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Robust Correlation Clustering Problem with Locally Bounded
Disagreements

Sai Ji, Min Li, Mei Liang, and Zhenning Zhang�

Abstract: Min-max disagreements are an important generalization of the correlation clustering problem (CorCP).

It can be defined as follows. Given a marked complete graph G D .V;E/, each edge in the graph is marked by a

positive label “C” or a negative label “�” based on the similarity of the connected vertices. The goal is to find a

clustering C of vertices V , so as to minimize the number of disagreements at the vertex with the most disagreements.

Here, the disagreements are the positive cut edges and the negative non-cut edges produced by clustering C.

This paper considers two robust min-max disagreements: min-max disagreements with outliers and min-max

disagreements with penalties. Given parameter ı 2 .0; 1=14/, we first provide a threshold-based iterative clustering

algorithm based on LP-rounding technique, which is a .1=ı; 7=.1 � 14ı//-bi-criteria approximation algorithm for both

the min-max disagreements with outliers and the min-max disagreements with outliers on one-sided complete

bipartite graphs. Next, we verify that the above algorithm can achieve an approximation ratio of 21 for min-max

disagreements with penalties when we set parameter ı D 1=21.
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1 Introduction

Correlation clustering problem (CorCP) has many
applications in machine learning, computer vision, data
mining, and so on, and it has been widely studied in the
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past decade[1–6].
This CorCP was first introduced by Bansal et al.[7],

and it is inspired from a document clustering problem.
The input of the problem is a complete graph G D
.V;E/ with N vertices, and each edge .p; q/ is marked
by a positive label “C” or a negative label “�” based
on the similarity of vertex p and vertex q. The goal of
the problem is to find a clustering C of set V , so as to
minimize the number of positive cut edges and negative
non-cut edges. Here, we can call each positive cut edge
and each negative non-cut edge as a disagreement. In
the CorCP, there is no limit on the number of clusters.
When all the edges in the graph are positive, the optimal
clustering of V contains only one cluster, and when
all the edges are negative, the optimal clustering of V
contains N clusters. Therefore, the number of clusters
depends on the specific instance of the CorCP.

The CorCP is NP-hard, and people always use the
combinational technique and LP-rounding technique
to study the approximation algorithms rather than the
exact algorithms of this problem[8–13]. The first constant
approximation algorithm and the best approximation
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algorithm for the CorCP are the 17 433-approximation
algorithm given by Bansal et al.[7] and the 2:06-
approximation algorithm given by Chawla et al.[14],
respectively.

Besides the traditional CorCP, several interesting
generalizations of the CorCP have also attracted the
research interest of many scholars[15–23]. In this paper,
we pay attention to three generalizations of the CorCP:
min-max disagreements, CorCP with outliers, and
CorCP with penalties.

Min-max disagreements are an important
generalization of the CorCP, which was introduced
by Puleo and Milenkovic[15]. The goal of CorCP is to
optimize the number of global disagreements, while
the goal of min-max disagreements is to optimize the
number of local disagreements. Specifically, the goal of
the min-max disagreements is to minimize the number of
disagreements at the vertex with the most disagreements.
Puleo and Milenkovic[15] first studied this problem and
gave an LP-rounding based 48-approximation algorithm.
Then, they provided a 10-approximation algorithm
for the min-max disagreements on complete bipartite
graphs, where the disagreements are measured on one
side of the graph. In this paper, we refer to the latter
problem simply as min-max disagreements on one-sided
complete bipartite graphs. Later, Charikar et al.[16]

provided an algorithm that achieves an approximation
ratio of 7 for both min-max disagreements and min-max
disagreements on one-sided complete bipartite graphs.

CorCP with outliers is a kind of robust CorCP, which
was first introduced by Devvirt et al.[17] In this problem,
in addition to a labeled complete graph, we are given
an upper bound r for the number of vertices that can be
un-clustered. We call each vertex that is not clustered
an outlier and each vertex that is clustered a non-outlier.
It is worth noting that once a vertex is selected as an
outlier, it will not be clustered, so it will not produce any
disagreements. Then, the goal of the CorCP with outliers
is to find r outliers and a clustering of non-outliers, so
as to minimize the number of disagreements generated
by all the non-outliers. Devvrit et al.[17] proved that
it is NP-hard to obtain any finite approximation factor
of the CorCP with outliers unless the constraint on the
number of outliers is not satisfied. Then, they provided a
.6; 6/-bi-criteria approximation algorithm for the CorCP
with outliers. In this paper, we define an algorithm as
an .˛; ˇ/-bi-criteria approximation for the CorCP with
outliers. If for any instance of this problem, the number
of outliers output by the algorithm is no more than ˛r ,

the number of disagreements output by the algorithm
shall not exceed ˇ times of the number of disagreements
in the optimal solution.

