
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 08/22 pp86–98
DOI: 10 .26599 /TST.2022 .9010054
Volume 29, Number 1, February 2024

C The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Modeling Long- and Short-Term Service Recommendations with a
Deep Multi-Interest Network for Edge Computing

Rui Yuan, Shunmei Meng�, Ruihan Dou, and Xinna Wang

Abstract: Edge computing platforms enable application developers and content providers to provide context-

aware services (such as service recommendations) using real-time wireless access network information. How to

recommend the most suitable candidate from these numerous available services is an urgent task. Click-through rate

(CTR) prediction is a core task of traditional service recommendation. However, many existing service recommender

systems do not exploit user mobility for prediction, particularly in an edge computing environment. In this paper, we

propose a model named long and short-term user preferences modeling with a multi-interest network based on user

behavior. It uses a logarithmic network to capture multiple interests in different fields, enriching the representations

of user short-term preferences. In terms of long-term preferences, users’ comprehensive preferences are extracted

in different periods and are fused using a nonlocal network. Extensive experiments on three datasets demonstrate

that our model relying on user mobility can substantially improve the accuracy of service recommendation in edge

computing compared with the state-of-the-art models.

Key words: recommender system; logarithmic network; nonlocal network

1 Introduction

In an edge computing environment, an edge server[1–3] is
deployed between clients and the server near the mobile
terminal, which can improve the service according to the
device information and analyze user behaviors. On the
basis of the increasing popularity of mobile devices,
many mobile services have been developed that run
on mobile devices and are often invoked by people
accessing edge servers in edge computing. The selection
of suitable services from many service candidates is

�Rui Yuan, Shunmei Meng, Ruihan Dou, and Xinna Wang are
with the Department of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing
210056, China. E-mail: yuanrui49@126.com; mengshunmei@
njust.edu.cn; wangxinnna@163.com.
�Ruihan Dou is also with the Faculty of Mathematics, University

of Waterloo, Waterloo N2L 3G1, Canada. E-mail: rdou@
uwaterloo.ca.
�To whom correspondence should be addressed.

Manuscript received: 2022-09-07; revised: 2022-10-16;
accepted: 2022-11-04

an urgent task when users travel across the edges of
different networks.

Recently, feature engineering[4–6] has been introduced
to solve the service prediction problem and has obtained
good prediction accuracy[7–9]. Click-through rate (CTR)
prediction is an essential task in recommender systems,
such as online advertising. To exploit the original
information, finding effective transformations of the
original information to improve prediction performance
is essential[10]. Moreover, deep analysis of behavior
data is another direction for improving service quality,
where sequences of user behaviors are modeled to
detect user preferences[11–13]. Recently, many CTR
models have evolved from traditional methods to
deep learning models. Generally, a model learns
hidden data behind original information with difficulty
because original data in a recommender system are
often sparse and have high dimensions. Thus, if we
want to build a good recommender system, feature
combination is a better approach. Most deep learning
models[14–18] focus on capturing interactions between



Rui Yuan et al.: Modeling Long- and Short-Term Service Recommendations with a Deep : : : 87

original information in different fields. However,
these models focus less on user behaviors[19–21]. The
deep interest network (DIN)[22] captures the relevant
interests of users and derives interest representations
using an attention mechanism for CTR prediction. The
deep interest evaluation network (DIEN)[23] uses GRU
to fully explore actual interests and designs a new
recurrent neural network, AUGRU, by integrating an
attention mechanism. Although RNN-based models
have shown inspiring results in characterizing sequence
dependencies, they have two inherent limitations. That
is, they can only model sequential activities[24], and due
to this sequence dependency, they cannot be computed
in a parallel manner, for instance, given a sequence of
user actions fl1; l2; l3; l4; l5g, assume that l1 is a record
of a user’s office item purchases, l2 is a laptop he bought,
l3 and l4 are books and mugs, respectively, and l5 is a
mouse he bought for the laptop. The sequence is then
modeled in strict time-order by RNN. However, in this
case, the user’s movement from l4 to l5 depends mainly
on the correlation between l5 and l2, rather than the
semantic relationship between l4 and l5. Actually, not
all of user actions are correlated[25–27], and most existing
RNN-based models typically use a sequence to represent
the evolution of user interests, which in practice is often
insufficient for capuring the diverse interests of users.

To solve the above problems, we propose a novel
model called long- and short-term user preferences
modeling with a multi-interest network (LSTMIN)
for service recommendation in an edge computing
environment, which learns its long- and short-term
preferences from users’ explicit historical behaviors and
automatically adapts to their different preferences. To
capture user preferences at a finer granularity from a
wide range of behaviors, we combine a deep network
and a logarithmic neural network. We integrate the
attention mechanism into a multi-interest network to
capture users’ short-term preferences. In addition, we
extract long-term preferences from historical behaviors
using a nonlocal network. Finally, we combine long-
and short-term preferences to make recommendations.
In conclusion, we make the subsequent contributions.
� We design a multi-interest network to model

users’ short-term preferences, which learns arbitrary
subsequences from a list of behaviors and their
aggregations. In addition, we adopt an attention
mechanism to enhance the learning process by avoiding
the effects of noise generated from unrelated fields.
� Furthermore, we explore users’ long-term

preferences using GRU and nonlocal neural networks to
design a long-term preference evolution network.
� Finally, we perform massive experiments on three

real datasets, and our model is proven to outperform the
state-of-the-art models.

The remainder of this paper is organized as follows:
Section 2 presents our related work. Section 3
introduces factorization machines and the advantages
and effectiveness of logarithmic neurons. Section 4
presents our recommendation method based on short-
and long-term user preferences. Section 5 describes
our implementation for experiments and performance
comparisons. Section 6 concludes our paper.

