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Data Fusion with Genetic Algorithm Based Lifetime Prediction for
Dependable Multi-Processor System-on-Chips

Yong Zhao, Longkun Guo, and Xiaoyan Zhang�

Abstract: With the prevalence of big-data technology, intricate, nanoscale Multi-Processor System-on-Chips (MP-

SoCs) have been used in various safety-critical applications. However, with no extra countermeasures taken, this

widespread use of MP-SoCs can lead to an undesirable decrease in their dependability. This study presents a

promising approach using a group of Embedded Instruments (EIs) inside a processor core for health monitoring.

Multiple health monitoring datasets obtained from the employed EIs are sampled and collated via the implemented

experiment and thereafter used for conducting its remaining useful lifetime prognostics. This enables MP-SoCs to

undertake preventive self-repair, thus realizing a zero mean downtime system and ensuring improved dependability.

In addition, a principal component analysis based algorithm is designed for realizing the EI data fusion. Subsequently,

a genetic algorithm based degradation optimization is employed to create a lifetime prediction model with respect to

the processor.

Key words: data fusion; genetic algorithm; lifetime prediction; health monitor; multi-core System-on-Chips (SoCs);

embedded instruments

1 Introduction

Currently, Multi-Processor Systems-on-Chips (MP-
SoCs) in the low nanometer range (10–28 nm) are
increasingly used owing to their excellent multitasking
and parallel computing capabilities. MP-SoCs are used
in safety-critical applications in space and aviation[1],
military systems[2], and automotives[3]. Stress conditions,
such as vibration, radiation, and temperature, in
safety-critical applications are extremely severe. For
instance, inside a car, wheel sensors and controllers
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must withstand the operating ambient temperature of
around 200 ıC[3]. Furthermore, the control electronics
in aircraft must operate well in a temperature range
of �55 ıC to 200 ıC. These systems require high
dependability with typically a close to zero mean
downtime because even a brief loss of processor
control might has disastrous effects[4]. Furthermore,
the dependability of these intricate MP-SoCs tends
to decrease automatically due to different aging
processes under harsh conditions, such as negative-
bias temperature instability, electromigration (namely
EM), and Hot Carrier Injection (HCI)[5]. Therefore, to
ensure high dependability and zero downtime throughout
the operational lifespan, online health monitoring for
target SoCs is a must, especially in safety-critical
applications operating under extreme environmental
circumstances. The use of Embedded Instruments
(EIs)[6] has been implemented for several years. For
instance, Ring Oscillators (ROs) are often used as a
process evaluation module embedded in different design
corners to guarantee error-free processing. Further, a
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temperature sensor functionally serves as an EI to track
the temperature of the different corners of a chip during
the lifetime of an SoC. Meanwhile, to lower the cost of
SoC testing, EIs and Internal Joint Test Action Group
(IJTAG) communication networks[7] were introduced,
eventually becoming an industry standard. Reusing these
test resources to achieve a reliable-system design has
been inspired by this. A substantial number of EIs
will be included in MP-SoCs in the near future and
also in IJTAG-based design networks for control and
observation. Machine learning and random coefficient
regression techniques are two of the most popular
data-driven techniques used for prognostic purposes.
The first technique typically utilizes observable data
and statistical methods, such as least squares[8]. The
second technique uses health monitoring data to create a
deterioration path, from which the Remaining Lifetime
Prognostics (RLP) distribution is determined[9]. A
previous study investigated how to justify an ideal
critical level and a way to determine monitoring
intervals[10], while other studies optimized remaining
lifetime distribution for a single functioning device
using sensor-based health-monitored data[11, 12]. Within a
Bayesian framework, this model can continually update
the parameters of the random coefficient model. In this
study, based on the measured historical data from our
designed variant EIs, a Principal Component Analysis
(PCA) algorithm[13] is used for the required fusion of
the multidimensional dataset. Subsequently, a Genetic
Algorithm (GA) for degradation optimizatio[14] for the
RLP of an MP-SoC is presented. The remainder of the
article is organized in the following manner. In Section 2,
the dependability of MP-SoCs and implemented EIs are
introduced. Section 3 discusses the generated health
monitoring database, which is used as the input for the
RLP of a processor core. In Section 4, the implemented
data-fusion PCA algorithm for our EIs is proposed.
Furthermore, various EIs and the fused dataset are used
as different inputs of our proposed GA optimization
based RLP. The study’s conclusions and future work
prospects are presented in Section 5.

