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A Variance Reducing Stochastic Proximal Method
with Acceleration Techniques

Jialin Lei, Ying Zhang�, and Zhao Zhang

Abstract: We consider a fundamental problem in the field of machine learning—structural risk minimization, which

can be represented as the average of a large number of smooth component functions plus a simple and convex (but

possibly non-smooth) function. In this paper, we propose a novel proximal variance reducing stochastic method

building on the introduced Point-SAGA. Our method achieves two proximal operator calculations by combining the

fast Douglas–Rachford splitting and refers to the scheme of the FISTA algorithm in the choice of momentum factors.

We show that the objective function value converges to the iteration point at the rate of O.1=k/ when each loss

function is convex and smooth. In addition, we prove that our method achieves a linear convergence rate for strongly

convex and smooth loss functions. Experiments demonstrate the effectiveness of the proposed algorithm, especially

when the loss function is ill-conditioned with good acceleration.

Key words: composite optimization; Variance Reduction (VR); fast Douglas–Rachford (DR) splitting; proximal

operator

1 Introduction

In this paper, we consider the following convex
optimization problem with a finite-sum structure, which
is prevalent in machine learning[1] and statistics, such
as supervised learning[2] and regularized empirical risk
minimization[3],

min
x2Rd

F.x/ D f .x/C h.x/ (1)

where f .x/ D 1
n

Pn
iD1 fi .x/ is an average of a set

of convex and smooth loss functions fi .x/, and h.x/
is a sample and convex (but possibly non-smooth)
function. The goal is to find the optimal solution of
x that minimizes the regularized empirical loss over the
whole dataset.

When h.x/ is absent, traditional analysis shows that
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Gradient Descent (GD) yields a fast linear convergence
rate but with a high per-iteration cost, and thus may not
be suitable for problems with a very large n. As an
alternative for large-scale problems, Stochastic Gradient
Descent (SGD)[4] uses only one or a mini-batch of
gradients in each iteration, and thus enjoys a significantly
lower per-iteration complexity than GD. However, due
to the undiminished variance of the gradient estimator,
prompting SGD is shown to yield only a sub-linear
convergence rate.

To effectively eliminate the variance generated by
SGD, a number of Variance Reducing (VR) stochastic
methods have been developed in recent years, such as
SVRG[5], SAGA[6], and SDCA[7]. SVRG and SAGA
are two typical algorithms among them, whose general
formula of following VR stochastic gradient can be
expressed as

rfj .x
k/ � rfj . Qx/C

1

n

nX
iD1

rfi . Qx/ (2)

where Qx is the saved “snapshot” of a previous x, and it is
updated once every m iterations (where m is the number
of internal cycles). The last two items in Formula (2)
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indicate the deviations of the control variables from
the unbiased estimates. The variance of this method
goes to zero asymptotically along the iterative updates
as rfj .xk/ and rfj . Qx/ become closer in expectation,
which lead to a linear convergence rate which is much
faster than that of SGD. As a result, the convergence rate
can be improved from sub-linear in SGD to linear in the
VR stochastic methods.

Further, for the non-smooth regularization term h.x/,
there are also some proximal variants of stochastic
optimization algorithms, such as Prox-SVRG[8], Prox-
SAGA[6], and Prox-SDCA[9], which were proposed
to solve Formula (1) and all apply variance reducing
techniques to achieve low per-iteration and maintain a
fast linear convergence rate at the same time. More
recently, researchers have proposed several accelerated
stochastic variance reduced methods, which include
Point-SAGA[10], Catalyst[11], Katyusha[12], MIG[13],
and so on. These methods can be boosted to faster
convergence rates when the loss function fi .x/ is ill-
conditioned. In terms of oracle complexity, Prox-SAGA
and Prox-SVRG both require O..nC L=�/ log.1=�//
steps to achieve an �-accurate solution, as compared with
O..n C

p
nL=�/ log.1=�// for accelerated methods

(e.g., Point-SAGA, katyusha, and MIG).
In this paper, we develop an accelerated variance

reducing stochastic proximal method which is called
Accelerated Double Proximal operator SAGA (ADProx-
SAGA). Unlike the variance reduction algorithm that
contains only one proximal operator, ADProx-SAGA
uses the corresponding gradient mappings, achieves
proximal calculations twice by combining with fast
Douglas–Rachford (DR) splitting, and with reference
to the Nesterov’s momentum[14] of FISTA[15] algorithm,
enabling ADProx-SAGA to achieve an accelerated
convergence rate for strongly convex problem, and the
proposed algorithm has a good performance when the
loss function is ill-conditioned with good acceleration.

2 ADProx-SAGA and Simplification

In this section, we introduce a variance reducing
stochastic proximal method[16] with accelerate
techniques.