2 Related Work

Early studies on CTR particularly heed feature
interaction techniques, which include factorization
machines (FMs), which obtain feature embeddings
by casting features to a low-dimensional embedding.
However, FM-based models are gradually being
replaced by deep learning models because of their
computational inefficiency and manual involvement
in feature interaction. CTR models gradually build
models through deep neural networks. Researchers
apply DNNs to automatically learn the models of feature
interactions. Adding an FM as prior knowledge to
the model, FNN[28] uses the parameters of an FM as
initial embeddings, introducing DNN for the higher-
order interactions of features. FNN reduces feature
engineering and enhances the learning ability of an FM.
PNN[29] proposes the idea of the product layer, which
is based on multiplication to represent the structure
of DNN with crossing features. The major downside
of FNN and PNN is that they focus more on high-
order feature interactions while capturing little low-
order interactions. NFM[30] improves the interaction
process to enhance second-order feature interactions.
The disadvantage of the above models is that they solely
concentrate on second-order feature interactions and
ignore higher-order interactions. DCN[31] solves this
problem by introducing a cross-network and combining
it with DNN to build a deep cross-network to improve the
interaction between features. DeepFM[32] and Wide &
Deep[33] use an FM as automatic feature engineering and
use DNN to enhance generalization. However, DNNs
implicitly model high-order feature interactions. The
final function learned by DNNs can be arbitrary, and
no theoretical conclusion has been reached on what
the maximum degree of feature interaction is. These



88 Tsinghua Science and Technology, February 2024, 29(1): 86–98

CTR models substantially reduce the effort of manual
work; however, most of these models rely on the user’s
side information or click events and ignore the behavior
features of the users themselves.

Attention mechanisms[34] originate from NLP and
have also been used in recommender systems. AFM[35]

adds an attention layer to NFM, reducing the noise
that can be generated by useless interactions. DIN[22]

carefully considers the user’s past and present items
and uses an attention mechanism to model interests
dynamically, capturing changes in user preferences.
DIEN[23] models user interest evolution by using two
GRU layers and combines attention operations into a
GRU update gate to create a novel AUGRU structure.
DIEN uses GRU as GRU exposes the complete memory
and hidden layers, unlike LSTM. Although they do not
use DNN as an abstract function of features, they use
RNN as the main structure to combine the information
in behavior sequences.

The above models only use the user’s behavior or
the user’s features for interaction without considering
what the behaviors represent. TDSSM[36] optimizes
long- and short-term user preferences to improve
recommender systems. CARA[37] captures users’
short-term preferences by exploiting GRU’s gate
mechanism. DeepMove[38] models the sequential
transition using multi-modal RNN. However, most RNN-
based approaches place behaviors in the same field and
do not explore the users’ diversity of interests in different
fields and the association between fields.

In addition, the above models do not explore the long-
term preferences of users. Therefore, user behavior
sequences are crucial features in recommender systems,
and how to make good use of user history remains an
important issue[39–42].

3 Preliminary

3.1 Factorization machines

An FM[43] is proposed for modeling interactions for
features. Formally, the formula for a d -way FM is
illustrated as Eq. (1):

Oy.x/ WD !0 C

nX
iD1

!ixiC

dX
lD2

nX
i1D1

� � �

nX
ilDil�1C1

0@ lY
jD1

xij

1A0@ klX
fD1

lY
jD1

vl
ij ;f

1A
(1)

where the feature interaction is expressed as an inner
product, particularly the sum of the elements after
multiplying both embeddings of feature pairs. ! is the
weight of each feature, and n is the maximum order.
The time complexity of the direct calculation Eq. (1) is
O.mn/, where k is the dimension of feature embedding.
The FM is widely used in feature engineering, and
is considered the beginning of higher-order feature
interaction. In this paper, we adaptively understand the
multi-interests of behaviors to obtain the most relevant
fields of behaviors in terms of current behavior. The
maximum order and the features are learned adaptively
by the model, thus improving efficiency in computing.

3.2 Logarithmic neural network (LOGNN)

Compared with MLP, which tends to be affected by large
fluctuations in exceptional inputs and results in slower
convergence, LOGNN[44] can suppress exceptions and
fit the data distribution better. Converting the MLP
network into a logarithmic network can transform
multiplication into addition, division into subtraction,
and powers into multiplication exponentiation, thus
making the network more adapted to power arithmetic
and accelerating convergence. The logarithmic space
takes Euler’s number e or another appropriate number as
a basis, converts the input to a logarithmic number, then
multiplies the converted input by its weight vector, and
finally outputs it after an activation function followed by
a power operation. Figure 1a shows the structure of a
logarithmic neuron.

The equation for logarithmic neurons is given in
Eq. (2). !i is the weight of each feature xi .

y D exp .
X

i

!i ln xi / D
Y

i

x
!i

i (2)

On the basis of LOGN, we can create a structure
named LOGNN, as shown in Fig. 1b. In LOGNN,
a logarithmic layer composed of logarithmic neurons
processes the raw data and feeds it into DNN, which
performs deeper feature extraction on the data. In this
article, we use LOGNN to adaptively learn the cross-
weights of behaviors from historical user behavior.

3.3 Nonlocal neural networks

In this section, we provide a general definition of
nonlocal operations. Following the nonlocal mean
operation, we define a generic nonlocal operation in
deep neural networks as:

yi D
1

C.x/
X
8j

f
�
xi ; xj

�
g
�
xj

�
(3)



Rui Yuan et al.: Modeling Long- and Short-Term Service Recommendations with a Deep : : : 89

(a) Logarithmic neuron in LOGNN

(b) LOGNN network structure

Fig. 1 Description of LOGNN network.

where i is the index of an output position whose response
is to be computed, and j is the index that enumerates all
possible positions. x is the input signal (their features),
and y is the output signal of the same size as x. Pairwise
function f computes a scalar (representing a relationship
such as an affinity) between i and all j . Function g
computes a representation of the input signal at position
j . The response is normalized by factor C.x/. The
nonlocal behavior in Eq. (3) is due to all positions (8j )
being considered in the operation. As a comparison, a
convolutional operation sums the weighted input in a
local neighborhood, and a recurrent operation at time
i is often based only on the current and the latest time
steps.