2 EIs Based on MP-SoC Architecture
A homogeneous MP-SoC consisting of nine processing
cores from XentiumR has been constructed within our
BASTION project[14]. Its photomicrograph is depicted
in Fig. 1 (upper left inset). This is the so-called
Reconfigurable Fabric Device (RFD) that can be utilized
to command and monitor the Xentium processing core

Fig. 1 Board-level configuration of MP-SoCs, with five RFD
cores connected on the bottom. The above inset shows the
nine Xentium processors inside the RFD[4]. The ARM-based
general-purpose processor is shown on the top right.

when connected to an ARM926-based general-purpose
device (top right). A packet switched Network-on-Chip
(NoC) with routers and network interfaces (NI) was
used for the whole system communication. For high
performance computing while communicating within
certain applications used in space, automotive, and
military (e.g., a global navigation satellite system with
a beam former) fields, this MP-SoC (i.e., RFD) is
applied as an ultra-low-power digital signal processing
device[4]. The key component of this strategy for
ensuring dependability is the electronic quarantine of
a Xentium core that is discovered to be defective by an
on-chip controlling dependability manager in the RFD,
after which a spare (or underutilized) processor replaces
the defective processor through run-time mapping[15].
The Xentium is a very large instruction word processor
that uses the UMC 90 nm CMOS technology. It operates
at a clock frequency of 200 MHz and has a silicon
area of 1.2 mm2. This processor core was first created
as a component of the RFD shown in Fig. 1. The
NoC links the Xentiums together, and each individual
Xentium may link through the NIs to the neighboring
routers of NoC, which can also be coupled to more
traditional bus designs (like Amba) to connect to other
necessary peripherals. The Xentium is required not to
be used when running life-critical Apps, e.g., the
STARS project’s use case of UAV communication for
this Moon IC[16]. Therefore, in the proposed MP-SoC,
potential Xentium core failure must be anticipated in
time, and maintenance must be carried out before a
failure occurs. For the aforementioned reasons, the
EIs shown in Fig. 2 are employed and can be used to
guarantee 100% availability in the target applications.
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Fig. 2 (a) Three different types of EIs inside a single
Xentium core; (b) zoomed-in image of the timing EI layout;
and (c) EI area calculation.

Meanwhile, Fig. 2a shows the layout of one timing EI
for Critical Path Delay (CPD) monitoring (left), one
voltage EI (right) for the quiescent drain-drain current
(namely IDDQ), and one EI for temperature monitoring
(middle). The Taiwan Semiconductor Manufacturing
Company (TSMC) standard cell library containing
inverters with minimum propagation delay are then
used to implement the TDC. The silicon areas of the
TDC module (middle), critical path (bottom), and
controller (top) are depicted in Figs. 2b and 2c. The
TDC block, which may be inserted into the Xentium
core, has a 12 �m�103.5 �m surface area. The planned
timing EI has a total size of 39.12 �m�206.9 �m
(or 0.008 mm2). Different types of critical paths are
implemented on the chip to properly define the EI.

3 Health Monitoring Data Generated by EIs

For collecting data for the health monitoring database,
46 Xentium processors are monitored under the stress
operation condition of the high-temperature operation
life approach. This is done to evaluate the dependability
of the proposed MP-SoC in conjunction with the
designed EIs.

