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Bicriteria Algorithms for Approximately Submodular Cover
Under Streaming Model

Yijing Wang, Xiaoguang Yang�, Hongyang Zhang, and Yapu Zhang

Abstract: In this paper, we mainly investigate the optimization model that minimizes the cost function such that the

cover function exceeds a required threshold in the set cover problem, where the cost function is additive linear, and

the cover function is non-monotone approximately submodular. We study the problem under streaming model and

propose three bicriteria approximation algorithms. Firstly, we provide an intuitive streaming algorithm under the

assumption of known optimal objective value. The intuitive streaming algorithm returns a solution such that its cover

function value is no less than ˛.1 � �/ times threshold, and the cost function is no more than .2C �/2=.�2!2/ � �,

where � is a value that we suppose for the optimal solution and ˛ is the approximation ratio of an algorithm for

unconstrained maximization problem that we can call directly. Next we present a bicriteria streaming algorithm

scanning the ground set multi-pass to weak the assumption that we guess the optimal objective value in advance,

and maintain the same bicriteria approximation ratio. Finally we modify the multi-pass streaming algorithm to

a single-pass one without compromising the performance ratio. Additionally, we also propose some numerical

experiments to test our algorithm’s performance comparing with some existing methods.
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1 Introduction

Submodular optimization possesses great position
for decades. Besides the important applications in
machine learning and data mining, such as data
summarization[1, 2], dictionary selection[3], monitor
placement[4], influence maximization[5], and many
others, there are still some classic combinatorial
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optimization models, including maximum cut problem,
vertex cover problem, facility location problem, etc.

Subject to a variety of limited scenarios, most
submodular optimization problems need to describe
various restrictions. For example, we need to select
a limited number of locations to place the monitors, so
that the monitors can cover as much of the effective
area as possible in real life. This is actually the
cardinality constraint, which can be characterized as
the optimization model maxff .S/ W S � G; jS j 6 kg,
whose goal is to choose a subset S from the ground
set G to maximize the cover function f . Except from
cardinality constraints, there are knapsack constraints,
matroid constraints, box constraints, and so on.

Nevertheless, rather than maximizing the objective
function, we prefer to reduce the cost under the premise
of ensuring that the coverage objective function meets
sufficient requirements in many practical applications.
In the case of data summarization, it is desirable that
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minimizing the total storage memory of the summary
to extract a sufficiently good summary rather than only
maximizing the summarization information. Inspired
by this, scholars propose the cover maximization
model. When the cover function satisfies linearity or
submodularity, it is also called the linear cover or
submodular cover problem. In this work, we focus on
the cover problem relating to submodularity. Here we
give a brief introduction to some related works.

1.1 Related Work

(1) Submodular cover
In the current field of research, variants of Submodular

Cover (SC) problem have been studied when the cover
function f is monotone[6–8]. Wolsey[7] provided a
.1 C ln.�=�//-approximation algorithm utilizing the
greedy technique, where � and � are instance dependent
parameters. Motivated by the greedy technique, one
designed a .ln.1=�/; 1 � �/-bicriteria approximation
algorithm.

(2) Constrained submodular maximization
In fact, Iyer and Bilmes[9] showed that there exists

a close connection between submodular maximization
and submodular cover problem. They proved that an
algorithm solving submodular maximization problem
can be used to solve submodular cover problem as
input information, and vice versa. Particularly, a .�; �/-
bicriteria approximation algorithm for maximizing a
submodular function limited to knapsack restricts can
be called as a subroutine to solve the submodular
cover problem and get a solution of ..1 C �/�; �/

approximation. In the meanwhile, the time complexity
of the two algorithms can also be measured.

(3) Approximately submodular maximization
A large number of studies show that the optimization

objective functions in many applications are not strictly
submodular but approximately submodular, such as
the active function in influence maximization model,
the interpretation expression in deep neural networks,
and the sparse regression function in data mining, and
so on. Inspired by this, more and more researchers
turn to the study of approximately submodularity
optimization[10–13].

Harshaw et al.[14] studied an optimization model
maximizing the cover function meanwhile minimizing
the cost function limited to the cardinality constraints,
and they finally acquired a .1 � 1=e! � �; 1/-bicriteria
approximation solution, where ! is a parameter to
perform a cover function’s submodularity approximately.