A nonlocal operation also differs from a fully
connected .FC/ layer. Equation (3) computes responses
based on relationships between different locations,
where the FC layer uses learned weights. In other words,
the relationship between Xj and Xi is not a function of
the input data in the FC layer,unlike in nonlocal layers.
Furthermore, our formulation in Eq. (3) supports inputs
of variable sizes and maintains the corresponding size in
the output. In contrast, an FC layer requires a fixed-size
input/output and loses positional correspondence.

Above all, a nonlocal operation allows us to build
a richer hierarchy that combines nonlocal and local
information.

4 LSTMIN Model for CTR Prediction

Our model has two main components, a long-term
preference model and a short-term model with multi-
interest extraction. Our main contribution lies in interest
extraction, where the long-term preference modeling
uses a nonlocal network to capture the comprehensive
preferences of users and uses a LOGNN to model short-
term preferences in a parallel manner to overcome the
inefficiency in computation caused by serial models (e.g.,
RNN).

4.1 BaseModel

4.1.1 Feature representation
We use four types of features in the system: User
Profiles, User Behavior, Item Features, and Contextual
Information. Each feature has several types. For example
User Profile contains age, gender, etc. The fields of user
behavior are lists of item IDs that the user has interacted
with; items are characterized by their item IDs, category
IDs, etc. Contextual Information is the IDs of devices,
time, location, etc. Each feature has its own one-hot
encoding, and in user behavior each user contains a list
of behaviors, which is represented in Eq. (4).

xB D Œb1; b2; : : : ; bt � 2 RK�T ; bt 2 f0; 1g
K (4)

where bt represents the t-th action, T is the number of
user historical behaviors, and K is the number of items.

4.1.2 Structure of BaseModel
Before we introduce our model, we will take a look at
the structure of BaseModel, as shown in Fig. 2. The
structure includes the following parts:
� Embedding. This part is used to convert dense

and sparse features into low-dimensional features. Each
feature is associated with an embedding matrix. All
features are converted into a shared latent space. For
example, the embedding matrix of items is represented
as Eitem D Œi1; i2; : : : ; ik� 2 RK�ditem , where ik 2 Rditem

is a certain item’s embedding vector with dimension
ditem. User Behavior xB , which contains a sequence
of items, can be represented by an ordered embedding
vector list of behaviors eb D Œik1; ik2; : : : ; ikt �.
� MLP. All the embeddings from different categories

are concatenated and fed into a DNN layer for final
prediction.



90 Tsinghua Science and Technology, February 2024, 29(1): 86–98

Fig. 2 Base Model.

4.1.3 Loss function
CTR models extensively use the negative log-likelihood
function as the loss function, which uses the label of the
target element to calculate the loss:

Loss D �
1

N

NX
jD1

.yj logp.xj /C.1�yj / log.1�p.xj ///

(5)
where xj D ŒxUj ; xBj ; xIj ; xCj � 2 D, D is a training
set of size N . y 2 f0; 1g represents whether the user
interacts with the target item. p.xj / is the output of

the model, which represents the probability that the user
interacts with the target item.

4.2 Long- and short-term user preference
modeling with a multi-interest network

LSTMIN is dedicated to capturing a user’s multiple
interests and generating a comprehensive list of
preferences. As shown in Fig. 3, LSTMIN has three
components: an input and an embedding layer, which
converts user behaviors and side information to a fixed-
length vector space; a short-term preference extractor

Fig. 3 Target of LSTMIN.



Rui Yuan et al.: Modeling Long- and Short-Term Service Recommendations with a Deep : : : 91

model, which captures user short-term multiple interests
in different fields using a LOGNN; and a long-term
preference extractor model, which divides user behavior
into different periods and extracts user preferences in
each period and then uses a nonlocal network to fuse
information from each period.

4.2.1 Input layer and embedding layer
We embed the features of items themselves and their
categories and then concatenate them to represent the
embedding of a behavior. We must heed three points
in the embedding layer. First, as we log-transform the
user’s behavior vector at the next level, we must keep all
embeddings positive. Second, we must add a very small
perturbation to zero embeddings to prevent overflow. In
addition, as we use a parallel computational model (as
opposed to serial models such as RNN-based models)
to maintain the sequential order between behaviors,
a positional embedding must be added after behavior
embeddings to maintain the positional distance between
two behaviors. We choose positional encoding (Eq. (6))
from Transformer[34] to this end. Finally, we obtain the
set of feature embeddings e D feuser; eitem; ebehaviorg.

PE.pos;2i/ D sin
�
pos=100002i=dbehavior

�
;

PE.pos;2iC1/ D cos
�
pos=100002i=dbehavior

� (6)

where i is the position of each behavior in the sequence.
Next, we divide user behaviors into long- and short-

term behaviors. We select the most recent T actions as
the user’s short-term actions, T varies in each dataset,
and we will discuss how to choose T in experiments.
We then divide time into m periods (in our experiment,
we set m D 48) and extract user preferences from
each period, representing the preferences of users in
each period. Finally, we obtain long- and short-term
preferences from behaviors to predict next behavior.

4.2.2 Short-term preference modeling
In sequential recommendation, existing RNN-based
models regard a user’s behavior sequence as a continuous
path, considering only transfers between behaviors while
neglecting the effects of multiple interests; moreover,
RNN can only learn time-dependent behaviors that
strictly fit the sequence, omitting the features of the
behaviors themselves. Although some RNN-based
methods, such as LSTM and GRU, can model across
longer periods, they suffer from gradient explosion risk
in which inputs do not have contextual relationships. In
real life, users’ short-term points of interest are usually

scattered.
We argue that a sequence of a user’s behaviors is

a mixture of the user’s interests in different fields.
We introduce a novel structure to obtain several
representation vectors to separately represent the user’s
interests in different fields. By separately considering the
different interests of the users, we can better reflect their
short-term preferences. We use a LOGNN to achieve this
goal. We treat each user behavior as a feature and feed
a fixed length of user behavior into a LOGNN which is
called a multi-interest extractor layer. A single neuron in
each layer of a LOGNN represents each field in which
the behaviors/features are involved. Formally, the output
of the j -th vector logarithmic neuron can be expressed
as:

s.jC1/
D exp.

