objective
function loses the non-negativity and monotonicity, but
retains the submodularity. Indeed, we can conclude that
no multiplicative constant approximation factors exist in
polynomial time for the discussed regularized problem.
What follows is a brief summary of the meaningful weak
approximation introduced by Refs. [18, 19].

Definition 1 An algorithm A is a weak �-
approximation for the k-CCRSM problem, if it returns
a solution S of size at most k in polynomial time, such
that

f .S/ � c.S/ > � � f .O/ � c.O/;

for some � 2 .0; 1/, whereO is an optimum solution for
the discussed problem.

The approximation guarantees of .1 � 1=e/ and
0:491 have been shown to be tight with respect to the
monotonic and nonmonotonic k-cardinality constrained
submodular maximization problem in nonregularized
offline settings. With the development of studies on
the k-CCRSM problem, a state-of-the-art algorithm
retains a weak .1 � 1=e/ approximation was found in
Ref. [20]. Moreover, Ref. [21] developed an extended
bicriteria approximation by further exploiting the regular
model’s combinatorial structure. We briefly restate this
approximation here.

Definition 2 An algorithm A is a .�1; �2/-bicriteria
approximation for the k-CCRSM problem, if it returns a
solution S with a size of at most k in polynomial time,
such that

f .S/ � c.S/ > �1 � f .O/ � �2 � c.O/;

for some pair �1; �2 2 .0; 1/.
Obviously, any weak �-approximation exactly reduces

into a .�; 1/-bicriteria approximation in terms of the
bicriteria approximation perspective.

Often, in an online model, we assume that elements
are released once at a time. Once an element is released,
we need to decide irrevocably whether or not to retain
the element in the solution. Indeed, many applications
in practical scenarios have motivated the need for space-
efficient algorithms, i.e., streaming algorithms for the
constrained submodular maximization problems because
the entire elements cannot possible be accessed to
in advance, and only a fraction of elements can be
maintained in the main memory. In the formal streaming
style, elements are released individually, and we need to

extract a set of elements from the stream with a limited
memory at any time during the streaming process, such
that the optimizer restricted to the extracted set can be
comparable with the optimizer over the entire stream.
Elements are released in an arbitrary order, and the
algorithm is usually allowed to visit the input stream only
once. This algorithm is called a single pass algorithm. In
the context of our regularized problem, the input stream
consists of the elements are released in a fixed sequence,
and the algorithm is allowed to visit the input stream
many times.

Streaming-based optimization is now a very hot
topic, and recent progresses has resulted in a
good understanding of streaming algorithms for the
submodular maximization in non-regularized scenarios.
Threshold-based streaming algorithms with an optimal
approximation guarantee of 1=2 exist for streaming
models[22–24]. The above approximation can be boosted
to .1 � 1=e/ by making multipasses over the stream.
The threshold-based method is a popular technique
for dealing with the streaming scenario, in which one
intuitively sieves arrived elements with a lower bound
setting of the threshold value (which is usually dependent
on the optimum for analysis). Other techniques have also
been developed for the submodular maximization under
streaming models, which can be found in Refs. [25–27].
We believe that these new techniques are of independent
interest to streaming submodular optimization and
should be further studied.

We consider the k-CCRSM problem in the streaming
fashion and allow the element stream to be read
numerous times. Assume that a weak Q�-approximation
algorithm exists a priori for the discussed regularized
problem. Given some parameter " 2 .0; 1/, we develop
a multipass threshold based . Q�=�; 1=�/-bicriteria
approximation, which makes over O.log.�= Q�/="/
passes, but only consumes O.k/ memory and uses
O.n log.�= Q�/="/ queries, where the parameter � can
be optimized by Q�. The above results can also be found
in our conference version[1]. In this version, we further
study the k-CCRSM problem, wherein the submodular
terms are monotonic and nonmonotonic. Indeed, we
present two boosting multipass streaming algorithms for
the k-CCRSM problem with some theoretical guarantees.
Additionally, we assume that a weak �-approximation
exists a priori for the discussed regularized problem. The
improved results are summarized as follows:
� For any given " 2 .0; 1/, we obtain a deterministic

multipass stream algorithm for the k-CCRSM problem
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in the monotonic scenario. The algorithm makes at most
O.log.1=."�//="/ passes, needs O.n log.1=."�//="/
queries, consumes O.k/ memory, and produces a
solution S satisfying f .S/� e�.1�"/c.S/ > .1� e�1 �

O."//.f .O/ � c.O//, where O denotes any optimal
solution of the stated problem. The results are formally
summarized in Theorem 1 in Section 4 in the following.
� We further acquire a deterministic multipass

stream algorithm for the k-CCRSM problem under the
nonmonotonic scenario. The algorithm makes at most
O.log..1�"/2=.2"�"2//="/ passes, needsO.n log..1�
"/2=.2" � "2//="/ queries, consumes the same memory
O.k/ as the monotonic case, and produces a solution S
obeying .f .S/ � c.S//.2 � "/=.1 � "/>min f1=2 � ";
2.1 � "/�gf .O/ � 2.1 � "/c.O/ for some given
accuracy parameter " 2 .0; 1=2/. The main results are
summarized in Theorem 2 in Section 5 in the following.

The remainder of this paper is structured as follows:
In Section 2, we briefly introduce related works. In
Section 3, we present some basic concepts of submodular
functions and formally state the k-CCRSM problem.
In Section 4, we discuss the setting of the k-CCRSM
problem when the submodular term is monotonic. We
present a threshold-based multipass streaming algorithm
in Section 4.1, and discuss the analysis to obtain a
weak approximation in Section 4.2. We then study
the above problem in the non-monotonic case, as
discussed in Section 5. We introduce an extended
multipass streaming algorithm in Section 5.1 and provide
the performance guarantees of the stated algorithm in
Section 5.2. Finally, in Section 6, we give a conclusion
to our work.

2 Related Work

In this section, we mainly review the studies in
centralized and streaming settings that are most closely
related to our work.

2.1 Centralized algorithms

Often, maximizing submodular functions with various
constraints is computationally NP-hard. Hence, most
previous works focused on approximation algorithms
for such problems. Considering the k-CCSM problem
in the nonregularity setting, the .1� 1=e/ approximation
and 1=e approximation[28] existing with respect to the
submodular term are monotonic and nonmonotonic,
respectively. Submodular maximization problems with
numerous kinds of constraints have been further studied,
such as knapsack[19], matroid[29–31], and highly complex

independence systems[32, 33]. The aforementioned
studies investigated submodular maximization in
nonregularity scenarios.

The k-CCRSM model has been recently formally
introduced by Ref. [18]. They presented a distorted
greedy-based algorithm with a weak approximation of
1�1=e, that is, .1�1=e; 1/-bicriteria approximation. We
let �.O/ D f .O/=c.O/ for convenience. An equivalent
formula of the above approximation guarantee can be
stated as the .1; 1C �.O/=e/-bicriteria approximation.
Reference [18] also showed that the weak approximation
ratio is tight under the assumption of P ¤ NP . The
“return on investment (ROI)” greedy algorithm[34],
achieves an improved .1; 1 C ln.�.O///-bicriteria
approximation for the URSM. Considering a more
general matroid constrained regularized submodular
maximization, a distorted continuous greedy-based
algorithm[35], attaining a deterministic weak .1 � 1=e/
approximation exists. A weak 1=e approximation is
further provided in expectation in the case wherein
the submodular term is nonmonotonic. A large body
of literature[19, 21, 36–38] on regularized submodular
maximization problems in the centralized setting exists.