Instead of the greedy technique used in most works,
Qian[15] took the multi-objective evolutionary technique
to design algorithm for the same optimization model,
and obtained a bicriteria ratio of .1 � 1=e! ; 1/.

(4) Streaming setting
Monotone submodular cover maximization with

cardinality constraint has been studied previously under
the streaming setting[16]. In the streaming model, if
we are given a guess of the optimal solution, we can
present a streaming algorithm that outputs a .2=�; 1� �/
approximation solution only scanning the streaming one
pass. Alternatively, if one may scan the streaming set
multi-pass, it is possible to improve the approximation
ratio to .ln.1=�/; 1 � �/.

As far as we know, all previous studies require that the
cover function is monotone. However, many applications
involve non-monotone cover function. Therefore, it is
meaningful and challenging to study the cover problem
when the covering function is non-monotone.

The detailed non-monotone approximately
submodular cover problem can be formulated as the
following model: for two set functions f W 2G ! R>0

and c W G ! R>0 defined on the ground set G, where
f is approximately submodular but non-monotone,
and function c is linear additive, our object is to
choose a subset S from the ground set G such
that S WD arg minS2Gf

P
x2S c.x/; s.t., f .S/ > �g,

given � 6 maxff .S/ W S � Gg. Let’s take data
summarization as an example to illustrate this model.
In digital information age, data transfer in a second
and it is more and more complex to store the data
information. Extracting effective information from
huge data is the inevitable demand in current age,
which motivates the creation of data summarization.
In data summarization, we wish to minimize the total
storage of the summary and maintain the sufficiently
effective information. This is an intuitive application of
approximately submodular cover problem. The detailed
definitions of approximately submodular and linear
will be provided in Section 2. The common method to
solve this kind of optimization model is to construct an
approximation algorithm and analyze its bicriteria ratio.

(5) (a, b)-bicriteria approximation algorithm
We call Algorithm A is .a; b/-bicriteria

approximation if the algorithm returns a solution
S such that c.S/ is no more than a � c.S�/, and
f .S/ is no less than b � � for the optimization model
minS�Gf

P
x2S c.x/ W f .S/ > �g, where S� is an

optimal solution, ratios a > 1 and 0 < b 6 1.
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1.2 Our contributions

In this paper, we mainly study the non-monotone
approximately submodular cover problem, whose goal
is to minimize the cost function, such that the cover
function value is no less than a required threshold in
set function optimization. In this optimization model,
we set the cover function approximately submodular
as well as non-negative non-monotone, and the cost
function is linear additive. We mainly investigate the
problem under streaming model and focus on designing
streaming algorithms which are suitable for a huge
volume of data. Motivated by this, we show three
bicriteria approximation algorithms.
� Firstly, we provide an intuitive streaming algorithm

under the guess of known optimal objective value.
This algorithm returns an .˛.1 � �/; .2C �/2=.�2!2//-
bicriteria approximation solution. In other words, the
cover function value of the output set S obeys f .S/ >
˛.1��/�� and the cost function value meets c.S/ 6 .2C
�/2=.�2!2/ ��, where � is an approximation value of the
optimal solution and ˛ is an algorithm’s approximation
ratio to solve the unconstrained maximization problem
used as a subroutine in our algorithm frame.
� As we know, it is a challenge to guess the optimal

objective value in the streaming model. In order to
relax this condition, we present a modified algorithm
that scans the streaming set multi-pass, and get the
same bicriteria approximation ratio as that in former
algorithm.
� Further, we adjust the multi-pass streaming

algorithm to a single-pass one and keep the performance
ratio consistently.

1.3 Paper organization

In Section 2, we introduce some basic concepts
of approximately submodular function and formally
restate minimum cost cover problem. In Section 3, we
provide three streaming algorithms for the approximately
submodular cover model. Firstly, we show a detailed
stream scanning algorithm and the corresponding
analysis based on the condition that we know the optimal
objective value in advance in Section 3.1. Then we
adapt Algorithm 1 to a multi-pass streaming algorithm
in Section 3.2 to avoid the guess that the optimal value
is known. Next we modify the multi-pass streaming
algorithm to single pass and give a brief analysis in
Section 3.3. Besides, we provide some numerical
experiments to test the performance of the designed
algorithm in Section 4. Finally, we give a conclusion for
our work in Section 5.