The stress condition is set in accordance with the

standard JEDEC operation (JESD22-A108)[17]. A stress
supply of 1.2 V for the core power supply (typical
value: 1 V) is employed. Meanwhile, the Xentium
processor is stressed with ultra-speed frequency at
240 MHz (typical value = 200 MHz). This stress
condition for the Xentium processor is applied for 1000 h
or 6 weeks. The stress temperature is set to 125 ıC.
Power supply based IDDQ and transient drain-drain
current (namely IDDT), or collectively refferred to as
IDDx, are measured. A variety of CPD monitors are
included in the expected aged critical paths of the
processor. Measurements are also taken for the so-
called process-related EIs, such as the frequency of ROs.
Based on our developed EIs, CPD and IDDx during the
Xentium normal run are carried out after each stress
week. Figure 3a depicts the CPD for 46 processors fresh
(nonaged) and 6 distinct aging conditions, while Figs. 3b
and 3c present the IDDQ and IDOT values for all
processors, respectively, including the initial fresh-state
value at time zero. IDDQ and IDDT measurements are
comparable in terms of the degradation trend. Figure 3d
shows that the RO frequency changes for three different
aging conditions. All test results demonstrate degrading
behavior. Furthermore, in terms of aging time, the CPD
rises while the IDDx decreases.

4 Data Fusion Using GA Optimization
Based Lifetime Prediction

Based on the multidimensional health monitoring dataset
measured using our developed EIs, we propose data
fusion for the initial process. Furthermore, a PCA-based
algorithm is employed in this study.

4.1 PCA and EI data fusion

The PCA algorithm has proven to be an effective
approach to reducing the dimensions of a multidata
set[14]. This can be fulfilled by mapping the used dataset
onto eigendirections corresponding to the greatest
eigenvalues of the sampled covariance matrix. The
primary goal of the PCA algorithm is to generate one
reduced multidimension dataset as a replacement. A
considerable portion of the variance of the original
data from various EIs may be recovered using the
largest eigenvalues, sometimes referred to as the
Principal Components (PCs). Three PCs exist in our
study: CPD, RO, and IDDx, which are not exclusive
representations of an EI. Considering the fresh condition
and aging period, Fig. 4a illustrates the co-relationship
of eigenvalue between the first and second PC. This
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(a) (b)

(c) (d)

Fig. 3 Measurement results of (a) CPD, (b) IDDQ, and (c) IDDT monitor in 46 Xentium processors colored differently, and (d)
RO frequency monitor with 3 aging condictions.

(a) (b)

Fig. 4 (a) Graph illustration of co-relationship of eigenvalues between two PCs and (b) coverage contribution of PCs for the
whole dataset.

diagram demonstrates the existence of two separate
groups. One group can be found on the right side
of the diagram, representing the fresh dataset of the
proposed MP-SoC, while the other one can be found on

the left side, depicting the monitored aging results. The
notable difference between the two groups suggests that
the processor undergoes considerable degradation once
the aging process begins. The contribution of PCs in
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covering the entire dataset is shown in Fig. 4b, in which
each PC is considered both separately and cumulatively.
PC1 fulfills a 100% coverage function, whereas PC2
and PC3 have no contributions to the mapping of data
representation. As a result, in the part that follows, the
RLP computation is performed using PC1.

The multiple data attributes must first be normalized
to create a unitless data collection with the same scale
before using the data-fusion algorithm. The term “feature
scaling” refers to data scalability, which can range
between a minimum and a maximum value. The final
RLP comes after completing the data-fusion cycle,
which includes the aforementioned data preparation and
subsequent PCA.

4.2 GA procedure for optimizing CPD degradation

Based on reliable natural selection processes, GA[18] has
shown its capacity to handle optimization issues that
cannot be easily addressed using traditional methods.
Because discontinuous and nonlinear objective functions
can be handled, and many local optima in the dataset can
be identified in GA, GA does not need an initial estimate
of the solution[19]. GA can also work on a collection
of candidate solutions as opposed to other optimizers
with just one candidate solution. The coefficient sets of
the proposed degradation model have been optimized
in this study using GA to account for the CPD. In the
GA technique, the best solution to the optimization
problem is often obtained from a population of potential
solutions (referred to as “individuals”). Each individual
has distinct chromosomes that are utilized in crossover
and mutation processes to develop them. To do this, the
chromosomes are converted into binary bits (strings of 0s
and 1s) that are then modified during the GA method[20].
Meanwhile, “generation” is the term used to describe
the population in each iteration of the evolution method,
which begins with a population of randomly created
individuals. Every individual in the population is tested
for fitness in each generation. The fittest ones are chosen
from the present population, and their chromosomes are
tweaked (recombined or randomly altered) to create a
new generation. The following iteration uses a fresh
generation of potential solutions. GAs often end after a
specific number of generations[20].