2.2 Streaming algorithms

We then investigate the development of the algorithms
for submodular maximization in a streaming fashion. As
mentioned previously, the state-of-the-art algorithm has
an approximation ratio of 1=2 when the stream input can
be visited only once. Moreover, many works[24, 39–41]

with approximation results can be boosted to the
tight ratio .1 � 1=e/ by making multipasses over the
stream. A single pass streaming algorithm[13] develops a
distorted threshold-based algorithm with a multiplicative
approximation of .�.O/ �

p
2�.O/ � 1/=.2�.O/ � 2/.

A weak 1=2 approximation and 0:382 approximation for
the k-CCRSM exist in online and streaming fashion[6].

3 Preliminary

We provide a brief overview of the models, necessary
notations, and assumptions that we will use in this paper.

(1) Element stream model
We denote V as the ground set of elements and assume

the elements to be released in a streaming style. In the
element stream model, the input is visited in a sequential
manner, and the algorithm is allowed to read it in an
arbitrary order. Let V Dfv1; v2; : : : ; vng, ordered by the
visiting order of elements from the input stream. At any
time t , the algorithm acquires access to vt and performs
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computation on the basis of encountered element vt ,
albeit without knowledge of future unreleased elements.
Often, the stream input is allowed to be released only
once, and the algorithm accordingly visits the stream
only one time. This algorithm is formally called the
single-pass algorithm. We consider that the input stream
can be released in multiple times, and accordingly the
algorithm is allowed to visit the stream in multipasses.

(2) Submodular function
Here, we recall the definition of a submodular function

f W 2V ! RC for any two subsets A;B � V ,
f .A/C f .B/ > f .A [ B/C f .A \ B/ holds. Note
that the function f .�/ reduces to modular if the above
inequality holds the equation. Moreover, the set function
f .�/ is monotonic if for any pair of subsets A � B � V ,
f .A/ 6 f .B/ holds. Given A;B � V and an element
v 2 V , we denote AC v and AC B as the expression
A[fvg andACB , respectively. Additionally, we denote
f .vjA/ as the marginal contribution of adding v to A
with respect to f .�/, that is, f .vjA/ , f .ACv/�f .A/.
Similarly, we denote f .BjA/ , f .AC B/ � f .A/ as
the marginal contribution of adding a set B � V to A
with respect to f .�/. From the perspective of diminishing
marginal contribution, a set function f is submodular if
the marginal contribution satisfying f .vjA/ > f .vjB/
for any v … B;A � B � V .

(3) k-CCRSM problem
We state the k-CCRSM problem to find a subset S �

V of size at most k, such that the regularized utility
f .S/ � c.S/ is maximized , i.e.,

arg max
S�V; jS j6k

f .S/ � c.S/ (1)

where the function f .�/ is non-negative and submodular,
and the regularizer function c.�/ is non-negative and
modular.

Throughout this paper we assume that an oracle can
obtain the regularized submodular utility for any given
set of elements.

4 k-CCRSM in a Monotonic Setting

In this section, we present a boosting multipass
streaming algorithm for the k-CCRSM when the
submodular term is monotonic. Recall that in this
problem, we are given a non-negative monotonic
submodular function f .�/ and a modular function c.�/.
We are aim to maximize the regularized utility f .�/�c.�/
subject to a k-cardinality constraint under the streaming
model.

4.1 Description of the Algorithm 1

The formal algorithm that we use to prove Theorem 1 is
presented as Algorithm 1, which provides an accuracy
parameter " > 0 and takes an approximate value � of
the instance of k-CCRSM, such that � � f .O/� c.O/ 6
� 6 f .O/ � c.O/.

Algorithm 1 starts by initializing the threshold value
� D �=.�k/. By introducing the parameter �, we build
the lower bound for the threshold, which is specifically
denoted as � < .1� "/� =.�k/. We leave the variable in
this part and determine it as discussed in the following
section. During each iteration of the “while” loop,
the threshold value � reduces to .1 � "/ times the
former iteration. Meanwhile, the element stream is
released in an arbitrary order over time, and Algorithm 1
accordingly visits the stream and decides if the visited
element v should be stored as a marginal contribution
denoted by f .vjS/ � c.v/ > � , where � is the value
of the threshold when the element v is considered. The
solution set S starts with S D ∅.