2 Preliminary

Given the ground set G D fx1; x2; : : : ; xng and a
function f denoted on the subsets of G, function f
is called set function such that f W 2G ! R. The non-
monotone approximately submodular cover problem is
proposed for set functions, which can be modeled as

minimize
X
x2S

c.x/;

s. t., f .S/ > �; S � G;

where
� function f is approximately submodular but non-

monotone characterizing the cover;
� function c is linear additive characterizing the cost;
� value � is a required threshold.
Thus the non-monotone approximately submodular

cover problem is also called minimum cost cover
problem. The detailed definitions of function f and
c are provided following.

Given a ground set G D fx1; x2; : : : ; xng and a set
function m W 2G ! R, we call
� functionm W 2G ! R is monotone ifm.X[fxg/ >

m.X/ for any subset X and any element x;
� function m W 2G ! R is normalized if m.∅/ D 0;
� function m W 2G ! R is submodular if m.xjX/ 6

m.xjY /, for any Y � X � G and x 2 G n X , where
m.xjX/ WD m.X[fxg/�m.X/ represents the marginal
gain when adding x into X ;
� function m W G ! R is linear additive if m.X/ DP
x2X m.x/.
Benefiting from the works of Lehmann et al.[17]

and Kuhnle et al.[13], the expression of approximately
submodular function is shown in Definition 1.

Definition 1 For the ground set G and its set
function m W 2G ! R, if there exists the largest
parameter 0 < ! 6 1 obeying ! �m.xjV2/ 6 m.xjV1/
for any subsets V1 � V2 � G and x 2 G n V2, then we
call function m is approximately submodular.

Next we restate the detailed definition of .a; b/-
bicriteria approximation algorithm.

Definition 2 For the minimum cost cover problem
mentioned above

minimize
X
x2S

c.x/;

s. t., f .S/ > �; S � G:

Algorithm A is .a; b/-bicriteria approximately if it gets a
subset S obeying c.S/ 6 a � c.S�/ for the cost function
and f .S/ > b � � for the cover function, where S� is an
optimal subset for the original model, parameters a > 1
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and 0 < b 6 1.
For an algorithm’s complexity, whether in the

submodular maximization problem or submodular cover
problem, we usually assume there are given oracles to
calculate the function value for any subset. Once one
has a subset S , he can obtain the function value f .S/ if
he queries the oracle and the complexity is the number
of querying.

3 Streaming Algorithms for Approximately
Submodular Cover Problem

In this part, we aim to present approximation algorithms
for the minimum cost approximately submodular cover
problem under streaming setting. In the streaming model,
elements arrive over time. Before data selection, we need
to open some buffer space. As the elements arrive, we
need to check each element for additional coverage and
cost to the current solution set. If it reaches a certain
threshold, we store the element in the buffer space.
Finally, we choose a subset which has the maximal cover
value from all the buffer spaces.

As statement in the introduction, Feige et al.[18]

showed that there is a close collection between the
problems of submodular maximization and submodular
cover. Based on the previous work, especially
Crawford[19], we know the following theorem still holds.
We refer the reader to the detailed proof in the work of
Crawford[19].

Theorem 1 For the problem of non-negative non-
monotone approximately submodular cover on the
ground set G D fx1; x2; : : : ; xng, if Algorithm A
including adaptive algorithm and possibly randomized
algorithm can return a subset S , such that the expected
cover function value satisfies

EŒf .S/� > .1=2C �/�;

for any instance and any parameter � > 0, the oracle
query is at least ˝.ln.1C �/e�

2n= ln.n//.
In the next section, we start with a streaming algorithm

under the guess of the known optimal objectie value.
Then we weak the assumption and design a multi-pass
streaming algorithm to maintain the same bicriteria
approximation ratio. Next we improve the multi-pass
streaming algorithm to single-pass streaming algorithm
without compromising the performance ratio.

3.1 Intuitive streaming algorithm for cover
problem

In this section, we mainly focus on designing a streaming
algorithm and analyzing its performance guarantee.

Before describing the specific algorithm execution, we
need to obtain some assumptions in advance, which are
listed below:
� Initially take a parameter � from .0; 1/;
� Guess a possible function value of the optimal

solution � in advance;
� Open some buffer space and break into 2=� disjoint

subsets, S1; S2; : : : ; S2=� .
Next we give a description of the streaming algorithm

high levelly. There are mainly two important algorithmic
operations and one comparison.
� As each element x arrives with the streaming set,

we check the marginal gain of x to the cover function f
relating to the current subset as well as its cost function.
If the marginal gain and its cost satisfy some certain
threshold, we add the element to the corresponding
buffer subset.
� Once scan the whole streaming set or come to

the break conditions, we call for an unconstrained
maximization algorithm A.˛/ which maintains ˛-
approximation on the union of the buffer subsets
S1; S2; : : : ; S2=� , and output an additional subset S0.
� Compare all the function values of subsets

S0; S1; : : : ; S2=�, and select the one which has the
maximal cover value.