2.1 ADProx-SAGA algorithm

ADProx-SAGA algorithm is introduced in Algorithm 1.
It is easy to see that this algorithm maintains five
sequences, xk; yk; zkj ; u

k , and gkj , which are the
iterations points. The initial point x0 is chosen arbitrarily,

Algorithm 1 ADProx-SAGA algorithm
1: Input: Initial point x0, learning date  , and momentum factor
ˇk D

k�2
kC1

.
2: for k D 1; 2; : : : do
3: Uniformly randomly pick j from 1 to n.
4: Update x in the following:

zkj D x
k
C .gkj �

1

n

nX
iD1

gki / (3)

ykC1 D zkj � g
kC1

j
(4)

ukC1 D ykC1 C ˇkC1.y
kC1
� yk/ (5)

xkC1 D prox
h
.ukC1/ (6)

5: Selection of itertion point: Supposed that the point after
proximal mapping is !, then the update of the iteration
point is as follows:

xkC1 D

(
!; F.!/ 6 F.xk/I

xk ; F .!/ > F.xk/:

6: Update the gradient table: Set vk
j
D zk

j
C xk � yk and

gkC1
j

D
1

.vk
j
� prox

f
.vk
j
//, and leave the rest of the

entries unchanged (gkC1
j

D gk
j

for i ¤ j ).
7: end for
8: Output: xkC1:

g0i is chosen as gradient/subgradient of fi .x/ at x0, and
the algorithm adds momentum factor ˇk; in addition to
the parameter learning date  .

In the k-th iteration, the loss function fi .x/ is chosen
randomly. The variable yk is updated in terms of Eq. (4),
uk iterates over yk using Eq. (5). According to the
definition of zkj in Eq. (3) and the update of xkC1 in Eq.
(6), zkj , ykC1, and ukC1 can be treated as intermediate
variables in the update from xk to xkC1. According to
Eqs. (2) and (3), the main steps of Algorithm 1 can also
be written as

ykC1 D xk � .gkC1j � gkj C
1

n

nX
iD1

gki /;

where gkC1j � gkj C
1
n

Pn
iD1 g

k
i indicates the unbiased

estimation of the gradient gkj , which is similar to the
gradient update formula in SAGA. The gradient table
is designed to reduce the computational effort by 1=n
compared to SVRG, and gkC1j is the gradient mapping
of fj .x/ at zkj C x

k � yk .
In each iteration of our algorithm, unlike Prox-SAGA

which contains only one proximal operator to handle
the nonsmooth term h.x/, we borrow the idea of the
Douglas–Rachford splitting to use the proximal operator
of fi .x/ to calculate the gradient mapping, in addition
to the proximal operator of h.x/, enabling it to achieve
two proximal calculations, and this design can achieve
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fast convergence when the loss function fi .x/ is ill-
conditioned.

In particular, our algorithm differs from Prox-SAGA
in the definition of gradient. In Prox-SAGA, gkC1j is the
gradient of fi .x/ at xk , while in our algorithm, gkC1j is
the subgradient of x at the point prox

fj
.zkj C x

k � yk/.
We have learned that Point-SAGA achieves the effect of
acceleration of SAGA by involving the “future” point
xkC1. According to Eq. (5) and the definition of gkC1j ,
prox

fj
.zkj Cx

k�yk/ D ykC1Cxk�yk can be obtained.
We can see that Algorithm 1 also involves “future” points
and the two proximal operators are combined by using
DR splitting. In addition, on top of combining DR
splitting operators, we can achieve a faster convergence
compared to Prox-SAGA and Point-SAGA by adding
momentum terms to the iteration points.

We wish to speed up the proximal point gradient
algorithm, so we apply Nesterov’s momentum at the
iteration point ykC1. For the choice of value of ˇk , we
set ˇk D k�2

kC1
in Algorithm 1 according to the FISTA

algorithm. However, FISTA algorithm is not guaranteed
to be a descent algorithm, so it is necessary to verify
the function value at the iteration point, and this step is
essential in the later theoretical proofs.

In this paper, two cases (strongly convex and non-
strongly convex) are considered for the properties of the
objective function fi .x/, and different values of  are
selected for these two cases. Parameters L and � are
unknown for most problems, so ADProx-SAGA will
works well in practical.

In this section, we show that ADProx-SAGA is
actually a combination of Point-SAGA and DR splitting
operators, and is a generalization of the Point-SAGA
while establishing a connection to fast Douglas–Rachford
splitting.