Figure 5 depicts the flowchart of the proposed GA
throughout the CPD optimization process. The core
functions of GA are outlined as follows:

Step 1: Initialization. Our goal is to optimize the
degradation path for CPD using previously available data.
The participants in the GA optimization are referred to

Fig. 5 Diagram of the GA procedure used for the CPD
degradation trend optimization.

as “candidate solutions”. These participants consist of
measured data that form the CPD degradation path. In
our previous work, CPD in the Xentium is shown to have
a power law degradation trend. delay (t) represents power
law with respect to aging time[16], as shown below:

delay.t/ D aC btc (1)

where a; b; and c are the parameters to be solved based
on measured CPD data.

The population of one GA generation, which in this
example comprises 100 randomly produced individuals,
contains the fittest individuals. In the solution of
parameters a; b; and c; a population of 100 is chosen
because if the initial population is too small, the
algorithm may not find the best solution, and if it is
too large, the method may incur excessive processing
costs[20].

Step 2: Fitness function and fitness evaluation.
The MSE of the GA output and the measured CPD
value determine the fitness function f .GA/, which is
represented by the following definition:

f .GA/ D

P
N.CPDGA � CPDmeasured/2

N
(2)

where N is the number of our potential solutions,
CPDGA is the list of candidates selected by the GA,
and CPDmeasured is the list of outcomes of the measured
CPD. Following the creation of the new population,
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the fitness function is used to assess each individual’s
adaptability. The principle is that the lower the
individual’s fitness value, the further the individual’s
ranking moves up.

Step 3: Selection. Roulette-wheel selection[21] is
employed for this approach. Hence, the likelihood
that an individual would be chosen for inclusion in
the population of the following generation would be
inversely correlated with their fitness, as determined in
Step 2.

Step 4: Crossover. The individuals from the second
generation are now created together with the mutation
process in the next stage. During the crossover process,
a pair of “parent” solutions is chosen to construct a
“child” solution, thereby creating a new population that
generally shares as many traits as its “parents”. New
children are created when the parents cross over. Figure
6 demonstrates how the crossover is carried out using the
dispersed crossover approach[21]. The parent individuals
are matched off at random. Then, the chromosomal
bits (0 and 1 in Fig. 6) are randomly selected using a
binary vector that is also generated at random. The
equivalent chromosome bits of Child 1 come from
Parent 1 if the vector bit is 1 and from Parent 2 if
the bit is 0. The parts are finally joined to create
two offspring (Child 1 and Child 2). Therefore, two
“children” with combined traits from both parents are
created. When the crossover probability is 1, it means
that every chromosome chosen is used for reproduction.
However, empirical studies[20, 21] demonstrated that the
desired outcomes are obtained by a crossover probability
between 0.65 and 0.95, suggesting that the likelihood
that a chosen chromosome remains unchanged to the
next generation (aside from any changes brought on by
mutation) with range from 0.35 to 0.05. A probability of
0.90 is applied in our study.

Step 5: Mutation. The mutation choices describe

Fig. 6 Crossover process between two (dispersed)
individuals, Parents 1 and 2. Based on the bit-value of
the random vector, colors depict how the chromosomes
operate.

how the GA modifies individuals randomly and subtly
to produce mutated offspring. Herein, the mutation
operation is used to ensure genetic variation and to allow
the GA to seek a large space. The goal of mutation is
to cause a random change in the chromosomes, such
as when 0 turns into 1 (Fig. 6) or vice versa. This is
because the mutation rate is in the order of one out of
every thousand, or 0.1% of the parent’s chromosome
bits.