CorCP with penalties is one kind of robust CorCP,
which was first introduced by Aboud and Rabani[23].
They provided a 9-approximation algorithm based on
primal dual technique. Compared with CorCP with
outliers, the number of un-clustered vertices has no
limitation in CorCP with penalties, but each un-clustered
vertex generates a penalty cost. The problem of the
CorCP with penalties is described as follows. For a given
marked complete graph, each vertex has a penalty cost.
The goal is to find a set of un-clustered vertices, as well
as a clustering of clustered vertices, so as to minimize
the sum of the number of disagreements generated
by clustered vertices and the penalty costs of the un-
clustered vertices.

Since simple generalizations of the CorCP may not be
able to accurately describe some practical problems, we
combine min-max disagreements, CorCP with outliers,
and CorCP with penalties to raise the following two
problems: min-max disagreements with outliers and
min-max disagreements with penalties. These two
generalizations are described as follows. In the min-
max disagreements with outliers, we are given a marked
complete graph and an upper bound r of the number
of outliers. The target is to find r outliers as well
as a clustering of non-outliers, so as to minimize the
number of disagreements at the non-outlier with the
most disagreements. In the min-max disagreements with
penalties, we are given a marked complete graph and an
un-uniform penalty cost for each vertex. The purpose
is to find a set of un-clustered vertices, as well as a
clustering of clustered vertices, so as to minimize the
maximum values of the disagreements at the clustered
vertex and the largest penalty cost at the un-clustered
vertex.

There are three main contributions of this paper.
(1) We introduce the min-max disagreements

with outliers and provide a threshold-based iterative
clustering algorithm based on Refs. [16, 17], which is a
.1=ı; 7=.1 � 14ı//-bi-criteria approximation algorithm
with the parameter ı 2 .0; 1=14/.

(2) We claim that the threshold-based iterative
clustering algorithm is also suitable for the min-max
disagreements with outliers on one-sided complete
bipartite graphs, and has the same bi-criteria.

(3) We introduce the threshold-based iterative
clustering algorithm to overcome the problem of min-
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max disagreements with penalties, and the algorithm is
guaranteed by 21 with ı D 1=21.

The rest of this paper is structured as follows.
In Section 2, we describe the definition and two
formulations for the min-max disagreements with
outliers. In Section 3, we design a threshold-
based iterative clustering algorithm for the min-max
disagreements with outliers. In Sections 4 and 5, we state
that the threshold-based iterative clustering algorithm is
both effective for min-max disagreements with outliers
on one-sided complete bipartite graphs and min-max
disagreements with penalties. Finally, some conclusions
are provided in Section 6.

2 Min-Max Disagreements

Firstly, we introduce some notations and definitions used
throughout our paper.

For each positive integer m, let Œm� be the set of all
the positive integers less than or equal to m. G D

.V;E/ is a given marked graph, where V is the set
of vertexes and E is the set of edges. Let EC WD
f.p; q/ 2 E W .p; q/ is a positive edgeg, and E� WD
EnEC. For a set S � V , the clustering is denoted by
C D fC1; C2; : : : ; Cmg; m 2 ŒjS j�. The disagreement
of a vertex q 2 Ci ; i 2 Œm� is the positive cut edges
f.p; q/ 2 EC W p 2 SnCig and the negative non-cut
edges f.p; q/ 2 E� W p 2 Cig. We use the following
symbols to denote the numbers of these kinds of edges,
that is,

disCq .C; S/ D jf.p; q/ 2 EC W p 2 SnCigj;

dis�q .C; S/ D jf.p; q/ 2 E� W p 2 Cigj;

disq.C; S/ D disCq .C; S/C dis�q .C; S/:
In the following, we give the descriptions of the

problems we considered.
Definition 1 (Min-max disagreements) Given a

marked complete graph G D .V;E/ with N D jV j
vertices, the goal of the problem is to find a clustering
C D fC1; C2; : : : ; Cmg; m 2 ŒN � of V , such that

max
q2Ci ;i2Œm�

disq.C; V /

is minimized.
Definition 2 (Min-max disagreements with outliers)

Given an instance I D fG D .V;E/; rg, where G is a
marked complete graph with N vertices and an upper
bound r on the number of outliers, the target is to find
a set O with r outliers as well as a clustering C D
fC1; C2; : : : ; Cmg; m 2 ŒN � r� of V nO , such that

max
q2Ci ;i2Œm�

disq.C; V nO/

is minimized.