2.2 Simplification

A well-known algorithm for solving composite
optimization problem is the DR splitting algorithm[17].
In the general case where the corresponding operators
are the subdifferentials of fi .x/ and h.x/, DR splitting
algorithm can be written as the following iterations:

xk D prox
h
.yk/;

zk D prox
f
.2xk � yk/;

ykC1 D yk C �k.z
k
� xk/;

where  > 0 and a typical choice for �k is to be set equal
to 1 for all k. There is gkj D

Pn
iD1 g

k
i =n in Algorithm 1

when n D 1, thus we have zkj D x
k according to Eq. (3),

and the main iterative process can be simplified as
xk D prox

h
.yk/;

ykC1 D yk C prox
fj
.2xk � yk/ � xk :

In this way, our algorithm is essentially the typical
DR splitting algorithm. By adding the momentum term
ykC1�yk , we can obtain a fast DR splitting method and
apply this accelerate technique to our method as well.

Our algorithm is closely linked to Point-SAGA, and
it is not difficult to find that the proximal acceleration
about the nonsmooth term is removed when h.x/ D 0,
thus we have xk D yk in our algorithm, and the main
iteration can be simplified in the following:

zkj D x
k
C .gkj �

1

n

nX
iD1

gki /;

ykC1 D prox
fj
.zkj /;

xkC1 D ykC1 C ˇkC1.y
kC1
� yk/:

Obviously, this is the iteration of Point-SAGA plus
Nesterov’s momentum tricks. In contrast to Point-SAGA,
our algorithm does a combination of the two proximal
operators by DR splitting and adds momentum term to
iteration point for acceleration. Point-SAGA is known
to achieve an accelerated convergence rate on strongly
convex smooth problems, and our algorithm has the same
advantage.

3 Related Theorem

In this section, we show that the stationary point of
our algorithm is the minimum point of the objective
function, and furthermore, the algorithm can achieve
a convergence rate of O.1=k/ when each fi .x/ in
the objective function is smooth, and it can achieve
linear convergence when fi .x/ is further assumed to
be strongly convex. Before proceeding to the practical
analysis, let us present some theoretical results.

3.1 Assumption and properties

To better distinguish the objective function, we have
made the following two assumptions about fi .x/ in
Eq. (1).

Assumption 1 For each fi .x/ having an L-
Lipschitz continuous gradient for any x; y 2 Rd , there
is a constant L, such that

fi .y/ 6 fi .x/C hrfi .x/; y � xi C
L

2
ky � xk2;

where L > 0 and rfi .x/ is a gradient at x.
Assumption 2 For each fi .x/ is �-strongly convex,

we also define
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fi .y/ > fi .x/C hgi ; y � xi C
�

2
ky � xk2;

where � > 0 and gi 2 @fi .x/ is a set of sub-gradient of
fi .x/.

The assumption can be satisfied by refining fi .x/
with a strongly convex regularizer. For a general convex
function, the above inequality always holds with � D 0,
and the following propositions are the focus of this paper.

Our analysis is based on the theoretical basis of
Moreau envelope[18]. The Moreau envelope of a pretty
smooth approximation function f : Rd ! R with a
regularization parameter  > 0 is defined as

f  .x/ D inf
y

n
f .y/C

1

2
kx � yk2

o
(7)

Some properties of Moreau envelope in question are
given below.

Proposition 1 (Moreau decomposition) For any
x; y 2 Rd , and any convex function f W Rd ! R with
Fenchel conjugate f �, we have

prox
f
.x/ D x �  prox1=

f �
.x=/:

Recalling the defintion of g
f
.x/, after combing

Proposition 1, we have the following relation between
the proximal operator of the conjugate f � and g

f
.x/:

g .x/ D
1


.x � prox

f
.x// D prox

f �
.x=/ (8)

Proposition 2 (Firm non-expansiveness) For any
x; y 2 Rd , any convex function f W Rd ! R with
strong convexity constant � > 0, and any regularization
parameter  > 0, we have the firm non-expansiveness
of prox

f
.x/ in the following:

hprox
f
.x/ � prox

f
.y/; x � yi >

.1C �/k prox
f
.x/ � prox

f
.y/k2 (9)

From the above result we can also deduce

k2 prox
f
.x/�x� .2 prox

f
.y/�y/k 6 kx�yk (10)

The proofs of Propositions 1 and 2 are in Appendix
A.

Proposition 3 For any x; y 2 Rd , any L-smooth
function fL W Rd ! R, and any regularization
parameter  > 0, we have

hg


f
.x/ � g



f
.y/; x � yi >

.1C
1

L
/khg



f
.x/ � g



f
.y/k2 (11)

Proof It is known that f � is the conjugate function
of f , and L-smoothness of fL implies 1

L
-strong

convexity of f �, then we apply Proposition 2 to the
points x= and y= ,

hprox1=
f �
.x=/�prox1=

f �
.y=/; x=�y=i >

.1C �/k prox1=
f �
.x=/ � prox1=

f �
.y=/k2 (12)

with the definition of the gradient g
f
.x/ in Proposition 1

and the firm non-expansive of the convex function f .x/,
simplifying Formula (12) leads to Formula (11). �

Before giving the main result, let x� be the unique
minimizer of fi .x/ due to the strong convexity. In
addition to the notation used in the description of
Algorithm 1, there exists a set of subgradients g�j , and
chosen

Pn
jD1 g

�
j D 0 for each fj .�/ at x�, where fj .�/

denotes a function of the random sample j . Then we
show that x� is a minimizer of Eq. (1) if x� exists.