The detailed pseudocode of Algorithm 1 (Stream-
Known-�) is as follows.

Before we expand our analysis of Algorithm 1, we
need some preparatory work. For any random subset

Algorithm 1 Stream-Known-���
Step 1: Give a streaming set G, a cover function f satisfying

weakly submodularity, a linear cost function c, a parameter
� 2 .0; 1/, and an optimal objective value �.

Step 2: Construct a series of buffer space S1; S2; : : : ; S2=� .
Initially set S1 WD ∅; S2 WD ∅; : : : ; S2=� WD ∅.

Step 3: For each arriving element x, if c.x/ 6 � and for buffer
space sets S1; S2; : : : ; S2=� , there exists Sl , such that

f .xjSl /

c.x/
>
��

2�
� !2;

set Sl WD Sl [ fxg.

Step 4: Repeat Step 3 until there is some subset Sl such that
c.Sl / > 2�=.� � !

2/. Stop scanning the streaming element
and output buffer sets S1; S2; : : : ; S2=� .

Step 5: Running an unconstrained maximization algorithm
A.˛/ which maintains ˛-approximation on the union of the
storage subsets S1; S2; : : : ; S2=� , and output a subset S0.

Step 6: Output a subset Sj from fS0; S1; : : : ; S2=�g which has
the maximal cover value, i.e.,

Sj WD arg maxff .S0/; f .S1/; : : : ; f .S2=�/g:



1034 Tsinghua Science and Technology, December 2023, 28(6): 1030–1040

S chosed from the ground set G with probability p for
each element, we can analyze its expected function value
under an approximately submodular function, as shown
in Lemma 1.

Lemma 1 For the ground set G and its set
function m W 2G ! R which satisfies approximately
submodularity, we can get a random subset R � G

under the condition that each element is selected with
probability p from the ground set G, and denote it by
R.p/. Then the expectation function value of the random
setR.p/ is lower bounded by .1�p/�m.∅/C!�p�m.R/:

Proof We expand the proof by induction with
respect to jRj.
� Firstly, it is intuitive to hold the lower bound when

R is empty set.
� Then, we assume that the value of R.p/ keeps the

relation when the cardinality of random set R is strictly
more than zero. That is,
EŒm.R0.p//� > .1 � p/ �m.∅/C ! � p �m.R0/:
� Assume another subset R D R0[fxg, and element

x is not contained by the random set R0. In this case, we
know R.p/ \R0 � R0, in which each element appears
under the probability of p and denote R0.p/ D R.p/ \
R0 for short. Then by the definition of approximately
submodularity, we get

m.R.p// �m.R0.p// >

! � .m.R.p/ [R0/ �m.R0//:

Reformulating the inequality, there is
m.R.p// >

m.R0.p//C ! � .m.R.p/ [R0/ �m.R0//:

The expectation value of m.R.p// satisfies
EŒm.R.p//� >

EŒm.R0.p//C ! � .m.R.p/ [R0/ �m.R0//� D

EŒm.R0.p//�C ! �EŒ.m.R.p/ [R0/ �m.R0//� D

EŒm.R0.p//�C ! � Œp � .m.R/ �m.R0//C

.1 � p/ � .m.R0/ �m.R0//� D

EŒm.R0.p//�C ! � p � .m.R/ �m.R0// >

.1 � p/ �m.∅/C ! � p �m.R0/C ! � p �m.R/�
! � p �m.R0/ D

.1 � p/ �m.∅/C ! � p �m.R/:
Thus, we prove the lemma. �
From Lemma 1, we can get a proposition which is

useful in the analysis of performance guarantee.
Proposition 1 For subsets S1; S2; : : : ; Sl ; and T in

ground set G satisfying Si \ Sj D ∅; i ¤ j; i; j 2 Œl �,
and approximately submodular function m W 2G ! R,
there is i 2 f1; 2; : : : ; lg, such that

m.Si [ T / > .1 �
1

l
/m.T /:

Proof Construct set function g.V / D m.T [ V /.
Based on the property of functionm, we acquire function
g is non-negative approximately submodular.