Definition 3 (Bi-criteria approximation algorithm for
the min-max disagreements with outliers) Algorithm A
is an .˛; ˇ/-bi-criteria approximation algorithm for the
min-max disagreements with outliers. If for any instance
I D fG D .V;E/; rg of the min-max disagreements
with outliers, algorithm A can return a set O of outliers
and a clustering C of V nO which satisfy:

(1) jOj 6 ˛r ;
(2) maxq2V nOdisq.C; V nO/6ˇmaxq2V nO�disq.C�;

V nO�/, where O� and C� are the set of outliers and
the clustering of non-outliers returned by the optimal
algorithm, respectively.

3 Min-Max Disagreements with Outliers

In this section, we present our threshold-based iterative
clustering algorithm for the min-max disagreements with
outliers based on Refs. [16, 17]. Two formulations of
the problem are given in Section 3.1. The approximation
algorithm and the theoretical analysis are shown in
Sections 3.2 and 3.3, respectively.

3.1 Definition and formulation of the min-max
disagreements with outliers

In order to give an integer programming for the min-max
disagreements with outliers, we introduce variables Xpq

and Zpq for each edge .p; q/ and a variable Yq for each
vertex q. These variables are explained as follows.

(1) For each .p; q/ 2 E, let Xpq indicate whether
.p; q/ is a cut edge. If Xpq D 1, then .p; q/ is a cut
edge. Otherwise, .p; q/ is a non-cut edge.

(2) For each q 2 V , let Yq indicate whether vertex q
is an outlier. If Yq D 1, then q is an outlier. Otherwise,
q is a non-outlier.

(3) For each .p; q/ 2 E, let Zpq indicate whether
edge .p; q/ is a disagreement. If Zpq D 1, then edge
.p; q/ is a disagreement. Otherwise, edge .p; q/ is not a
disagreement.

Based on above three types of variables, we can
formulate the min-max disagreements with outliers as
Formula (1).
min max

q2V

X
p2V

Zpq;

s:t:; Xpq CXqw > Xpw ; 8p; q;w 2 V;

Yp C Yq CZpq > 1 �Xpq; 8.p; q/ 2 E
�;

Yp C Yq CZpq > Xpq; 8.p; q/ 2 E
C; (1)X

q2V

Yq D r;

Xqq D 0; 8q 2 V;

Xpq; Zpq; Yp 2 f0; 1g; 8p; q 2 V
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The objective value is the number of positive cut
edges and negative non-cut edges for a vertex q. There
are five kinds of constraints in Formula (1). The first
constraint guarantees that the output is a reasonable
solution of the CorCP. The next two constraints give
the condition for an edge to be a disagreement. The
fourth constraint ensures that there are exactly r outliers
output by Formula (1). The last constraint ensures that
each vertex will only be in one cluster. By relaxing the
each variable to interval Œ0; 1�, we obtain the following
LP relaxation of Formula (1):

min max
q2V

X
p2V

Zpq;

s:t:; Xpq CXqw > Xpw ; 8p; q;w 2 V;

Yp C Yq CZpq > 1 �Xpq; .p; q/ 2 E
�;

Yp C Yq CZpq > Xpq; 8.p; q/ 2 E
C; (2)X

q2V

Yq D r;

Xqq D 0; 8q 2 V;

Xpq; Zpq; Yp 2 Œ0; 1�; 8p; q 2 V

3.2 Algorithm

In this subsection, we provide a threshold-based iterative
clustering algorithm for the min-max disagreements with
outliers. All steps of the algorithm are based on the
fractional optimal solution .X�; Y �; Z�/ of Formula (2).
Algorithm 1 has two main processes. The first process
is finding outliers (Line 3). The second is clustering
non-outliers, which is the core of the algorithm (Lines 4–
11).

In the first process, we find a set of outliers based on a
parameter ı as well as the value Y � of each vertex. For
each q 2 V , we make q as an outlier if Y �q > ı. The
number of outliers may not satisfy the fourth constraint
of Formula (2), but we can prove that the number of
outliers does not exceed a constant multiple of r .