Proposition 4 Suppose that y� is the fixed point and
g�i is the fixed set of Algorithm 1, then x� D prox

h
.u�/

is the minimizer of Eq. (1), where u� represents the
optimal value of the current stage.

Proof To prove that y� is the minimizer of Eq.
(1), it is necessary to show that 0 2 @f .x�/ C

@h.x�/ according the first-order optimality condition
of subgradient. From the supposition we have y� D
�x� C y� C prox

fi
.z�i C x

� � y�/, where z�i is the
optimal value of the current stage. Meanwhile, since
x� D prox

h
.u�/, which implies

.z�i � y
�/= 2 @fi .x

�/; .u� � x�/= 2 @h.x�/:

where i D 1; 2; : : : ; n: Because ukC1 D ykC1 C

ˇk.y
kC1 � yk/, we can deduce that u� D y�, so we

have
1

n

nX
iD1

.z�i �y
�/C .u� � x�/ D

1

n

nX
iD1

z�i � x
�
D

0 2 @f .x�/C @h.x�/: �

3.2 Main result

The proof of the main results relies on a Lyapunov
function[19], which is defined in Algorithm 1 at Step
k C 1,

T kC1 D
c

n

nX
iD1

k.gkC1i �g�i /k
2
CkxkC1�x�k2 (13)

where c > 0 is a constant. Different c will be used
later in the non-strongly convex[20] and strongly convex
cases[21], and the upper bound on the expectation of the
Lyapunov function is given below.

Theorem 1 Supposed that each f W Rd ! R
with strong convexity constant � > 0, while the
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regularization term h.x/ is convex (but possibly non-
smooth), over the random choice of j , the expectation
of the Lyapunov function satisfies

EŒT kC1� 6

�
.1C ˇk/

2

2
C

�
1 �

1

n

�
c

�
�

1

n

nX
iD1

k.gki � g
�
i /k

2
C

.2.1C ˇk/
2
C
c

n
/Ek.gkC1j � g�j /k

2
C

.1 � ˇk/
2

2
kuk � u�k2C

.1C ˇk/
2

2
Ekvkj � v

�
j k
2
�

2.1C ˇk/
2Ehvkj � v

�
j ; .g

kC1
j � g�j /i

(14)

Proof The first term in Formula (13)
c

n

nP
iD1

�

k.gkC1i � g�i /k
2 is simplified to

c

n
E

nX
iD1

k.gkC1i � g�i /k
2
D

.1 �
1

n
/ �
c

n

nX
iD1

k.gki � g
�
i /k

2
C

c

n
Ek.gkC1j � g�j /k

2 (15)

To calculate the expectation for the second term in
Formula (13) kxkC1 � x�k2, recalling the definition of
zkj and vkj in Algorithm 1, ykC1 can be expressed in the
form as follows:

ykC1 D
1

2
.yk C .gkj �

1

n

nX
iD1

gki //C

1

2
.2 prox

fj
.vkj / � v

k
j /:

By the definition of ukC1, ukC1 can be written as

ukC1 D
1 � ˇk

2
yk C

1C ˇk

2
.gkj �

1

n

nX
iD1

gki /C

1C ˇk

2
.2 prox

fj
.vkj / � v

k
j /:

Similarly, u� is obtained as

u� D
1 � ˇk

2
y� C

1C ˇk

2
.g�j �

1

n

nX
iD1

g�i /C

1C ˇk

2
.2 prox

fj
.v�j / � v

�
j /:

Then, the expectation about the square of ukC1 � u�

can be described as

EkukC1 � u�k2 D

1

4
Ek.1 � ˇk/.y

k
� y�/C

.1C ˇk/.g
k
j �

1

n

nX
iD1

gki � g
�
j C g

�/C

.1C ˇk/Œ.2 prox
fj
.vkj / � v

k
j /�

.2 prox
fj
.v�j / � v

�
j /�k

2 6

1

2
Ek.1 � ˇk/.y

k
� y�/C

.1C ˇk/.g
k
j �

1

n

nX
iD1

gki � g
�
j C g

�/k2C

1

2
Ek.1C ˇk/Œ.2 prox

fj
.vkj / � v

k
j /�

.2 prox
fj
.v�j / � v

�
j /�k

2 (16)

The independent sample j is randomly selected,
and two particularly useful expectations about gj are
EŒgkj � D