Algorithm 1 returns S with jS j D k or terminates
at most O."�1 log.1="// when the lower bound of the
threshold value is encountered.

4.2 Theoretical performance guarantees

In this section, we show that Algorithm 1 implies
Theorem 1. The following two lemmas prove together
that Algorithm 1 obtains the approximation guarantee
of Theorem 1. Lemma 1 handles the case of jS j D k.
We state Lemma 1 below. Without loss of generality, we
set S D fv1; v2; : : : ; vkg and let Si D fv1; v2; : : : ; vig

Algorithm 1 Multipass algorithm for monotone k-CCRSM
Input: Given an accuracy parameter " 2 .0; 1/, approximation

value � satisfying � � f .O/ � c.O/ 6 � 6 f .O/ � c.O/
for some � 2 .0; 1/, integer k, and parameter � D 1="

Output: Solution set S
1: Set S  ∅; �  �=.�k/;
2: while � > .1 � "/� =.�k/ do
3: �  .1 � "/� ;
4: for each element v 2 V do
5: if f .vjS/ � c.v/ > � then
6: S  S C v;
7: end if
8: if jS j D k then
9: return S ;

10: end if
11: end for
12: end while
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to be the first i elements added to S from the stream by
the Algorithm 1 for any i 2 f1; 2; : : : ; kg. Additionally,
we let S0 D ∅.

Lemma 1 If the size of solution S reaches the upper
bound of the k-cardinality, i.e., jS j D k, let " 2 .0; 1/,
then the following holds,

f .S/ � e�.1�"/c.S/

f .O/ � c.O/
> 1 � e�.1�"/:

Proof Given any i 2 f1; 2; : : : ; kg and an accuracy
" > 0, we first consider the condition that vi is added
to Si�1 during an iteration with � < .1 � "/.f .O/ �

c.O//=k. For any o 2 O n Si�1, it follows that
f .ojSi�1/ � c.o/ 6

�

1 � "
. Therefore, we obtain

f .Si / � f .Si�1/ � c.vi / > � >
1 � "

k

X
o2OnSi�1

f .ojSi�1/ � c.o/ >

1 � "

k
.f .O [ Si�1/ � f .Si�1/ � c.O// >

1 � "

k
.f .O/ � f .Si�1/ � c.O//:

Rearranging the above inequality yields the following
recursive form:

f .Si / >

�
1 �

1 � "

k

�
f .Si�1/C c.vi /C

1 � "

k
.f .O/ � c.O//:

We now consider if the element vi is added to Si�1

during an iteration with � > .1 � "/.f .O/ � c.O//=k,
Then f .vi jSi�1/ � c.vi / > � > .1 � "/.f .O/ �

c.O//=k. Hence the recursive inequality also holds.

Let q D 1 �
1 � "

k
and i D k, we further obtain

f .Sk/ >

qk�1c.Sk/C .1 � q
k/.f .O/ � c.O// >

qk�1c.Sk/C e�.1�"/.f .O/ � c.O//:

Given that " 2 .0; 1/ and .1� 1�"
k
/k�1 > e�.1�"/, we

acquire
f .S/ � e�.1�"/c.S/ > .1 � e�.1�"//.f .O/ � c.O//:

Therefore, the claim is proven. �
The case of jS j < k is handled as shown below, and

we conclude it by using the following Lemma 2.
Lemma 2 If the size of solution S does not reach

the upper bound of the k-cardinality, i.e., jS j < k, then
the following holds:
f .S/ � e�.1�"/c.S/

f .O/ � c.O/
> .1 � "/ .1 � e�.1�"//:

Proof Observe that the initial value of the threshold
� must be at least .1 � "/.f .O/ � c.O/=�/=k and the

last value of � must be at most .f .O/ � c.O//=.�k/.
Consider an arbitrary element o 2 O n S . Given that
o is not selected for S and the solution set S with
jS j < k, we obtain f .ojS 0/ � c.o/ 6 � , where S 0

denotes the state of S in the last iteration of encountering
o and � represents the threshold value during the last
iteration. Then, by the submodularity of f .�/, we acquire
f .ojS/ � c.o/ 6 f .ojS 0/ � c.o/ 6 � . We further gain
the following inequality by adding the inequalities over
all elements o 2 O n S as

f .O/ � f .S/ � c.O/ 6X
o2OnS

f .ojS/ � c.o/ 6

X
o2OnS

�

�k
6
1

�
.f .O/ � c.O//:

Rearranging the above inequality provides

f .S/ >

�
1 �

1

�

�
.f .O/ � c.O// (2)

In addition, f .S/ � c.S/ > 0, as discussed in
Algorithm 1. Some " 2 .0; 1/ is fixed, and adding an
e�.1�"/ fraction of the above inequality to a .1�e�.1�"//

fraction of Formula (2) implies
f .S/ � e�.1�"/c.S/

f .O/ � c.O/
>�

1 �
1

�

�
.1 � e�.1�"// D

.1 � "/.1 � e�.1�"//;

where the equality is obtained by setting � D 1=". Then
we finish the proof of the second case. �

Our result for the monotonic k-CCRSM, i.e., Theorem
1, now follows from Lemmas 1 and 2. A lower bound
f .S/ � e�.1�"/c.S/ comparing to f .O/ � c.O/ exists.

The properties of our proposed algorithm are
summarized by the following theorem.

Theorem 1 For any accuracy parameter " 2 .0; 1/,
assuming that a weak � approximation exists for the k-
CCRSM problem. By making at mostO.log.1=."�//="/
passes, querying O.n log.1=."�//="/ function value
oracles, and consuming O.k/ memory, Algorithm 1
produces a solution S satisfying

f .S/ � e�.1�"/c.S/

f .O/ � c.O/
> .1 � e�1/ �O."/:

Proof We have the following formula as
f .S/ � e�.1�"/c.S/

f .O/ � c.O/
>

.1 � "/.1 � e�1 � "/ >

1 � e�1 �O."/:
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Memory and query complexities. Memory
complexity is readily bounded by O.k/. Given that
in each iteration, the threshold decreases by a .1 � "/
fraction from the initial threshold �=.�k/ to the lower
bound .1 � "/� =.�k/, we acquire that the running
passes is O.log.�=�/="/ (i.e., O.log.1=."�//="/) by
the geometric guesses. Therefore, the total query
complexity can be bounded by O.n log.1=."�//="/.

5 k-CCRSM in a Nonmonotonic Setting

In this section, we present a multipass streaming
algorithm for the k-CCRSM problem when the
submodular term is nonmonotonic.

5.1 Description of Algorithm 2

The algorithm we use to demonstrate Theorem 2 is
summarized as Algorithm 2. This algorithm obtains
an accuracy parameter " > 0 and starts by initializing an
approximate value ��f .O/�c.O/ 6 � 6 f .O/�c.O/
for some � > 0.

Let A and B be two disjointed maintained sets during
Algorithm 2 and initially set A;B D ∅. We similarly
introduce the parameter of � to instantiate a lower bound
threshold values as � < .1 � "/� =.�k/. During the
“while” loop, a visited element is added to S 2 fA;Bg,
which provides a large distorted marginal contribution,
if the distorted marginal contribution is no less than the
threshold � and the size of the solution S does not reach
its maximum allowed size k before the stream finishes.