In the second process, we find a clustering of the non-
outliers based on the value of X�. This process is an
iterative process. In each iteration, we first construct a set
of neighbors for each un-clustered non-outlier based on
a given parameter 1=7. Then, we specify the vertex with
the most neighbors as the center. Finally, we construct
a cluster for the center based on a parameter 3=7. We
repeat the iterative process until all the non-outliers are
clustered.

3.3 Theoretical analysis of the bi-criteria ratio

Let O be the set of outliers and C D fq�1 ; q
�
2 ; : : : ; q

�
mg

Algorithm 1 Threshold-based iterative clustering algorithm
Input: Given an instance I D fG D .V;E/; rg and a parameter
ı 2 .0; 1=14/.
Output: A set O of outliers and a clustering of V nO .

1: Let U WD V;C WD ∅; O WD ∅, and t WD 1.
2: Obtain the optimal fractional solution .X�; Y �; Z�/ of I by

solving Programming (2).
3: Update O WD fq 2 V W Y �q > ıg and U WD UnO
4: while U ¤ ∅ do
5: for each q 2 U do
6: Denote C�q .t/ WD fp 2 U W X�pq 6 1=7g.
7: end for
8: Choose vertex

q�t WD argmax
q2U

jC�q j:

9: Make Cq�t
WD fp 2 U W X�

pq�
6 3=7g as a cluster.

10: Update U WD U � Cq�t
; C WD C [ fq�t g; and t WD t C 1.

11: end while
12: return O and clustering C D fCq�1

; Cq�2
; : : : ; Cq�t

g.

be the center set output by Algorithm 1. Moreover, let
C D fCq�

1
; Cq�

2
; : : : ; Cq�m

g be the clustering of V nO .
From Algorithm 1 and the constraints of Formula (2),
we have Property 1.

Property 1 The solutions returned by Algorithm 1
satisfies:

(1) For each q 2 O , we have Y �q > ı;
(2) For each q 2 V nO , we have Y �q < ı;
(3) For each .p; q/ 2 EC; p; q 2 V nO , we have

Z�pq > X
�
pq � 2ı;

(4) For each .p; q/ 2 E�; p; q 2 V nO , we have
Z�pq > 1 �X

�
pq � 2ı.

Lemma 1 The size of set O is no more than r=ı.
Proof From the forth constraint of Programming

(2), we have X
q2V

Y �q D r:

Moreover, from Property 1-(1), we can obtain that

jOj 6
X
q2O

1

ı
Y �q 6

1

ı

X
q2V

Y �q D
r

ı
:

The lemma is concluded. �
Next, we analyze the value of disq.C; V nO/ for each

q 2 Cq�
i
; i 2 Œm�. As shown in Fig. 1, for each vertex

q 2 Cq�
i
; i 2 Œm�, and j 2 Œi � 1�, denote

Aj .q/ D C �
q�

j

.j /;

Bj .q/ D Cq�
j
\ C �q .j /;

Dj .q/ D Cq�
j
n
�
Aj .q/ [ Bj .q/

�
:

Similar, for each q 2 Cq�
i
; i 2 Œm�, denote
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Fig. 1 Relationship between vertex q and several special
sets.

Ai .q/ D C �
q�

i

.i/;

Di .q/ D Cq�
i
�
�
Ai .q/ [ C

�
q .i/

�
;

Fi .q/ D C �q .i/ � Cq�
i
;

Mi .q/ D [t2Œm�nŒi�Cq�t
� Fi .q/:

Next, we analyze the number of disagreements at each
vertex q 2 Cq�

i
; i 2 Œm� based on the above sets.

3.3.1 Positive cut edges
In this subsection, we analyze the number of
disagreements generated by positive cut edges at each
vertex q 2 Cq�

i
; i 2 Œm�.