1
n

Pn
iD1 g

k
i and EŒg�j � D g�, so we obtain

E.xk�x�; .gkj �
1
n

Pn
iD1 g

k
i �g

�
j Cg

�// D 0. Formula
(16) is established by using kaC bk2 6 2kak2C 2kbk2.
For the first two terms in Formula (16),Ek.1�ˇk/.yk�

y�/C.1Cˇk/.g
k
j �

1

n

Pn
iD1 g

k
i �g

�
j Cg/k

2, we have

Ek.1 � ˇk/.y
k
� y�/C .1C ˇk/

.gkj �
1

n

nX
iD1

gki � g
�
j C g

�/k2 D

.1 � ˇk/
2Ekyk � y�k2C

.1C ˇk/
2Ek.gkj �

1

n

nX
iD1

gki � g
�
j C g

�/k2 6

.1 � ˇk/
2Ekuk � u�k2C

.1C ˇk/
2Ek.gkj � g

�
j /k

2 (17)

With the correct gradient direction, according to the
definition of uk and the variance formula EŒ.X �

EŒX�/2� D EŒX2� � EŒX�2 6 EŒX2�, where E.gkj �
g�j / D

1
n

Pn
iD1 g

k
i � g

�, Formula (17) holds.
For calculating the term Ek.1C ˇk/Œ.2 prox

fj
.vkj /�

vkj /� .2 prox
fj
.v�j /� v

�
j /�k

2 in Formula (16), by using

gkC1j D
1

.vkj � prox

fj
.vkj /, we observe that gkC1j D

vkj � prox
fj
.vkj /, so 2 prox

fj
.vkj / � v

k
j can be written

as vkj � 2g
kC1
j , or 2 prox

fj
.v�j /� v

�
j likewise, then we

have
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Ek.1C ˇk/Œ.2 prox
fj
.vkj / � v

k
j /�

.2 prox
fj
.v�j / � v

�
j /k

2
D

.1C ˇk/
2Ekvkj � 2g

kC1
j � v�j C 2g

�
j �k

2
D

.1C ˇk/
2ŒEkvkj � v

�
j k
2
C 4Ek.gkC1j � g�j /k

2
�

4Ehvkj � v
�
j ; .g

kC1
j � g�j /i� (18)

By substituting Formula (17) and Eq. (18) into
Formula (16), and combining with the Eq. (15),
Formula (14) has been proved. �

Theorem 2 (Non-strongly convex case) Suppose
that each fi W Rd ! R is convex and L-smooth, while
the regularization term h is convex. Then for Algorithm
1 with step size  6 1=L, at Step k, we have

Ek Ngkj � g
�
j k
2 6

1

k
.

nX
iD1

kg0i � g
�
i k
2
C k

1


.u0 � u�/k2/ (19)

where Ngkj D
1
k

Pk
tD1 g

t
j , and the expectation of k Ngkj �

g�j k
2 is for all choices of index j at Step k.

Theorem 3 (Strongly convex case) Supposed
that each fi W Rd ! R is �-strongly convex and
L-smooth, while the regularization term h.x/ is
convex. Then for Algorithm 1 with step size  D

min
n

1
.1Cˇk/

2�n
;

q
9.1Č 2

k
/2L2C3.1�̌ k/

2.1Č 2
k
/�3.1Č 2

k
/L

2.1�ˇk/
2�L

o
at Step k, we have

Ekxk � x�k2 6 Œ1C ˇ2k � .1C ˇ
2
k/

�

2.� C 1/
�k�

.1 � ˇk/
2� C 2.1C ˇ2

k
/

2 � .1C ˇk/2n�
�

n nX
iD1

k.g0i � g
�
i /k

2
C ku0 � u�k2

o
(20)

The relevant proofs are in Appendix B.

4 Experiment

In this section, we conduct numerical experiments to
examine the practical performance of the proposed
method which we call ADProx-SAGA. We main focus
on `2-logistic regression,

min
x
F.x/ D

1

n

nX
iD1

log
�
1C exp

�
�bia

T
i x
��
C
�

2
kxk2

(21)
where ai 2 Rd ; bi 2 f�1;C1g; i D 1; 2; : : : ; n: We
verify the effectiveness of ADProx-SAGA to deal with
composite problems, and for the `2-logistic regression
model in Eq. (21), which contains smooth logistic

function as well as `2 regularization term, we use
different values of � for each dataset as a way to verify
the ability of ADProx-SAGA to handle ill-conditioned
problem and acceleration performance in practice.