Choosing a subset S uniformly randomly from the
disjoint subsets S1; S2; : : : ; Sl , such that each element
of G has probability at most 1=l of being in S . Then by
Lemma 1, we get

1

l

lX
iD1

m.T [ Si / D

1

l

lX
iD1

g.Si / D EŒg.S/� >

.1 �
1

l
/g.∅/C ! �

1

l
� g.S/ >

.1 �
1

l
/g.∅/ D .1 �

1

l
/ �m.T /: �

By means of Lemma 1 and Proposition 1, we can
acquire the lower bound of function value for the subset
S returned by Algorithm 1.

Lemma 2 Suppose that Algorithm 1 runs with
input parameter � 2 .0; 1/ and � is no less than the
optimal value OPT . Then the output set S returned
by Algorithm 1 satisfies f .S/ > ˛ � .1 � �/ � � , where
0 < ˛ < 1.

Proof From the pseudocode of Algorithm 1, we
know there are two break conditions in the routine:
� Condition 1: The cost function value of some buffer

subset comes to the limited bound in Step 4;
� Condition 2: There is no element meeting the

selection rules in Step 3.
Next we analyze the two cases in detail.
Case 1: Assume an optimal solution set is S� for the

non-negative non-monotone approximately submodular
cover problem, and the output solution set of Algorithm 1
is Sl after the l-th iteration. Then by the selection rules
in Step 3 and the fact that function f is non-negative,
we get the cover value of output set Sl which satisfies
the following bound:
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f .Sl/ >f .Sl/ � f .∅/ D
jSl jX
�D1

f .Sl.�// � f .Sl.� � 1// D

jSl jX
�D1

.f .Sl.�// � f .Sl.� � 1/// >X
x2Sl

f .xjSl.� � 1// >

X
x2Sl

c.x/ �
��

2k
� !2 D

c.Sl/ �
��

2�
� !2 >

2�

� � !2
�
��

2�
� !2 > �:

By the return rule in Step 6 in Algorithm 1, we choose
an appropriate subset S from the subset sequence which
has the maximal cover value. Then it is easy to find that
the final output value meets

f .S/ WDmaxff .S0/; f .S1/; : : : ; f .S2=�/g >

f .Sl/ > �:

That is, the cover value of output subset S in break
Condition 1 is at least � .

Case 2: Based on the definitions of optimal solution
S� and the buffer sequence S1; S2; : : : ; S2=� , we define
two partition sets P1 and P2, P1 D S� \ .[

2=�
iD1Si / and

P2 D S
� n P1. By Proposition 1, we find some index t

in sequence set f1; 2; : : : ; 2=�g, such that

f .St [ S
�/ > .1 �

�

2
/�:

Expanding the expression of function f .St [ S�/, there
is

f .St [ S
�/ D

f .P1 [ St /C f .St [ S
�/ � f .P1 [ St /:

By the setting of partition sets P1 and P2, and the work
of Wang et al.[20], we can rearrange expression f .St [
S�/ � f .P1 [ St / as follows:

f .St [ S
�/ � f .P1 [ St / D

f .St [ .P1 [ P2// � f .P1 [ St / D

f .P2jP1 [ St / 6
1

!
� f .P2jSt / 6

1

!
�
1

!

X
x2P2

f .xjSt / D
1

!2

X
x2P2

f .xjSt /:

Combining the selection rules in Step 3 with the
above inequality, the expression of f .St [ S�/ can be
reformulated as

f .St [ S
�/ 6

f .P1 [ St /C
1

!2
�

X
x2P2

f .xjSt / 6

f .P1 [ St /C
1

!2
�
��

2
� !2 D

f .P1 [ St /C
��

2
:

Then we get

f .P1 [ St / >f .St [ S�/ �
��

2
:

In the previous inequality,

f .St [ S
�/>.1 �

�

2
/ � �;

so we can arrange the following inequality:

f .P1 [ St / > f .St [ S
�/ �

��

2
>

.1 �
�

2
/ � � �

��

2
D .1 � �/�:

From the construct relation, it is obvious to find
P1 [ St is a subset of the union of the sequence sets
S1; S2; : : : ; S2=�. Then for the cover function value,
there must be

f .P1 [ St / 6 max
Z�[

2=�

iD1
Si

f .Z/:

After calling for the unconstrained maximization
algorithm A.˛/ which maintains an ˛-approximation,
we obtain a subset S , such that

f .S/ > ˛ � max
Z�[

2=�

iD1
Si

f .Z/:

Then we can get

f .S/ > ˛ � max
Z�[

2=�

iD1
Si

f .Z/ >

˛ � f .P1 [ St / > ˛ � .1 � �/�:

In other words, the cover value of returned subset S in
Case 2 is no less than ˛ � .1 � �/� , that is,

f .S/ > ˛ � .1 � �/�:

Combining the two results both in Case 1 and Case
2, we get the final cover value of the Stream-Known-�
Algorithm,

f .S/ > minf˛ � .1 � �/�; �g D ˛ � .1 � �/�:

�
To the best of our knowledge, the memory occupied by

the elements is independent of the properties of the cover
function during the execution of Algorithm 1. Then
utilizing the work of Crawford[19], we get the following
lemma for the cost function. The proof idea is similar
with that of Lemma 2, and we present a brief proof.
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Lemma 3 The cost function of the output subset S
returned by Algorithm 1 is no more than .2C�/2

�2!2
�.

Proof Consider the break condition of Algorithm 1,
there are two corresponding cases.

Case 1: When the current element x has been
scanned but it is not added into any subset, then by the
execution process, we know c.Sl/ 6

2�
�!2

for all index
l 2 f1; 2; : : : ; 2=�g.

Case 2: When the current element x has been scanned
and it is added into some subset Sl , then by the condition
in Step 3, we know c.x/ 6 �. After adding element x,
the cost of subset Sl implies that c.Sl/ 6 . 2��!2 C �/.

After running the unconstrained maximization
algorithm A.˛/, we get a subset S0, which is selected
from the union of S1; S2; : : : ; S2=�. Thus, after any
iteration of Algorithm 1, there is

c.[
2=�

lD0
Sl/ 6

2=�X
lD0

c.Sl/ 6

2=�X
lD0

maxf
2�

�!2
;
2�

�!2
C �g D

2=�X
lD0

.
2�

�!2
C �/ D

.
2

�!2
C 1/.

2

�
C 1/� D

.2C �!2/.2C �/

�2!2
� � 6

.2C �/2

�2!2
�:

Thus the cost function value of the output subset is no
more than .2C �/2=.�2!2/ � �. �

On the basis of Lemmas 2 and 3, and the results, we
come to the final conclusion.

Theorem 2 When executing the Stream-Known-
� Algorithm for any instance of non-monotone
approximately submodular cover problem, we can
acquire the following conclusions:
� The cover function value of output set S is no less

than ˛ � .1 � �/� ;
� The cost function value is no more than

.2C �/2=.�2!2/ � �.

3.2 Multi-pass algorithm for cover problem

From Algorithm 1, we know there is a guess value of
optimal solution. However, it is a huge challenge in
the streaming model. In order to avoid this assumption,
we set the minimum cost value of single element to the

initial optimal value, which needs to scan the streaming
one pass. Next we need to take a parameter � 2 .0; 1/,
and run the sieve-streaming algorithm as a subroutine
under the lower bound. If the output set S satisfies that
the cover value is no less than ˛.1 � �/ times threshold,
we return the current subset. Otherwise, we increase the
guess value � to .1C�/� and execute the sieve-streaming
subroutine sequentially. The detailed description is
shown in the Stream-Multi-Pass Algorithm.

By analyzing Algorithm 2, we get the following
performance guarantee.

Theorem 3 When executing the multi-pass
streaming algorithm for an instance of non-monotone
approximately submodular cover problem, we can
acquire the following conclusions:
� The cover function value of output set S is no less

than ˛ � .1 � �/� ;
� The cost function value is no more than .2 C

�/2=.�2!2/ � .1C �/OPT .
Proof From the updating operation for � in Step 4

in Algorithm 2, we can find the unique index u 2 ZC,
such that OPT is strictly lager than .1C �/u�1cmin, but
no more than .1C �/ucmin.

Benefitting from Lemma 2, once the value of �
comes to the optimal value OPT , the Stream-Known-�
algorithm will output a subset S whose cover value is
no less than ˛.1 � �/� . It consists with the bound of
Theorem 2.