5.2 Theoretical performance guarantees

In this section, we demonstrate that Algorithm 2 implies

Algorithm 2 Multipass algorithm for non-monotone k-
CCRSM
Input: Approximation value � satisfying � � f .O/ � c.O/ 6

� 6 f .O/ � c.O/ for some � 2 .0; 1/, integer k, and
parameters � D 1=", ˇ D 2� ", and � D .2� "/=2�.1� "/2

Output: Solution set S
1: Let S  ∅; �  �=.��k/;
2: while � > .1 � "/� =.�k/ do
3: �  .1 � "/� ;
4: for each element v 2 V do
5: S  arg maxff .vjX/ � ˇ � c.v/ W X 2 fA;Bg and

jX j < kg;
6: if f .vjS/ � ˇ � c.v/ > � then
7: S  S C v;
8: end if
9: end for

10: end while
11: return S  arg maxX2fA;Bgff .X/ � c.X/g

Theorem 2. We utilize a multipass method that is similar
to the method in Ref. [42] for non-monotone streaming
k-cardinality constrained submodular maximization
under nonregularity conditions. Thus, our analysis is
performed fairly similarly to that in Ref. [42]. We begin
with a case of C with jC j D k, where C is any output
of A and B after the first round. We readily obtain the
following Lemma 3.

Lemma 3 If the size of any output set C 2 fA;Bg
is exactly the same as that of k, the following holds:

f .C / � c.C / >
f .O/

�
�
c.O/

��
:

Proof Without loss of generality, let C D

fc1; c2; : : : ; ckg be the set of elements added to C in
accordance with their visited order as denoted by Ci D

fc1; c2; : : : ; cig and S0 D ∅. Then
f .C / � ˇ � c.C / D

kX
iD1

f .ci jCi�1/ � ˇ � c.ci / >

kX
iD1

�=.��k/ > f .O/=�f .O/ � c.O/=.��/:

Given that ˇ > 1, the following holds,

f .C / � c.C / >
f .O/

�
�
c.O/

��
(3)

The proof follows. �
In the following, we show that the case of both jAj <

k and jBj < k after the first round of the “while” loop.
For analysis, let C;D 2 fA;Bg, such that C ¤ D have
their values after the stream or the lower bound of the
threshold is encountered during the loop. Additionally,
we setD0 as the state ofD at the time of the k-th element
is added to C if jC j D k; otherwise, we set D0 D D.
Then, we build an upper bound on the sum of gains
added to O n .C [D0/ in terms of the optimum and the
gains of elements added to C nO .

Lemma 4 We haveX
o2On.C[D0/

f .ojC/ � ˇ � c.o/ 6

1

1 � "

X
i Wci…O

�Ci C
f .O/ � c.O/

�
:

Proof We first consider the subcase of jC j D k.
Additionally, we denote �Ci D f .ci jCi�1/ � ˇ � c.ci /

the regularized marginal contribution of adding ci to
Ci�1 for any i 2 f1; 2; : : : ; kg. We denote � 0 as the
threshold value during the round that the last k-th
element is added to C . For any o 2 O n .C [ D0/,
f .ojC/ � ˇ � c.0/ 6 � 0=.1 � "/ must exist because
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element o 2 O n .C [ D0/ is not added to C or
D0 during this round of the “while” loop. We obtain
f .ci jCi�1/ � ˇ � c.ci / > � . Therefore, we acquireX

o2On.C[D0/

f .ojC/ � ˇ � c.o/ 6

1

1 � "

X
i Wci…O

f .ci jCi�1/ � ˇ � c.ci / D

1

1 � "

X
i Wci…O

�Ci :

We then consider the subcase of jC j < k. Following
by the fact that the definition of the last threshold
� implies f .ojC/ � ˇ � c.o/ < �=.�k/, we obtainP

o2On.C[D0/ f .ojC/ � ˇ � c.o/ < �=� 6 .f .O/ �

c.O//=�. Combining the above two subcases yieldsP
o2On.C[D0/ f .ojC/�ˇ �c.o/ 6

1
1�"

P
i Wci…O �CiC

.f .O/ � c.O//=�. �
In addition, we build an upper bound on f .OjC/ �

c.O/ in terms of the gains of the elements added to C
and D.