The datasets we acted on include covtype (581 012
samples and 54 features), a9a (49 749 samples and
300 features), mushrooms (abbreviated as “mus” in
Fig. 1, 8124 samples and 112 features), and w7a (24 692
samples and 300 features), and � is set to 10�4 and 10�8.
The experiments are designed as some ill-conditioned
problems (with very small �). We test Prox-SGD, Prox-

(a) covtype .�D 10�4/ (b) a9a (�D 10�4)

(c) covtype (�D 10�8) (d) a9a (�D 10�8)

(e) mus (�D 10�4) (f) w7a (�D 10�4)

(g) mus (�D 10�8) (h) w7a (�D 10�8)

Fig. 1 Performance of algorithms.
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SAGA, and ACC-SDCA with their theoretical parameter
settings for comparison. The reason for choosing ACC-
SDCA is that it has fewer parameters to tune, so it seems
more practical.

The results are shown in Fig. 1. In fact, ADProx-
SAGA has an excellent performance from the dataset.
ADProx-SAGA is significantly faster than the general
proximal algorithms Prox-SGD and Prox-SAGA, and
has similar convergence results compared to ACC-
SDCA. For ill-conditioned problem, the accelerated
algorithm is significantly faster than the non-accelerated
algorithm in Fig. 1 when � gets smaller, the fast
convergence of ADProx-SAGA in practice may imply
that the algorithm could potentially benefit more
applications. Another observation is that ADProx-SAGA
does not perform well in the first several iterations of
datasets covtype and a9a. For ill-conditioned problem,
we all know that accelerated algorithm can yield a
faster convergence rate in theory, so we conjecture that
this is because the objective is locally well-conditioned
around the initial point. On the contrary, non-accelerated
algorithms (Prox-SVRG and Prox-SAGA) usually have
better performance in this case.

However, for ill-condition problem, although ADProx-
SAGA is significantly faster in terms of convergence
rate, but is somewhat unstable compared to other three
algorithms, it can be understood that there is a certain
chance in the random selection of the initial point

In the selection of the momentum factor ˇk , for the
performance of ADProx-SAGA on dataset, we set � D
10�8, and choose ˇk as 0.2, 0.5, 0.8, k�2

kC1
, separately. In

order to reflect the fairness of the results, the numerical
results are obtained as the average of three experiments.
Their performance on the datasets is summarized as
follows.

As can be seen from Table 1, ˇk D 0:5 performs best
when ˇk is chosed as a constant value. We conjecture
that the algorithm will have more iterations when ˇk D
0:2, and when ˇk D 0:8, the algorithm tends to miss the
optimal value point during the iteration. When making
ˇk D

k�2
kC1

, its value increases gradually between 0 and 1

Table 1 Number of epochs of different ˇ̌̌k.

Dataset
ˇk

0.2 0.5 0.8 k�2
kC1

covtype 149 115 127 106
a9a 259 173 223 165

mushrooms 77 68 75 56
w7a 168 136 151 107

as the number of iterations k increases, and its dynamic
change rule allows it to have a more forgiving adjustment
strategy compared to a fixed value, which is the reason
for its relatively fewer epochs.

5 Conclusion

In this paper, we propose a variance reducing
stochastic proximal method ADProx-SAGA which
uses the Nesterov’s momentum trick. During the
iteration of ADProx-SAGA, we achieve a deep fusion
of Point-SAGA and fast Douglas–Rachford splitting.
Theoretical results show that ADProx-SAGA achieves
an accelerated linear rate for strongly convex problems,
and experimental results show its good performance in
practice.

Appendix
A Proofs for some properties
In this section, we prove some simple bounds of proximal
operator, which are useful in the following work. Define
g


f
.x/ D 1


.x � prox

f
.x//, so g

f
.x/ is the sub-gradient

of f .x/ at point prox
f
.x/, so by the first-order optimality

condition, we can get prox
f
.x/C g



f
.x/ D x.

Proposition A1 (Moreau decomposition) For any
x; y 2 Rd , and any convex function f W Rd ! R with
Fenchel conjugate f �, we have

prox
f
.x/ D x �  prox1=

f �
.x=/ (A1)

Recall the defintion of g
f
.x/, after combing Eq. (A1),

we have the following relation between the proximal
operator of the conjugate f � and g

f
.x/:

g .x/ D
1


.x � prox

f
.x// D prox

f �
.x=/ (A2)

Proof Let u D prox
f
.x/ and v D 1


.x � u/. By

taking the derivative of the proximal operator of f .x/, we
can get v 2 @f .u/, which follows by conjugacy of f .x/
that u 2 @f �.v/. Thus we interpret v D 1


.x � u/ as the

optimality condition of the proximal operator of f �, we
have

v D
1


.x � u/ D prox1=

f �
.x=/:

Further setting u D prox
f
.x/, we obtain the result. �

Lemma A1 (Lower bounds of inner product) For
any x; y 2 Rd , any convex function f W Rd ! R, and
any regularization parameter  > 0, we have
hg


f
.x/ � g



f
.y/; x � yi > kg

f
.x/ � g



f
.y/k2 (A3)