With the benefit of Lemma 3, we acquire the cost
function satisfies

c.S/ 6 .2C �/2=.�2!2/�:

Since the current � is no more than .1C �/ucmin, it is no
more than .1C �/OPT absolutely. Further we obtain

c.S/ 6 .2C �/2=.�2!2/ � .1C �/OPT:

Thus, we complete the proof. �

3.3 Single-pass algorithm for cover problem

In this section, we design a single-pass streaming

Algorithm 2 Stream-Multi-Pass
Step 1: Give a parameter � 2 .0; 1/ and the corresponding

information in Algorithm 1 (Stream-Known-�).
Step 2: Scan the streaming set G to find the smallest cost

value cmin D minx2G c.x/.
Initially set � WD cmin.

Step 3: Run Algorithm 1 (Stream-Known-�) for the current
pair .�; �/ and output subset S .

Step 4: If the cover value f .S/ > ˛.1 � �/� , then output S .
Otherwise, update � WD .1C �/� and go back to Step 3.
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algorithm to reduce the storage cost that scans the
streaming multi-pass. In the single-pass algorithm,
besides the input � 2 .0; 1/, we also take a non-negative
real number U as the upper bound value. Similar
with the multi-pass streaming algorithm, the single-
pass streaming algorithm also takes the sieve-streaming
algorithm as a subroutine under the assumption
of optimal value. Specifically, the sieve-streaming
subroutine is executed in parallel in the single-pass
streaming algorithm once a bound is given. Instead
of guessing the optimal value sequentially, the single-
pass streaming algorithm maintains a set with respect to
the guess values. As element arrives, the lower bound
of guess is updated correspondingly. After running the
sieve-streaming subroutine in parallel, we can get a
series of subsets. Next we will run an unconstrained
maximization algorithm A.˛/ which maintains ˛-
approximation on the union of output subsets and get
an additional subset. Finally we select a subset which
has the maximal cover value. The detailed description is
shown in Algorithm 3.

Similar to the proof of multi-pass streaming algorithm,
we can also get the performance guarantee of
Algorithm 3. Since the idea and logic of the proof are
highly consistent with those in Algorithms 1 and 2, we
can keep the same performance guarantee.

Theorem 4 When executing the Stream-Single-
Pass algorithm for an instance of non-monotone
approximately submodular cover problem, we can
acquire the following conclusions:
� The cover function value of output set S is no less

than ˛ � .1 � �/� ;
� The cost function value is no more than .2 C

�/2=.�2!2/ � .1C �/OPT .

4 Numerical Experiment

In this section, we apply the Stream-Single-Pass
Algorithm to the maximum cut problem of graph theory
to test its performance guarantee. For an undirected
graph T D .V;E/ with weight, each vertex v 2 V

has weight w.v/, and the cut defined on the graph T
with respect to vertex set S is the edges set, where one
vertex is contained in S while another vertex is in V n S .
We denote the cut function f .S/ D jC.S/j and the
weight function w.S/ D

P
v2S w.v/. It is obvious

that the cut function is non-monotone submodular and
the weight function is additive linear, which satisfy
the properties required for the input functions in our

Algorithm 3 Stream-Single-Pass
Step 1: Give parameters � 2 .0; 1/, upper bound valueU 2 R>0,

and the corresponding information in Algorithm 1 (Stream-
Known-�).

Step 2: Construct a series of buffer subsets S.1C�/i ;j for any
integer index i and index j in f0; 1; 2; : : : ; 2=�g, and set
S.1C�/i ;j WD ∅ and m WD 0 initially.

Step 3: For each arriving element x, if f.x/
c.x/

> m, update

m WD maxfm;
f .x/

c.x/
g:

For each � enumerated in the set f.1C �/i W i 2 Z; ��
2m
6

.1C�/i 6 U g, if there is some i 2 f1; 2; : : : ; 2=�g, such that
jS�;i j <

2�
�

and f .xjS�;i / > c.x/��
2�

� !2, then update
S�;i WD S�;i [ fxg.

Step 4: Repeat Step 3 and return a series of storage subsets S�;i ,
i D f1; 2; : : : ; 2=�g.

Step 5: Run an unconstrained maximization algorithm A.˛/
which maintains ˛-approximation on the union set
[
2=�

iD1
S�;i and output a set S�;0.