mX
iD1

!ij ln si / D s!1j

1 ı s!2j

2 ı � � � ı s!mj
m

(7)
where m is the number of neurons in the last layer, and
wij is the coefficient of the i-th neuron on the j -th
layer. The functions ln and exp, as well as wij , are
applied to the corresponding vectors at the vector-wise
level and ı represent vector-wise product operations.
Theoretically, the output of each logarithmic neuron in
the next layer s.j C 1/ can represent any interest field.
For example, when w1j and w2j are set to 1, it indicates
that the first and second features are involved in this
field, and the intensity of engagement is 1. Thus, we can
stack multiple logarithmic neurons, which can extract
any fields of features from a sequence as the output
of this layer. Although intuitively, 0 and 1 represent
whether the behavior is or is not engaged in this field,
respectively, we decide to make the parameters in the
coefficient matrix learned by neural network Wlog nn 2

Rm�L (where L is the logarithmic neurons’ number in
this layer) not need to converge to 0 and 1, allowing
the network to automatically learn this coefficient (the
intensity of engagement of the feature), helping the
model to better extract useful information.

To avoid the underfitting problem caused by noise
from invalid fields, we introduced an attention layer after
the LOGNN layer to improve this extraction process.
The introduction of an attention mechanism also solves
the problem that RNNs cannot be computed in parallel.
We will assign weights to embeddings for each field.
Formally,
hi D RELU.WattŒsi ; si ˝ itarget item; itarget item�C bias/

(8)



92 Tsinghua Science and Technology, February 2024, 29(1): 86–98

ai D
exp .u>hi /P

p2S

exp .u>hp/
(9)

where Watt 2 Rdatt�.d2
itemC2ditem/ and bias 2 Rdatt�1 are

model parameters, and si represents the embedding of
behaviors s 2 S in each field where S is the output of
LOGNN. After obtaining normalized attention scores,
the short-term preference is calculated as follows:

s D Œa0s0; : : : ; aisi ; : : : ; ajS jsjS j�;where s 2 S (10)
where S is the logarithmic neural layer’s output units.

After the filtration layer, we feed the resulting vectors
into DNN for a better fit, and the output is a vector
representing users’ short-term preferences ushort:

x.lC1/
D relu.W .l/x.l/

C b.l// (11)
where x.l/; W .l/; and b.l/ are inputs, the DNN layer’s
weight, and the bias of the l-th layer. Finally, a user’s
short-term preference representation can be represented
as us D Wx.last/ C b.
4.2.3 Long-term preference modeling
We input the user’s behavior over all periods into the
long-term preference model. As illustrated in Fig. 3,
we use a nonlocal newtork structure to learn a hidden
representation of the target user’s long-term preferences
ulong. First, given a user u, we initially split long-term
behaviors in terms of time. People’s interests will change
over time in real scenarios. For example, people tend to
store food during the New Year holidays, with a tendency
to buy clothes in the spring and winter. Thus, we divide
the entire time span into 48 periods (24 periods for hours
on weekdays and 24 periods for hours on weekends).

We use GRU to model the dependency between
behaviors within each period. The formulation of GRU
is listed as follows:

ut D �
�
W ubt C U

uht�1 C biasu
�
;

rt D �
�
W rbt C U

rht�1 C biasr
�
;

Qht D tanh
�
W hbt C rt ı U

hht�1 C biash
�
;

ht D .1 � ut / ı ht�1 C ut ı
Qht

(12)

where � is the activation function, ı is an element-wise
product, W u; W r ; W h 2 Rdhid�dbeh ; U u, U r ; U h 2

Rdhid�dhid is the hidden weight matrix, and dbeh is the
dimension of the behavior embedding, which equals
ditem. ht is the t -th hidden states.

The key difference between GRU and LSTM is that
GRU’s bag has two gates, reset and update, while LSTM
has three gates, input, output, and forget. GRU is less
complex than LSTM because it has fewer gates, so we
choose GRU as an abstract function in the long-term
preference model.

Then, we obtain all ht hidden states from the hidden
layer. In this way, the behaviors b1

1 ; : : : ; b
t
1; : : : ; b

t
m in

each period m are encoded into h1
1; : : : ; h

t
1; : : : ; h

t
m, and

the hidden states in each period make up hidden matrices
H1;H2; : : : ;Hm.

To obtain a fixed-length vector for each period
from variable numbers of behaviors, we propose to
transform them through a pooling layer. Common
pooling operations are sum pooling and average pooling.
In our model, we use an average pooling layer, and the
average operation is listed as follows:

lm D
1

jPmj

jPmjX
iD1

hi (13)

After learning all the representations l1; l2; : : : ; lm, we
use the nonlocal operation to derive a user’s long-term
preferences ulong 2 Rd�1 to identify similar behaviors
sufficiently to represent long-term preferences.

The nonlocal network[45] aims to model nonlocal,
remote dependencies by considering the features at
all locations. In our experiments, we tend to use it
to capture the effect of each historical period P 2

fP1; P2; : : : ; Pmg. Formally, we use Eq. (14) to
calculate l 0.

l 0i D
1

C.S/

mX
iD1

mX
jD1

f
�
li ; lj

�
g .li / (14)

where C.S/ D
Pm

iD1 f
�
li ; lj

�
is the normalization

factor, function g.li / calculates the representation of
li , and function f .�/ calculates scores for the i-th and
j -th periods. Formally, f

�
li ; lj

�
and g .li / are defined

as follows:
f
�
li ; lj

�
D exp

�
l>i lj

�
;

g .li / D Wnl li
(15)

where li and lj are representatives of the i -th period and
the j -th historical period, respectively. Wnl is a trainable
weight matrix in a nonlocal network. Additionally, we
obtain the representation of the long-term preferences of

the user. ul D
1
m

mP
iD1

l 0i .

Finally, we integrate us , ul , and the profile feature,
forwarding through an MLP layer and a sigmoid
activation function to obtain the final result[46]. Then, we
use the loss function in BaseModel to train the network.