Lemma 2 For each vertex q 2 Cq�
i
; i 2 Œm�,

the number of positive cut edge .p; q/; p 2 Mi .q/ [

Dj .q/; j 2 Œi � 1�, is no more than
7

1 � 14ı

X
.p; q/ 2 EC

p 2Mi .q/[Dj .q/

j 2 Œi � 1�

Z�pq:

Proof From the construction of setsDj ; j 2 Œi � 1�,
andMi .q/, for each cut edge .p; q/ 2 EC; p 2Mi .q/[

Dj .q/; j 2 Œi � 1�, we have

X�pq >
1

7
:

Moreover, from Property 1-(3), we can obtain

Z�pq > X
�
pq � 2ı >

1

7
� 2ı;

which indicates that the disagreement generated by
.p; q/ is no more than

7

1 � 14ı
Z�pq:

We sum all the p 2Mi .q/ [Dj .q/; j 2 Œi � 1�, and
we have that the number of positive cut edge .p; q/; p 2

Mi .q/ [Dj .q/; j 2 Œi � 1� is no more than
7

1 � 14ı

X
.p; q/ 2 EC

p 2Mi .q/[Dj .q/

j 2 Œi � 1�

Z�pq:

The lemma is concluded. �
Lemma 3 For each vertex q 2 Cq�

i
; i 2 Œm�,

the number of positive cut edge .p; q/; p 2 Aj .q/ [

Bj .q/; j 2 Œi � 1� is no more thanX
.p; q/ 2 EC

p 2 Aj .q/

j 2 Œi � 1�

7

1 � 7ı
Z�pq C

X
.p; q/ 2 E�

p 2 Aj .q/

j 2 Œi � 1�

7

2 � 14ı
Z�pq:

Proof Given a vertex q 2 Cq�
i
; i 2 Œm� and any

j 2 Œi � 1�, for each positive edge .p; q/; p 2 Aj .q/,
from Property 1-(3) we receive that

Z�pq > X�pq � 2ı >

X�
qq�

j

�X�
pq�

j

� 2ı >

2

7
� 2ı:

Moreover, for each negative edge .p; q/; p 2 Aj .q/,
from Property 1-(4) we achieve that
Z�pq > 1 �X�pq � 2ı >

1 �
�
X�

pq�
j

CX�
wq�

j

CX�qw

�
� 2ı >

1 �

�
1

7
C
3

7
C
1

7

�
� 2ı D

2

7
� 2ı;

where w is any vertex in set Bj .q/.
From Line 8 of Algorithm 1, we have that

jBj .q/j 6 jC
�
q .j /j 6 jAj .q/j:

Then, the number of positive cut edge .p; q/; p 2
Aj .q/[Bj .q/ equals jf.p; q/ 2 EC W Aj .q/[Bj .q/gj

and it is no more than
jf.p; q/ 2 E W p 2 Aj .q/gj C

f.p; q/ 2 EC W p 2 Aj .q/gj D

2jf.p; q/ 2 EC W p 2 Aj .q/gj C

jf.p; q/ 2 E� W p 2 Aj .q/gj:

Above all, we get
jf.p; q/ 2 EC W p 2 Aj .q/ [ Bj .q/gj 6

2jf.p; q/ 2 EC W p 2 Aj .q/gj C

jf.p; q/ 2 E� W p 2 Aj .q/gj 6

2
X

.p; q/ 2 EC

p 2 Aj .q/

7

2 � 14ı
Z�pqC
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.p; q/ 2 E�

p 2 Aj .q/

7

2 � 14ı
Z�pq 6

X
.p; q/ 2 EC

p 2 Aj .q/

7

1 � 7ı
Z�pq C

X
.p; q/ 2 E�

p 2 Aj .q/

7

2 � 14ı
Z�pq:

Therefore, we have
jf.p; q/ 2 EC W p 2 Aj .q/ [ Bj .q/; j 2 Œi � 1�gj 6X

.p; q/ 2 EC

p 2 Aj .q/

j 2 Œi � 1�

7

1 � 7ı
Z�pq C

X
.p; q/ 2 E�

p 2 Aj .q/

j 2 Œi � 1�

7

2 � 14ı
Z�pq:

The lemma is concluded. �
Lemma 4 For each vertex q 2 Cq�

i
; i 2 Œm�, the

number of positive cut edges .p; q/; p 2 Fi .q/, is no
more thanX

.p; q/ 2 EC

p 2 Ai .q/

7

1 � 14ı
Z�pq C

X
.p; q/ 2 E�

p 2 Ai .q/

7

3 � 14ı
Z�pq:

Proof From Line 8 of Algorithm 1, we receive that
jFi .q/j 6 jC

�
q .i/j 6 jAi .q/j:

Therefore, we have
jf.p; q/ 2 EC W p 2 Fi .q/gj 6

jf.p; q/ 2 EC W p 2 Ai .q/gj C

jf.p; q/ 2 E� W p 2 Ai .q/gj:

Similar to Lemma 3, we only need to analyze the
lower bound of Z�pq for each edge .p; q/; p 2 Ai .q/.