4.3 Remaining lifetime calculation based on the
GA-optimized delay trend

The GA cycle is completed after mutation. The GA in
this instance is programmed to operate for a maximum
of 100 generations. Simultaneously, the CPD findings
from our 30 Xentium processors are utilized for training
the delay-degradation trend model. For the purpose
of validation, the CPD results from the remaining 18
processors are employed herein; this is also known as
the holdout approach[22], used to ensure the accurate
assessment of the projected model. Figure 7 displays the
optimization result with data and illustrates the general
RLP for all data (48 Xentium processors). The RLP of
each Xentium is computed according to the GA learning
trend based on the CPD measurement result from the
EI and on the CPD threshold point of 8.5 ns, which is
established using the static-timing analysis study for the
Xentium processor[16]. The red line in Fig. 7 depicts the
general learned deterioration trend of 30 devices from the

Fig. 7 Degradation path of the CPD prediction, in which
the training data (for 30 Xentiums) are in red, while the
validation data for 18 Xentiums are in green. Static-timing
analysis of the netlist following synthesis yields a delay
threshold of 8.5 ns. The x-axis uses the log scale.
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training set. Meanwhile, the computed RLP for various
combinations of fused EI datasets for both Xentium1
and Xentium2 processors are shown in Fig. 8. Using the
measurement of the EI for the CPD monitoring, the RLP
after 6 weeks of stress run for Xentium1 is calculated
to be another 2.7 years, while for the EIs measured
using IDDx and RO, the values are 5.3 years and 3.2
years, respectively. The RLP for Xentium1 is 3.5 years
according to our employed PCA based fusion algorithm
(i.e., fusion of CPD, RO, and IDDx values). The RLP
values vary depending on the EI dataset combination: 3.7
years, 2.9 years, 4.0 years, and 3.5 years for CPD+IDDx,
CPD+RO, RO+IDDx, and CPD+RO+IDDx, respectively.
Meanwhile, for the RLP of the Xentium2 processor,
single EI for IDDx, RO, PC1, and CPD yields RLP
values of 4.3 years, 10.1 years, 5.7 years, and 4.9 years,
respectively. Combined with fused EI, i.e., CPD+IDDx,
CPD+RO, RO+IDDx, and CPD+RO+IDDx yield RLP
values of 6.3 years, 4.6 years, 6.8 years, and 5.8 years,
respectively. The minimal value of RLP must be taken
for Xentium 1 and Xentium 2 to implement suitable
countermeasures based on the findings of the various
EIs that are employed. The computed RMSE values of
the stated RLP for EIs are also shown in Fig. 8. The
findings demonstrate that relatively lower RMSE values
for all cases are suitable for a safety-critical application.
For instance, when compared with the calculated RLP
based on CPD (2.8 years and 3.7 years for Xentium 1
and Xentium 2, respectively), the corresponding RMSE
values are calculated as 35.0 hours and 150.8 hours for

Fig. 8 RLP values for various single, fused, and combined
EIs are calculated, which are calculated for various
combinations with RMSE.

Xentium 1 and Xentium 2, respectively. This indicates
that RLP with fused data can reach good accuracy.

5 Conclusion

The development of a dependable MP-SoC under
(severe) aging circumstances in a particular safety-
critical application is described in this study. The target
of this study realizes an MP-SoC with zero downtime.
The proposed method integrates a variety of EIs for
the health monitoring of each processor core, thus
generating a PCA-based data-fusion algorithm and
GA-based lifetime prediction algorithm. The health
monitoring data based on our EIs (i.e., IDDx, CPD, and
RO) are created and subsequently fused using a PCA-
based algorithm. Then, the RLP is optimized using a
GA flow-based algorithm.

According to the RLP results, the designed EI
for CPD measurement has the minimum RLP value
for two Xentium processors, while IDDx has the
maximum value. In accordance with the predicted
minimum RLT from different PCA data-fusion results,
the dependability of the proposed MP-SoC can be
increased using appropriate countermeasures, such as a
run-time task/core remapping before failure occurs.
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