4.3 Training techniques

Dropout layers are often used to avoid the overfitting
of neural networks. In our model, we choose a novel
dropout layer for behavior sequences to prevent further
overfitting. Dropout is applied after the behavior layer,



Rui Yuan et al.: Modeling Long- and Short-Term Service Recommendations with a Deep : : : 93

where some visit results are randomly removed to reduce
the model’s sensitivity to noise. For example, users
sometimes accidentally visit items they dislike or interact
with unhelpful behaviors, so the dropout layer can be
considered a way to augment data to avoid overfitting
and improve the robustness of the model.

For example, as shown in Fig. 4, the user has visited a
total of four items in a particular sequence of user actions.
The unit marked with a question mark is the output result
corresponding to its training sequence, and the unit with
a dashed outline is randomly dropped during the training
process.

5 Experimental Result and Analysis

In this section, we tend to measure our model by
competing against several methods on three real-world
datasets.

5.1 Experimental settings

5.1.1 Datasets
We conducted experiments on three usual datasets,
Amazon[47], and Movielens[48]. We used a subset of
Amazon’s electronics data and movies and TV data, and
in this dataset, we treated reviews as behaviors. The

Fig. 4 Dropout after behavior sequence.

Movielens datase comprises user-tagged records of films.
We treat ratings by users as interactions and sort them
by timestamp. Assuming that user u has t behaviors,
we aim to use t � 1 behaviors to predict the user’s t-th
behavior. Statistics for datasets after preprocessing are
shown in Table 1.
5.1.2 Evaluation metrics
Two metrics were used for performance evaluation: AUC
and Logloss. Improvements in AUC and Logloss are
considered important in CTR prediction.
5.1.3 Comparison methods
We compare our model to the following CTR prediction
methods:
� BaseModel takes the same embeddings and uses a

deep neural network to predict preferences.
� Wide & Deep[33] is composed of two parts: The

deep part corresponds to the base model. The wide part
is a linear model that uses manually crossed features for
better interaction.
� PNN[29] designs a unique product layer for a wider

crossover between features.
� xDeepFM[49] generates higher-order cross-features

by computing the outer products of different feature
vectors.
� Two-layer GRU Attention[50] uses two layers of

GRU to model the users’ whole preference and uses
attention mechanisms to improve the model.

5.2 Performance comparison

5.2.1 Comparing with individual models
STSIN is a model that uses only short-term interests
to make predictions. We present AUC in Table 2,
which clearly shows that Wide & Deep relies mainly

Table 1 Statistics of datasets.
Dataset User Item Behavior Sparity (%) Average number Max. number

Electronic 728 719 159 936 6 732 848 99.9942 9.23 604
Movies and TV 297 529 60 111 3 404 812 99.9809 11.44 3508
Movielens-25m 162 541 62 423 25 000 095 99.7536 153.80 32 202

Table 2 Overall performance of models on Movielens and Amazon datasets.

Model
Movielens Amazon Electronics Amazon Movies and TV

AUC Logloss AUC Logloss AUC Logloss
BaseModel 0.8391 0.2956 0.8438 0.2859 0.8846 0.3448

Wide & Deep 0.8081 0.3310 0.8146 0.3256 0.8656 0.3784
PNN 0.8169 0.3092 0.8282 0.2884 0.8835 0.3680

xDeepFM 0.8348 0.2917 0.8308 0.2856 0.8974 0.3326
Two-layer GRU attention 0.8438 0.2843 0.8504 0.2837 0.9347 0.3261

STMIN(Ours) 0.8580 0.2739 0.8657 0.2759 0.9366 0.3198
LSTMIN(Ours) 0.8653 0.2712 0.8673 0.2753 0.9349 0.3187



94 Tsinghua Science and Technology, February 2024, 29(1): 86–98

on artificial features and performs poorly, while PNN
improves feature interaction and has better performance.
xDeepFM further improves PNN to achieve an optimal
auto-interaction of features. Two-layer GRU with
attention simulates the evolution of interest in sequence
and captures the interest evolution more effectively,
greatly improving performance. Our model combines
the strengths of the above models. The results suggest
that behaviors are correlated and that the exploration
of interest evolution is necessary, which can be verified
because DIN, two-layer GRU with attention and STSIN
outperform an FM on the three datasets. In conclusion,
STSIN is the best individual model, which validates
multi-interest modeling on short-term preferences.

5.2.2 Comparing with integrated models
LSTMIN combines long- and short-term behavior for
prediction. We compare LSTMIN with several integrated
models. As illustrated in Table 2, LSTMIN achieves the
optimal performance in all three datasets. This result
suggests that discrepancies exist between users’ long-
and short-term preferences. LSTMIN considers both
long- and short-term user preferences and achieves better
performance.

After analyzing the above metrics, let us look at
the classification effect of the model. We extracted
3000 pieces from test data, used LSTSIN to make
classification predictions, and plotted the results in a
scatter plot, as shown in Fig. 5a. The closer a point is
to 1, the higher the possibility that the user will act on
the item; the abscissa is a random floating point number
from 0 to 1, which is intended to scatter the points. The
blue and red points in the graph indicate the positive
and negative samples of users respectively. In Fig. 5a,
the blue and red points are mostly concentrated in the
upper and lower areas, respectively. When the threshold
is 0.3998, the model obtains the optimal AUC of 0.8673.

(a) (b)

Fig. 5 Comparison results of LSTMIN with several
integrated models. (a) Depicts of the model’s intuitive
classification effect (red: negative points, and blue: positive
points), and (b) comparison of the comprehensive indicators
of each model (blue: AUC, orange: F1, and green: G-Mean).

The division of the threshold in Fig. 5a is also consistent
with intuitive perception.

Figure 5b shows that LSTSIN outperforms all other
models in all comprehensive indicators. This result is
mainly due to the combination of long- and short-term
preferences in LSTSIN, which makes the final prediction
results more accurate; short-term preference modeling
can extract interests from different fields, which makes
the model more robust in interest representation; long-
term preference modeling can extract the interests of
users in different periods and derive the comprehensive
preferences.