Further, if f .x/ is �-strongly convex, we have

hg


f
.x/ � g



f
.y/; x � yi >

�

� C 1
kx � yk2 (A4)

Proposition A2 (Firm non-expansiveness) For
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any x; y 2 Rd , any convex function f W Rd ! R with
strong convexity constant � > 0, and any regularization
parameter  > 0, we have the firm non-expansiveness
of prox

f
.x/ in the following:

hprox
f
.x/ � prox

f
.y/; x � yi >

.1C �/k prox
f
.x/ � prox

f
.y/k2 (A5)

From the above result we can also deduce that
k2 prox

f
.x/�x� .2 prox

f
.y/�y/k 6 kx�yk (A6)

Proof It follows the strong convexity of loss
function f .x/, we apply hrf .x/ � rf .y/; x � yi >
�kx�yk2 at the (sub-) gradients g

f
.x/ and g

f
.y/, and

their corresponding points prox
f
.x/ and prox

f
.y/ are

as follows:
hg


f
.x/ � g



f
.y/; prox

f
.x/ � prox

f
.y/i >

�k prox
f
.x/ � prox

f
.y/k2 (A7)

Multiply both sides of Formula (A7) by  and add
k prox

f
.x/ � prox

f
.y/k2 to each afterwards, we have

hprox
f
.x/C g



f
.x/ � prox

f
.y/ � g



f
.y/; x � yi >

.1C �/k prox
f
.x/ � prox

f
.y/k2;

According to the optimality condition prox
f
.x/ C

g


f
.x/ D x, the bound is confirmed.

For Formula (A6), simply substituting g


f
.x/ D

1

.x�prox

f
.x// into Formula (A3), we also can deduce

k prox
f
.x/� prox

f
.y/k 6 kx�yk from Formula (A5),

then add the smaller k prox
f
.x/� prox

f
.y/k and minus

the larger kx � yk to the left of inequality above at the
same time, Formula (A6) can be obtained. �

B Proofs of Theorems 2 and 3

Theorem A1 (Non-strongly convex case) Suppose
that each fi W Rd ! R is convex and L-smooth, while
the regularization term h.x/ is convex. Then for
Algorithm 1 with step size  6 1=L, at Step k, we
have

Ek Ngkj � g
�
j k
2 6

1

k
.

nX
iD1

kg0i � g
�
i k
2
Ck

1


.u0 � u�/k2/

(A8)
where Ngkj D

1
k

Pk
tD1 g

t
j , and the expectation of k Ngkj �

g�j k
2 for all choices of index j at Step k.

Proof
We adjust the upper bound of EŒT kC1� and recall the

definition of vkj D zkj C x
k � yk , then we learn about

v�j D z
�
j C x

� � y�. Combining the definition of zkj in
Algorithm 1 and deduced z�j , so vkj can be formulated
as vkj D 2x

k � yk C .gkj �
1
n

Pn
iD1 g

k
i /.

We bound the expectation of as
Ekvkj � v

�
j k
2
D

Ek2xk � yk � .2x� � y�/C

.gkj �
1

n

nX
iD1

gki � g
�
j C g

�/k2 D

k2xk � yk � .2x� � y�/k2C

Ek.gkj �
1

n

nX
iD1

gki � g
�
j C g

�/k2 6

kuk � u�k2C

Ek.gkj �
1

n

nX
iD1

gki � g
�
j C g

�/k2 6

kuk � u�k2 CEk.gkj � g
�
j /k

2 (A9)

In the first inequality of Formula (A9), since xk D
prox

h
.uk/, we have 2xk � yk D 2 prox

f
.uk/ � yk .

Applying Formula (A6) , we can get the first upper
bound. The right-hand side of the second inequatily
of Formula (A9), kuk � u�k2 C Ek.gkj � g

�
j /k

2,
can also be obtained by using the variance formula
EŒ.X � EŒX�/2� D EŒX2� � EŒX�2 6 EŒX2�, where
E.gkj � g

�
j / D

1
n

Pn
iD1 g

k
i � g

�.
According to the definition of gkC1j , which is the

gradient mapping at vkj , we further bound the inner
product �hvkj � v

�
j ; .g

kC1
j � g�j /i by Formula (11),

�Ehvkj � v
�
j ; .g

kC1
j � g�j /i 6

�.1C
1

L
/Ek.gkC1j � g�j /k

2 (A10)

Substituting Formulas (A9) and (A10) into Formula
(14), then simplifying for EŒT kC1� yields

EŒT kC1� 6 .1C ˇ2k/T
k
C Œ.1C ˇk/

2
�
c

n
��

1

n

nX
iD1

k.gki � g
�
i /k

2
C .

c

n
�
2.1C ˇk/

2

L
C 1/�

Ek.gkC1j � g�j /k
2
�Ek.gkC1j � g�j /k

2 (A11)