For each positive edge .p; q/ 2 EC with q 2

Ai .q/, from Property 1-(3) and the first constraint of
Formula (2), we can get

Z�pq > X�pq � 2ı >

X�
q�

i
w
�X�

pq�
i

�X�qw � 2ı >

3

7
�
1

7
�
1

7
� 2ı D

1

7
� 2ı;

where w is any vertex in set Fi .q/.
Moreover, from Property 1-(4) and the first constraint

of Formula (2), for each .p; q/ 2 E� with p 2 Ai .q/,
we achieve

Z�pq > 1 �X�pq � 2ı >

1 �
�
X�

qq�
i

CX�
pq�

i

�
� 2ı >

1 �

�
3

7
C
1

7

�
� 2ı D

3

7
� 2ı (3)

Above all, we obtain that
jf.p; q/ 2 EC W p 2 Fi .q/gj 6

jf.p; q/ 2 EC W p 2 Ai .q/gj C

jf.p; q/ 2 E� W p 2 Ai .q/gj 6X
.p; q/ 2 EC

p 2 Ai .q/

7

1 � 14ı
Z�pq C

X
.p; q/ 2 E�

p 2 Ai .q/

7

3 � 14ı
Z�pq:

The lemma is concluded. �

3.3.2 Negative non-cut edges
In this subsection, we analyze the number of negative
non-cut edges for each vertex q 2 Cq�

i
; i 2 Œm�.

Lemma 5 For each vertex q 2 Cq�
i
; i 2 Œm�, the

number of negative edges .p; q/; p 2 Cq�
i

, is no more
than X

.p; q/ 2 E�

p 2Di .q/

7

1 � 14ı
Z�pq C

X
.p; q/ 2 E�

p 2 Ai .q/

7

3 � 14ı
Z�pq:

Proof From Property 1-(4) and the first constraint
of Formula (2), for each .p; q/ 2 E�; p 2 Di .q/, we
have

Z�pq > 1 �X�pq � 2ı >

1 �X�
qq�

i

�X�
pq�

i

� 2ı >

1

7
� 2ı (4)

Combining Formulas (3) and (4), we have

dis�q .C; V nO/ 6X
.p; q/ 2 E�

p 2Di .q/

7

1 � 14ı
Z�pq C

X
.p; q/ 2 E�

p 2 Ai .q/

7

3 � 14ı
Z�pq:

The lemma is concluded. �
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From Lemmas 2–5, we can obtain the upper bound of
disagreements generated by each vertex.

Lemma 6 For each vertex q 2 Cq�
i
; i 2 Œm�, we

have

disq.C; V nO/ 6
7

1 � 14ı

X
.p;q/2E

Z�pq:

Proof For each vertex q 2 Cq�
i
; i 2 Œm�, from

Lemmas 2–4, we have
disCq .C; V nO/ D
jf.p; q/ 2 EC W p 2Mi .q/; j 2 Œi � 1�gj C

jf.p; q/ 2 EC W p 2 Dj .q/; j 2 Œi � 1�gj C

jf.p; q/ 2 EC W p 2 Aj .q/; j 2 Œi � 1�gj C

jf.p; q/ 2 EC W p 2 Bj .q/; j 2 Œi � 1�gj C

jf.p; q/ 2 EC W p 2 Fi .q/gj 6
7

1 � 14ı

X
.p; q/ 2 EC

p 2Mi .q/[Dj .q/

j 2 Œi � 1�

Z�pq C

7

1 � 7ı

X
.p; q/ 2 EC

p 2 Aj .q/

j 2 Œi � 1�

Z�pq C

7

2 � 14ı

X
.p; q/ 2 E�

p 2 Aj .q/

j 2 Œi � 1�

Z�pq C

7

1 � 14ı

X
.p; q/ 2 EC

p 2 Ai .q/

Z�pq C

7

3 � 14ı

X
.p; q/ 2 E�

p 2 Ai .q/

Z�pq 6

7

1 � 14ı

X
.p;q/2EC

Z�pq C

7

2 � 14ı

X
.p; q/ 2 E�

p 2 Aj .q/

j 2 Œi � 1�

Z�pq C

7

3 � 14ı

X
.p; q/ 2 E�

p 2 Ai .q/

Z�pq (5)

Combining Lemma 5 and Formula (5), we can get
disq.C; V nO/ D
disCq .C; V nO/C disCq .C; V nO/ 6