5.3 Hyperparameter investigation

We next consider the impact of four hyperparameters
on performance, which we summarize for the
Amazon Electronics dataset, as the remaining two
datasets perform similarly.

5.3.1 Length of history records
A critical contribution of our model is that it considers
past information to capture long- and short-term user
preferences. We investigate the impact of different
history lengths on modeling short-term preferences. We
conduct our experiments on the Amazon dataset because
of its abundance of user behaviors, and the number
of behaviors per user fluctuates slightly, facilitating
our analysis. The result is illustrated in Fig. 6, which
indicates that the performance tends to rise and then
fall as the length of the history increases. This result is
obtained because the model must learn more features
to model people’s behavior patterns, but more user
behaviors mean that the model tends to long-term user
preferences more rather than short-term preferences,
which leads to a decrease in prediction accuracy.

5.3.2 Number of logarithmic neurons
Each logarithmic neuron represents the different fields of
interest of users. Figure 7 shows the results for different

Fig. 6 AUC against length of history records.



Rui Yuan et al.: Modeling Long- and Short-Term Service Recommendations with a Deep : : : 95

Fig. 7 AUC against number of logarithmic neurons.

numbers of neurons in the logarithmic transformation
layer. The performance of the model remains stable as
the number of logarithmic neurons increases. However,
the model shows a downward trend as this number
becomes very large. This result shows that the user’s
interest is finite, and we should choose the correct
number of logarithmic neurons to reach the best
performance. When the model has only two fields of
interest, our model still performs well but not optimally,
which suggests that finding reliable fields is crucial for
prediction accuracy.

5.3.3 Depth of hidden layers and the number of
neurons

Figure 8 shows the effect of the depth of the hidden
layers. The performance of LSTMIN first increases
with the network’s depth but then decreases because
of overfitting when the depth exceeds three layers.
Importantly, when the depth is 0, our model still achieves
good results by directly learning the extractions. This
finding proves the effectiveness of the LOGNN layer in
learning multi-interest extractions. We fixed the depth
to three and increased the number of neurons in the
hidden layer. The results, illustrated in Fig. 9, indicate

Fig. 8 AUC against depth of hidden layers.

Fig. 9 AUC against number of neurons.

that the performance first increases with neuron number
as more parameters improve the fitting ability. When
this number is greater than 500, performance begins to
decrease because of overfitting.

6 Conclusion

In contrast to traditional service recommendations based
on original information, in this paper, we introduce a
CTR prediction method for service recommendation
in an edge computing environment, with a novel
long- and short-term user preferences model with a
multi-interest network, which learns user long- and
short-term preferences from sequence data. In short-
term preference extraction, LSTMIN can automatically
generate subsequences related to target items to extract
the user’s multi-interests in different fields and then
use an attention mechanism to improve this extraction
process. Additionally, LSTMIN extends the long-term
preference network, using nonlocal operations to capture
preferences from long-term historical behaviors for click
prediction. Extensive experiments on three datasets
prove that LSTMIN has excellent performance compared
to the prior state-of-the-art models. For our future work,
we will follow two directions. One is to find the impact
of time when the service is recommended after entering
a new edge station, such as behavior time. As in edge
computing, the configurations and running status of
devices probably are unstable and may change with the
environment. We will continuously improve our model
in the future.

Acknowledgment

This paper was partially supported by the Open
Research Project of the State Key Laboratory of
Novel Software Technology (Nanjing University) (No.
KFKT2022B28), National Key R&D Program of China



96 Tsinghua Science and Technology, February 2024, 29(1): 86–98

(No. 2020YFB1804604), the National Natural Science
Foundation of China (Nos. 61702264, 62076130, and
61872219), the 2020 Industrial Internet Innovation and
Development Project from Ministry of Industry and
Information Technology of China, the Fundamental
Research Fund for the Central Universities (Nos.
30918012204, 30920041112, and 30919011282), and
the Postdoctoral Science Foundation of China (No.
2019M651835).

References

[1] M. H. Rimaz, R. Hosseini, and F. B. Moghaddam,
AudioLens: Audio-aware video recommendation for
mitigating new item problem, in Service-Oriented
Computing–ICSOC 2020 Workshops, H. Hacid, F. Outay,
H. Y. Paik, A. Alloum, M. Petrocchi, M. R. Bouadjenek,
A. Beheshti, X. M. Liu, and A. Maaradji, Eds. Cham,
Switzerland: Springer, 2020, pp. 365–378.

[2] F. Wang, G. Li, Y. Wang, W. Rafique, M. R. Khosravi, G. F.
Liu, Y. Liu, and L. Qi, Privacy-aware traffic flow prediction
based on multi-party sensor data with zero trust in smart city,
ACM Trans. Internet Technol., 2022, doi: 10.1145/3511904.

[3] Y. Li, J. Liu, B. Cao, and C. Wang, Joint optimization
of radio and virtual machine resources with uncertain
user demands in mobile cloud computing, IEEE Trans.
Multimedia, vol. 20, no. 9, pp. 2427–2438, 2018.

[4] A. Metzger, C. Quinton, Z. Á. Mann, L. Baresi, and K. Pohl,
Feature model-guided online reinforcement learning for
self-adaptive services, in Proc. 18th Int. Conf. on Service-
Oriented Computing, Dubai, United Arab Emirates, 2020,
pp. 269–286.

[5] X. Xu, Q. Jiang, P. Zhang, X. Cao, M. R. Khosravi, L.
T. Alex, L. Qi, and W. Dou, Game theory for distributed
IoV task offloading with fuzzy neural network in edge
computing, IEEE Trans. Fuzzy Syst., vol. 30, no. 11, pp.
4593–4604, 2022.

[6] X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, and F. Dai, Artificial
intelligence for edge service optimization in internet of
vehicles: A survey, Tsinghua Science and Technology, vol.
27, no. 2, pp. 270–287, 2022.

[7] X. Xu, H. Tian, X. Zhang, L. Qi, Q. He, and W. Dou,
DisCOV: Distributed COVID-19 detection on X-ray images
with edge-cloud collaboration, IEEE Trans. Serv. Comput.,
vol. 15, no. 3, pp. 1206–1219, 2022.