In particular, we chose c D n.1C ˇk/2 and  6 1=L
to ensure that parameters Œ.1 C ˇk/

2 �
c
n
� and Œ c

n
�

2.1Cˇk/
2

L
C 1� are non-positive, so we can get

EŒT kC1� 6 .1Cˇ2k/T
k
�Ek.gkC1j �g�j /k

2 (A12)

Taking the expectation for both sides of Formula (A12)
from 0 to k, we have

kX
tD1

Ek.gtj � g
�
j /k

2 6 Œ.1C ˇ2k/T
0
C

ˇ2k.T
1
C T 2 C � � � C T k�1/� �EŒT k�;
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where Ngkj D
1
k

Pk
tD1 g

t
j . Discarding the non-negative

term EŒT k� and simplifying with Jensen’s inequalityPk
tD1Ek.g

t
j � g

�
j /k

2 > kEk Ngkj � g
�
j k
2 and ˇk D 0,

then we have

Ek Ngkj � g
�
j k
2 6

1

2 � k
T 0:

Substituting c D n.1C ˇk/2 into T 0, Formula (A8)
can be proved. �

Theorem A2 (Strongly convex case) Supposed
that each fi W Rd ! R is �-strongly convex and L-
smooth, while the regularization term h.x/ is convex.
Then for Algorithm 1 with step size

 D

min
n

1
.1Č k/

2�n
;

q
9.1Cˇ2

k
/2L2C3.1�ˇk/

2.1Cˇ2
k
/�3.1Cˇ2

k
/L

2.1�ˇk/
2�L

o
;

at Step k, we have

Ekxk�x�k2 6 Œ1C ˇ2k � .1C ˇ
2
k/

�

2.� C 1/
�k�

.1 � ˇk/
2� C 2.1C ˇ2

k
/

2 � .1C ˇk/2n�
�

n nX
iD1

k.g0i � g
�
i /k

2
C ku0 � u�k2

o
(A13)

Proof We present an upper bound for EŒT kC1�
which is different from Theorem 1. Recalling gkC1

and g�j are the gradient mappings of fj at vkj and v�j ,
respectively, applying Formula (A4) in Lemma A1, the
inner product holds,

�
1

2
h.gkC1j � g�j /; v

k
j � v

�
j i 6

�
�

2.1C �/
kvkj � v

�
j k
2 (A14)

Substituting Formula (A14) into Formula (14), and
combining with the upper bound of Ekvkj � v

�
j k
2 given

by Formula (A9), we have

EŒT kC1� 6
�
1C ˇ2k � .1C ˇk/

2 �

2.� C 1/

�
T kC

1

2

� .1C ˇk/2�
� C 1

c �
2c

n
C

.1 � ˇk/
2� C 2.1C ˇ2

k
/

� C 1

�
�

1

n

nX
iD1

k.gki � g
�
i /k

2
C

�1
2

�
1 �

3

L

�
.1C ˇk/

2
C
c

n

�
�

Ek.gkC1j � g�j /k
2 (A15)

In particular, we chose cD.1�ˇk/
2�C2.1Č 2

k
/

2=n�.1Cˇk/
2�

and D

min
˚

1
.1Cˇk/

2�n
;

q
9.1Cˇ2

k
/2L2C3.1�ˇk/

2.1Cˇ2
k
/�3.1Cˇ2

k
/L

2.1�ˇk/
2�L

	

to ensure that the parameters of the terms�
1
2

�
.1Cˇk/

2�
�C1

c � 2c
n
C

.1�ˇk/
2�C2.1Cˇ2

k
/

�C1

��
and�

1
2

�
1 � 3

L

��
1 C ˇk/

2 C
c
n

�
in Formula (A15) are

positive, discarding the non-negative term and taking
the expectation for the rest terms of Formula (A15), so
we can get

EŒT kC1� 6 .1C ˇ2k � .1C ˇk/
2 �

2.� C 1/
/EŒT k�:

Further summing from 0 to k yields

EŒT k� 6 .1C ˇ2k � .1C ˇk/
2 �

2.� C 1/
/k � T 0:

We learn about that xk�x� D prox
h
.uk/�prox

h
.u�/

since xk D prox
h
.uk/ and x� D prox

h
.u�/. Due to the

firm non-expansiveness, we have

E
xk � x�2 6 E uk � u�2 6 E hT ki 6�
1C ˇ2k � .1C ˇk/

2 �

2.� C 1/

�k
� T 0 (A16)

Substituting c D
.1 � ˇk/

2� C 2.1C ˇ2
k
/

2=n � .1C ˇk/2�
into T 0,

Formula (A13) can be proved. �
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