Lemma 5 We have

f .OjC/ � ˇ � c.O/ �
f .O/ � c.O/

�
6

1

1 � "

0@ X
i Wdi2O

�Di C

X
i Wci…O

�Ci

1A :
Proof By submodularity, we obtain
f .OjC/ � ˇ � c.O/ 6X
o2O\D0

f .ojC/ � ˇ � c.o/CX
o2On.C[D0/

f .ojC/ � ˇ � c.o/ 6

X
i Wdi2O

�Di C

X
o2On.C[D0/

f .ojC/ � ˇ � c.o/ 6

1

1�"

0@ X
i Wdi2O

�DiC

X
i Wci…O

�Ci

1AC f .O/�c.O/
�

:

The last inequality directly follows by Lemma 4. Then
the claim is proven. �

On the basis of Lemma 5, we set C D A and C D B
respectively. We derive the following Lemma 6.

Lemma 6 We acquire the lower bound for f .S/ �
c.S/ as follows:
f .S/�c.S/

.1�"/=.4�2"/
>

�
1 �

2

�

�
f .O/�

�
4�2"�

2

�

�
c.O/:

Proof We have the following to prove the above
claim:

f .O/ � 2ˇc.O/ 6

f .O [ A/C f .O [ B/ � 2ˇc.O/ 6

1

1 � "

 X
i

�Ai C

X
i

�Bi

!
C

2.f .O/ � c.O//

�
C f .A/C f .B/ 6

2.2 � "/

1 � "
Œf .S/ � c.S/�C

2

�
.f .O/ � c.O//:

The third inequality is obtained by setting ˇ D 2 � ".
Rearranging the above inequality implies
f .S/�c.S/

.1�"/=.2�"/
>

�
1

2
�
1

�

�
f .O/

�
2�"�

1

�

�
c.O/:

The proof is completed. �
Our main result for nonmonotonic k-CCRSM, i.e.,

Theorem 2, is from Lemmas 3 and 6, and our choice of
parameters ˇ and �. Hence, we establish a lower bound
f .S/ � c.S/ in terms of a distorted optimum.

We summarize the main results with the following
theorem.

Theorem 2 Given some " 2 .0; 1=2/ and assuming
that a weak � approximation for the nonmonotonic k-
CCRSM problem exists, by making at most O.log..1 �
"/2=.2" � "2//="/ passes, querying O.n log..1 �
"/2=.2"�"2//="/ function value oracles, and consuming
O.k/ memory, Algorithm 2 produces a solution S

satisfying
f .S/ � c.S/

.1 � "/=.2 � "/
>

min
�
1

2
� "; 2.1 � "/�

�
f .O/ � 2.1 � "/c.O/ (4)

Proof The following calculation implies the claim.
Let

1

��
D
1 � "

2 � "

�
2 � " �

1

�

�
;

Then we obtain
f .S/ � c.S/

.1 � "/=.2 � "/
>

min
�
1

2
�
1

�
;

�
2 � " �

1

�

�
�

�
f .O/ ��

2 � " �
1

�

�
c.O/ D

min
�
1

2
� "; 2.1 � "/�

�
f .O/ �

2.1 � "/c.O/;

which holds by setting � D 1=".
Query complexity. We conclude that the Algorithm 2
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terminates at most O.log.1=."��/// (i.e., O.log..1 �
"/2=.2"�"2//=")) passes, and thus the query complexity
is bounded by O.n log..1 � "/2=.2" � "2//="/.

6 Conclusion

We consider the problem of maximizing a k-cardinality
constrained submodular function with a nonnegative
modular regularizer under the streaming model, denoted
by k-CCRSM. Under the assumption that we have
access to a weak �-approximation in advance for the
regularized problem, we establish a threshold interval
based on the approximate value, and then sieve elements
by visiting the element stream in an arbitrary order
during iterations. We obtain a boosting multipass
threshold-based streaming algorithm for the k-CCRSM
problem wherein the submodular term is monotonic. We
further present an extended multipass distorted threshold-
based streaming algorithm for the regularized model
wherein the submodular term of the objective function
is nonmonotonic.
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