[8] H. Dai, J. Yu, M. Li, W. Wang, A. X. Liu, J. Ma, L. Qi,
and G. Chen, Bloom filter with noisy coding framework
for multi-set membership testing, IEEE Trans. Knowl. Data
Eng., pp. 1–14, 2022, doi: 10.1109/TKDE.2022.3199646.

[9] L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen,
A correlation graph based approach for personalized and
compatible web APIS recommendation in mobile APP
development, IEEE Trans. Knowl. Data Eng., 2022, doi:
10.1109/TKDE.2022.3168611.

[10] J. Liu, Z. Zhao, J. Ji, and M. Hu, Research and
application of wireless sensor network technology in
power transmission and distribution system, Intelligent and
Converged Networks, vol. 1, no. 2, pp. 199–220, 2020.

[11] J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui, and S.
El Hajjaji, IoT-based data logger for weather monitoring
using Arduino-based wireless sensor networks with remote
graphical application and alerts, Big Data Mining and
Analytics, vol. 4, no.1, pp. 25–32, 2021.

[12] C. Catlett, P. Beckman, N. Ferrier, H. Nusbaum, M. E.
Papka, M. G. Berman, and R. Sankaran, Measuring cities
with software-defined sensors, Journal of Social Computing,
vol. 1, no. 1, pp. 14–27, 2020.

[13] Y. S. Su, Y. Ruan, S. Sun, and Y. T. Chang, A pattern
recognition framework for detecting changes in Chinese
internet management system, Journal of Social Computing,
vol. 1, no. 1, pp. 28–39, 2020.

[14] B. Chen, Y. Wang, Z. Liu, R. Tang, W. Guo, H. Zheng, W.
Yao, M. Zhang, and X. He, Enhancing explicit and implicit
feature interactions via information sharing for parallel deep
CTR models, in Proc. 30th ACM Int. Conf. on Information
& Knowledge Management, Gold Coast, Australia, 2021,
pp. 3757–3766.

[15] K. Zhang, H. Qian, Q. Cui, Q. Liu, L. Li, J. Zhou, J. Ma,
and E. H. Chen, Multi-interactive attention network for fine-
grained feature learning in CTR prediction, in Proc. 14th

ACM Int. Conf. on Web Search and Data Mining, virtual,
2021, pp. 984–992.

[16] H. Fei, J. Zhang, X. Zhou, J. Zhao, X. Qi, and P. Li,
GemNN: Gating-enhanced multi-task neural networks with
feature interaction learning for CTR prediction, in Proc.
44th Int. ACM SIGIR Conf. on Research and Development
in Information Retrieval, virtual, 2021, pp. 2166–2171.

[17] C. Wu, F. Wu, L. Lyu, Y. Huang, and X. Xie, FedCTR:
Federated native ad CTR prediction with cross-platform
user behavior data, ACM Trans. Intell. Syst. Technol., vol.
13, no. 4, pp. 62, 2022.

[18] Z. Xu, D. Li, W. Zhao, X. Shen, T. Huang, X. Li, and P.
Li, Agile and accurate CTR prediction model training for
massive-scale online advertising systems, in Proc. 2021
Int. Conf. on Management of Data, virtual, 2021, pp. 2404–
2409.

[19] M. Z. Siddiqi and T. Mir, Reconfigurable intelligent surface-
aided wireless communications: An overview, Intelligent
and Converged Networks, vol. 3, no. 1, pp. 33–63, 2022.

[20] A. K. Sandhu, Big data with cloud computing: Discussions
and challenges, Big Data Mining and Analytics, vol. 5, no.
1, pp. 32–40, 2022.

[21] H. Zhao, Z. Liu, J. Tang, B. Gao, Y. Zhang, H. Qian, and H.
Wu, Memristor-based signal processing for edge computing,
Tsinghua Science and Technology, vol. 27, no. 3, pp. 455–
471, 2022.

[22] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan,
J. Jin, H. Li, and K. Gai, Deep interest network for click-
through rate prediction, in Proc. 24th ACM SIGKDD Int.
Conf. on Knowledge Discovery & Data Mining, London,
UK, 2018, pp. 1059–1068.

[23] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X.
Zhu, and K. Gai, Deep interest evolution network for
click-through rate prediction, in Proc. 31st AAAI Conf. on
Artificial Intelligence, Honolulu, HA, USA, 2019, pp. 5941–
5948.



Rui Yuan et al.: Modeling Long- and Short-Term Service Recommendations with a Deep : : : 97

[24] Y. Li, S. Xia, M. Zheng, B. Cao, and Q. Liu, Lyapunov
optimization-based trade-off policy for mobile cloud
offloading in heterogeneous wireless networks, IEEE Trans.
Cloud Comput., vol. 10, no. 1, pp. 491–505, 2022.

[25] T. Li, C. Li, J. Luo, and L. Song, Wireless recommendations
for internet of vehicles: Recent advances, challenges, and
opportunities, Intelligent and Converged Networks, vol. 1,
no. 1, pp. 1–17, 2020.

[26] H. Kou, H. Liu, Y. Duan, W. Gong, Y. Xu, X. Xu, and L. Qi,
Building trust/distrust relationships on signed social service
network through privacy-aware link prediction process,
Appl. Soft Comput., vol. 100, p. 106942, 2021.

[27] Y. Li, C. Liao, Y. Wang, and C. Wang, Energy-efficient
optimal relay selection in cooperative cellular networks
based on double auction, IEEE Trans. Wireless Commun.,
vol. 14, no. 8, pp. 4093–4104, 2015.

[28] W. Zhang, T. Du, and J. Wang, Deep learning over multi-
field categorical data, in Proc. 38th European Conf. on
Advances in Information Retrieval, Padua, Italy, 2016, pp.
45–57.

[29] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, and J.
Wang, Product-based neural networks for user response
prediction, in Proc. 2016 IEEE 16th Int. Conf. on Data
Mining, Barcelona, Spain, 2016, pp. 1149–1154.