Step 6: If the value of maxff .S�;i / W i 2 f0; 1; : : : ; 2=�gg is
no smaller than ˛.1 � �/� , then set U WD � and update
S.1C�/i ;j WD ∅ for each integer index i and index j in
f0; 1; : : : ; 2=�g and U < .1C �/i .

Step 7: Go through Steps 3–6, and output subset

S WD arg maxff .S�;i / W � 6 U; i 2 f0; 1; : : : ; 2=�gg:

algorithm. Therefore, utilizing the Stream-Single-Pass
Algorithm to solve the maximum cut problem is
reasonable and feasible to test the performance.

In order to express the performance of Stream-Single-
Pass Algorithm, we compare it with Double-Greedy
Algorithm (selecting elements double greedily), Greedy-
Add Algorithm (adding elements greedily), and Greedy-
Substract Algorithm (deleting elements greedily), which
are also common methods for solving these problems.
For the convenience of statement, we take 200 data
points to test the algorithms’ performance, which are
constructed randomly or obtained from movielens set.
We first present the results of the four algorithms on
coverage function values, under the condition of data
size and low bound threshold with respect to random set
and movielens set. The detailed numerical experiments
are shown as follows.

As can be seen from Fig. 1, we find the function
coverage value of Stream-Single-Pass Algorithm is
significantly better than those of Double-Greedy
Algorithm, Greedy-Add Algorithm, and Greedy-
Substract Algorithm for both random dataset and
movielens dataset. For the movielens dataset in Fig. 1b,
Double-Greedy Algorithm performs better than Greedy-
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(a) Function value with respect to n on random dataset

(b) Function value with respect to n on movielens dataset

Fig. 1 Performance comparison of cover function with n.

Add Algorithm and Greedy-Substract Algorithm when
n > 125. It is absolutely possible to maintain this trend
for massive dataset.

As shown in Fig. 2, Stream-Single-Pass Algorithm
presents the best performance for dataset generated
randomly when � value is no less than 135. For the
dataset received from movielens dataset, we find the
function cover value obtained by Stream-Single-Pass
Algorithm is the largest when � is no more than 100.
There is no doubt that the function coverage values on
these two datasets are significantly better than that of
Double-Greedy Algorithm.

Based on the optimization model, we not only
compare the advantages of the four algorithms from the
aspect of cover function value, but also further discuss
them from the view of cost function. We compare the
performance of the weight function with respect to the
data size n and � value on the two kinds of datasets. For
both datasets generated randomly and extracted from
movielens dataset, we find the cost of Stream-Single-
Pass Algorithm increases with the increasing of data
scale, which is also larger than other algorithms in Fig. 3.

Corresponding to Figs. 1 and 2, we also investigate the

(a) Function value with respect to � on random dataset

(b) Function value with respect to � on movielens dataset

Fig. 2 Performance comparison of cover function with ��� .

weight with respect to � on the random set and movielens
dataset. As can be seen from Fig. 4, the weight required
by Stream-Single-Pass Algorithm for random dataset is
less than that of Greedy-Substract Algorithm when �
value is no less than 100.

5 Conclusion

In this work, we aim to consider the problem of
minimizing the cost function while maintaining the
cover function exceeding a required threshold under
the streaming model. It is also called approximately
submodular cover problem. To solve the non-monotone
approximately submodular cover problem, an effective
method is bicriteria approximation algorithm. We
propose three bicriteria approximation algorithms.
Firstly, we provide a streaming algorithm under the
guess of known optimal objective value. By analyzing
the Stream-Known-� algorithm, we obtain the bicriteria
ratio .˛.1 � �/; .2 C �/2=.�2!2//. That is, the cover
value of the output set is no smaller than ˛ � .1 � �/� ,
and the cost value is no larger than .2C �/2=.�2!2/ � �.
In order to avoid the assumption that the optimal value �
is known in advance, we provide a multi-pass streaming
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(a) Weight with respect to n on random dataset

(b) Weight with respect to n on movielens dataset

Fig. 3 Performance comparison of cost function with n.

algorithm which runs the Stream-Known-� algorithm as
a subroutine. Further, we adjust the multi-pass streaming
algorithm to a single-pass one. Both the multi-pass
streaming algorithm and single-pass streaming algorithm
maintain the same bicriteria approximation ratio as
that of the Stream-Known-� algorithm. In addition,
we present some numerical experiments to express
the single-pass streaming algorithm’s performance
comparing with some existing ones.
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