7

1 � 14ı

X
.p;q/2EC

Z�pqC

7

2 � 14ı

X
.p; q/ 2 E�

p 2 Aj .q/

j 2 Œi � 1�

Z�pq C

14

3 � 14ı

X
.p; q/ 2 E�

p 2 Ai .q/

Z�pq C

7

1 � 14ı

X
.p; q/ 2 E�

p 2Di .q/

Z�pq 6

7

1 � 14ı

X
.p;q/2E

Z�pq:

The lemma is concluded. �
From Lemmas 1 and 6, we can obtain Theorem 1.
Theorem 1 For each instance I D fG D .V;E/; rg

of the min-max disagreements with outliers, Algorithm 1
can return a setO with jOj 6 r=ı as well as a clustering
of V nO , such that

max
q2V nO

disq.C; V nO/ 6

7

1 � 14ı
max

q2V nO�
disq.C�; V nO�/;

whereO� and C� are the set of outliers and the clustering
of non-outliers returned by the optimal algorithm,
respectively.

4 Min-Max Disagreements with Outliers on
One-Sided Complete Bipartite Graphs

In this section, we study the min-max disagreements
with outliers on one-sided complete bipartite graphs.

Definition 4 (Min-max disagreements with outliers on
one-sided complete bipartite graphs) Given an instance
I D fG D .V;E/; rg, where G is a marked complete
bipartite graphs with N vertices and r is the upper
bound on the number of outliers. Let V1 and V2 be
the partite sets of G. The purpose of this problem is
to find a set O with r vertices as well as a clustering
C D fC1; C2; : : : ; Cmg; m 2 ŒN � r� of V nO , such that

max
q 2 V1 \Ci

i 2 Œm�

disq.C; V nO/

is minimized.
Based on Formula (1), we can formulate the min-

max disagreements with outliers on one-sided complete
bipartite graphs problem as follows:
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min max
q2V1

X
p2V2

Zpq;

s:t:; Xpq CXqw > Xpw ; 8p; q;w 2 V;

Yp C Yq CZpq > 1 �Xpq; 8.p; q/ 2 E
�;

Yp C Yq CZpq > Xpq; 8.p; q/ 2 E
C; (6)X

q2V

Yq D r;

Xqq D 0; 8q 2 V;

Xpq; Zpq; Yp 2 f0; 1g; 8p; q 2 V

By relaxing each variable to interval Œ0; 1�, we obtain
the following LP relaxation of Formula (6).

min max
q2V1

X
p2V2

Zpq;

s:t:; Xpq CXqw > Xpw ; 8p; q;w 2 V;

Yp C Yq CZpq > 1 �Xpq; .p; q/ 2 E
�;

Yp C Yq CZpq > Xpq; 8.p; q/ 2 E
C; (7)X

q2V

Yq D r;

Xqq D 0; 8q 2 V;

Xpq; Zpq; Yp 2 Œ0; 1�; 8p; q 2 V

We can get Theorem 2 directly from Theorem 1. We
omit the proof.

Theorem 2 For each instance IDfGD .V;E/; rg
of the min-max disagreements with outliers on one-sided
complete bipartite graphs, Algorithm 1 can return a set
O with jOj 6 r=ı as well as a clustering of V nO , such
that

max
q2V1nO

disq.C; V nO/ 6

7

1 � 14ı
max

q2V1nO�
disq.C�; V nO�/;

whereO� and C� are the set of outliers and the clustering
of non-outliers returned by the optimal algorithm,
respectively.

5 Min-Max Disagreements with Penalties

In this section, we study the min-max disagreements
with penalties. First, we give the definition as well as
two formulations for problem in Section 5.1. Then, we
prove that Algorithm 1 can achieve an approximation
ratio of 21 for the min-max disagreements with penalties
in Section 5.2.

5.1 Definition and formulation of the min-max
disagreements with penalties

Definition 5 (Min-max disagreements with penalties) Let
I D fG D .V;E/; pq; q 2 V g, where G is a marked

complete graph with N vertices, and pq is the penalty
cost of vertex q. The target is to find a penalized set P as
well as a clustering C D fC1; C2; : : : ; Cmg; m 2 ŒN � r�

of V nP , such that

max

8̂̂<̂
:̂ max

q 2 Ci

i 2 Œm�

disq.C; V nP /;max
q2P

pq

9>>=>>;
is minimized.