[30] X. He and T. S. Chua, Neural factorization machines
for sparse predictive analytics, in Proc. 40th Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, Tokyo, Japan, 2017, pp. 355–364.

[31] R. Wang, B. Fu, G. Fu, and M. Wang, Deep & cross network
for ad click predictions, in Proc. ADKDD’17, Halifax,
Canada, 2017, p. 12.

[32] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, DeepFM:
A factorization-machine based neural network for CTR
prediction, in Proc. 26th Int. Joint Conf. on Artificial
Intelligence, Melbourne, Australia, 2017, pp. 1725–1731.

[33] H. T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra,
H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir,
et al., Wide & deep learning for recommender systems, in
Proc. 1st Workshop on Deep Learning for Recommender
Systems, Boston, MA, USA, 2016, pp. 7–10.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, ? Kaiser, and I. Polosukhin, Attention is all
you need, in Proc. 31st Int. Conf. on Neural Information
Processing Systems, Red Hook, NY, USA, 2017, pp. 6000–
6010.

[35] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T. S. Chua,
Attentional factorization machines: Learning the weight of
feature interactions via attention networks, in Proc. 26th Int.
Joint Conf. on Artificial Intelligence, Melbourne, Australia,
2017, pp. 3119–3125.

[36] Y. Song, A. M. Elkahky, and X. D. He, Multi-rate deep
learning for temporal recommendation, in Proc. 39th

Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval, Pisa, Italy, 2016, pp. 909–912.

[37] J. Manotumruksa, C. Macdonald, and I. Ounis, A contextual
attention recurrent architecture for context-aware venue
recommendation, in Proc. 41st Int. ACM SIGIR Conf. on
Research & Development in Information Retrieval, Ann
Arbor, MI, USA, 2018, pp. 555–564,

[38] J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, and D.
Jin, DeepMove: Predicting human mobility with attentional
recurrent networks, in Proc. 2018 World Wide Web Conf.,
Lyon, France, 2018, pp. 1459–1468.

[39] W. Gu, F. Gao, R. Li, and J. Zhang, Learning universal
network representation via link prediction by graph
convolutional neural network, Journal of Social Computing,
vol. 2, no. 1, pp. 43–51, 2021.

[40] J. Li, A. M. V. V. Sai, X. Cheng, W. Cheng, Z. Tian, and
Y. Li, Sampling-based approximate skyline query in sensor
equipped IoT networks, Tsinghua Science and Technology,
vol. 26, no. 2, pp. 219–229, 2021.

[41] M. Azrour, J. Mabrouki, A. Guezzaz, and Y. Farhaoui, New
enhanced authentication protocol for internet of things, Big
Data Mining and Analytics, vol. 4, no. 1, pp. 1–9, 2021.

[42] L. Qi, Y. Liu, Y. Zhang, X. Xu, M. Bilal, and H. Song,
Privacy-aware point-of-interest category recommendation
in internet of things, IEEE Internet Things J., vol. 9, no. 21,
pp. 21398–21408, 2022.

[43] S. Rendle, Factorization machines, in Proc. 2010 IEEE Int.
Conf. on Data Mining, Sydney, Australia, 2010, pp. 995–
1000.

[44] Z. Wang, Z. Xu, D. He, and S. Chan, Deep logarithmic
neural network for internet intrusion detection, Soft
Comput., vol. 25, no. 15, pp. 10129–10152, 2021.

[45] T. Chen, H. Yin, H. Chen, L. Wu, H. Wang, X. Zhou, and
X. Li, TADA: Trend alignment with dual-attention multi-
task recurrent neural networks for sales prediction, in Proc.
2018 IEEE Int. Conf. on Data Mining, Singapore, 2018, pp.
49–58.

[46] L. Kong, L. Wang, W. Gong, C. Yan, Y. Duan, and L. Qi,
LSH-aware multitype health data prediction with privacy
preservation in edge environment, World Wide Web, vol. 25,
no. 5, pp. 1793–1808, 2022.

[47] J. Ni, J. Li, and J. McAuley, Justifying recommendations
using distantly-labeled reviews and fine-grained aspects,
in Proc. 2019 Conf. on Empirical Methods in Natural
Language Processing and the 9th Int. Joint Conf. on Natural
Language Processing, Hong Kong, China, 2019, pp. 188–
197.

[48] F. M. Harper and J. A. Konstan, The MovieLens datasets:
History and context, ACM Trans. Interact. Intell. Syst., vol.
5, no. 4, pp. 19, 2015.

[49] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G.
Sun, xDeepFM: Combining explicit and implicit feature
interactions for recommender systems, in Proc. 24th ACM
SIGKDD Int. Conf. on Knowledge Discovery & Data
Mining, London, UK, 2018, pp. 1754–1763.

[50] M. Parsana, K. Poola, Y. Wang, and Z. Wang, Improving
native ads CTR prediction by large scale event embedding
and recurrent networks, arXiv preprint arXiv: 1804.09133,
2018.



98 Tsinghua Science and Technology, February 2024, 29(1): 86–98

Rui Yuan is a graduate student at the
Department of Computer Science and
Engineering, Nanjing University of Science
and Technology, China. His main research
interests are data mining, recommender
systems, neural networks and big data
analysis.

Shunmei Meng received the PhD degree
from the Department of Computer Science
and Technology, Nanjing University, China,
in 2016. She is an assistant professor
at the Department of Computer Science
and Engineering, Nanjing University of
Science and Technology, China. She has
published papers in international journals

and international conferences, such as TPDS, TII, WWWJ, FGCS,
COSE, ICDM, ICWS, and ICSOC. Her research interests include
recommender systems, cloud computing, and security and privacy.

Ruihan Dou is currently a bachelor student
in Faculty of Mathematics, University of
Waterloo, Canada. His research interests
include data statistics, financial analysis and
risk management.

Xinna Wang is currently pursuing the MA
degree at the Department of Computer
Science and Engineering, University
of Nanjing University of Science and
Technology, China. Her current research
interests include recommendation systems,
machine learning, and neural networks.