In order to give an integer programming for the min-
max disagreements with penalties, we first introduce a
binary variable Wq for each vertex q 2 V . If variable
Wq D 1, then vertex q is penalized. If variable Wq D 0,
vertex q is clustered. Next, based on the variables X and
Z defined in Section 3.1, we can formulate the min-max
disagreements with penalties as follows:

min max
q2V

0@X
p2V

Zpq C pqWq

1A ;
s:t:; Xpq CXqw > Xpw ; 8p; q;w 2 V;

Wp CWq CZpq > 1 �Xpq; 8.p; q/ 2 E
�;

Wp CWq CZpq > Xpq; 8.p; q/ 2 E
C; (8)

Xqq D 0; 8q 2 V;

Xpq; Zpq; Wp 2 f0; 1g; 8p; q 2 V

From the second and the third constraints, we can
obtain that if vertex q is penalized, then for each edge
.p; q/, variable Zpq D 0. Therefore, the objective
function is the maximum value of the number of
disagreements or penalty cost generated by each vertex
q. By relaxing each variable to interval Œ0; 1�, we get the
LP relaxation of Formula (8):

min max
q2V

0@X
p2V

Zpq C pqWq

1A ;
s:t:; Xpq CXqw > Xpw ; 8p; q;w 2 V;

Yp C Yq CZpq > 1 �Xpq; 8.p; q/ 2 E
�;

Yp C Yq CZpq > Xpq; 8.p; q/ 2 E
C; (9)

Xqq D 0; 8q 2 V;

Xpq; Zpq; Yp 2 Œ0; 1�; 8p; q 2 V

5.2 Theoretical analysis of the constant ratio

In this section, we prove that Algorithm 1 is a 21-
approximation algorithm for the min-max disagreements
problem with penalties. For each instance I D fG D
.V;E/; pq; q 2 V g, we can construct a feasible solution
based on Algorithm 1.

(1) Let .X�; W �; Z�/ be the optimal fractional
solution by solving Formula (9).
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(2) Set parameter ı D 1=21, and let P WD fq W q 2
V;W �q > 1=21g be the penalized set.

(3) Let U WD V nP and let C be the clustering of V nP
returned by running Lines 3–11 of Algorithm 1.

From Lemma 6, we achieve the following theorem.
Theorem 3 For each instance I D fG D

.V;E/; pq; q 2 V g of the min-max disagreements with
penalties, P and C are the penalized set and clustering
of V nP based on above construction, respectively. We
have

max
�

max
q2V nP

disq.C; V nP /;max
q2P

pq

�
6

21max
�

max
q2V nP�

disq.C�; V nP �/; max
q2P�

pq

�
;

where P � and C� are the set of un-clustered vertices
and the clustering of clustered vertices returned by the
optimal algorithm, respectively.

Proof For each vertex q 2 P , from the construction
of P , we have

pq 6 21pqW
�

q ;

which indicates that
max
q2P

pq 6 21max
q2P

pqW
�

q 6 21max
q2V

pqW
�

q :

Moreover, for each q 2 V nP , from Lemma 6 we have
disq.C; V nP / 6 21

X
p2V

Z�pq;

which indicates that
max

q2V nP
disq.C; V nP / 6 21 max

q2V nP

X
p2V

Z�pq 6

21max
q2V

X
p2V

Z�pq:

Above all, we can obtain

max
�

max
q2V nP

disq.C; V nP /;max
q2P

pq

�
6

21max

8<:max
q2V

X
p2V

Z�pq;max
q2V

pqW
�

q

9=; 6
21max

q2V

0@X
p2V

Z�pq C pqW
�

q

1A :
The theorem is concluded. �

6 Conclusion

In this paper, we study two generalizations of the
min-max disagreements: min-max disagreements with
outliers and min-max disagreements with penalties.
We design an approximation algorithm based on LP-
rounding, and then prove that the algorithm is effective

to solve the min-max disagreements with outliers, min-
max disagreements with outliers on one-sided complete
bipartite graphs, and the min-max disagreements with
penalties. For the future research work of min-max
disagreements, we have the following two directions:

(1) We will continue to study above two problems.
We hope to design improved algorithms to reduce the
approximation ratio of the existing algorithms for the
above two problems.

(2) Capacitated constraint is a common constraint
in combinatorial optimization problems and has
been widely studied. So the second direction is to
study the capacitated min-max disagreements and its
generalizations.
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