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A Note on Maximizing Regularized Submodular
Functions Under Streaming

Qinqin Gong, Kaiqiao Meng, Ruiqi Yang�, and Zhenning Zhang

Abstract: Recent progress in maximizing submodular functions with a cardinality constraint through centralized and

streaming modes has demonstrated a wide range of applications and also developed comprehensive theoretical

guarantees. The submodularity was investigated to capture the diversity and representativeness of the utilities, and

the monotonicity has the advantage of improving the coverage. Regularized submodular optimization models were

developed in the latest studies (such as a house on fire), which aimed to sieve subsets with constraints to optimize

regularized utilities. This study is motivated by the setting in which the input stream is partitioned into several disjoint

parts, and each part has a limited size constraint. A first threshold-based bicriteria .1=3; 2=3/-approximation for the

problem is provided.
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1 Introduction

Submodular optimization is a remarkably popular topic
in combinatorial optimization, theoretical computer
science, game theory, machine learning, and many other
fields. From the perspective of algorithm development,
most of the submodular optimization problems with
or without constraints are usually NP-hard. Two .1 �
1=e/[1] and 1=e-approximation[2] respectively exist for
the monotone and non-monotone settings for the well-
studied cardinality-constrained model. Additionally,
there are random .1 � 1=e/-approximations[3, 4], and
determined breakout 0:5008-approximation[5] that are
available for the highly expressive matroid-constrained
models. Highly generalized results can be found in the
k-matchoid[6] and k-independence system[7–9].

Considering the submodular maximization with a
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regularized modular term[10–12], an element ground set
E is provided and defined on submodular and modular
functions f and c, respectively. An important weak
approximation concept can be restated as follows. Given
� 2 .0; 1/, an algorithm is called �-approximation if it
outputs a feasible set S satisfying

f .S/ � c.S/ > � � f .O/ � c.O/ (1)
where O denotes the optimum solution for the discussed
regularized problem. The highly expressive bicriteria
approximation was introduced by Ref. [13] and restated
in the current study. A polynomial-time algorithm is
a bicriteria .�1; �2/-approximation if it returns a set S
satisfying

f .S/ � c.S/ > �1 � f .O/ � �2 � c.O/ (2)

where �1; �2 2 .0; 1/.
The current investigation is motivated by the studies

in a streaming fashion. The elements in the streaming
model are revealed in a sequential form. Recall that
the input is assumed to be accessed in advance under a
centralized setting. However, the streaming model forces
the algorithms to visit the elements in sequences and
store at most (O.logn/) elements in memory complexity,
where n represents the input size of the stream. Thus,
finding a high-quality solution that uses memory space
efficiently is crucial. The referred streaming algorithms
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often restrict the use of the memory to poly-logarithmic
in the input parameters. An algorithm is called a single
(one) pass if it is allowed to visit the input stream only
once. In several other cases, one may be allowed to
visit the stream numerous times to improve the solution
quality. However, this algorithm is not optimized in
the current discussion. A partition matroid-constrained
regularized submodular maximization under a streaming
mode is investigated in the current study, and a threshold-
based algorithm that produced a bicriteria (1=3; 2=3)-
approximation for the regularized problem is obtained.

The related literature to the current study is
investigated in Section 2. The notations and models
considered in this paper are then prepared in
Section 3. The framework for maximizing the
regularized submodular with a partition matroid and
its theoretical guarantee is provided in Section 4.
The regularized problem under a streaming mode is
considered, and a distorted threshold-based algorithm
with novelty theoretical guarantees is provided in
Section 5. The conclusions are finally presented in
Section 6.

2 Related Work

A large body of work on optimizing submodular
functions for their wide applications and comprehensive
theoretical performance guarantees is available.
Regularized and streaming submodular maximizations
are the most relevant concepts to the current work. The
algorithms developed for the two settings below are
investigated.

Regularized setting. Most previously listed pieces of
literature in Refs. [14, 15] for submodular maximization
types of constraints focused on the utilities to obtain
only nonnegative values. A tight approximation result
for the monotone submodular maximization problem
was developed by Ref. [16]. The study in Ref. [12]
first considered the summing utility of submodular and
modular functions, and provided two randomized tight
approximations. Feldman[10] studied the regularized
submodular maximization over a solvable polytope, and
presented a distorted continuous greedy that achieves
the same weak approximation as Ref. [12]. The formally
regularized model was introduced in Ref. [11], which
investigated the cardinality constrained problem and
obtained a tight weak .1 � 1=e/-approximation. An
extended distorted greedy appeared in Ref. [17], which
considered the setting with a non-monotone submodular

utility and obtained a weak 1=e-approximation.
References [18–20] can be used as a reference for
optimizing the regularized submodular models.

Streaming setting. As previously mentioned, the
threshold-based method is popular in handling streaming
submodular optimization problems. A series of studies
in Refs. [21–24] proposed the above threshold-based
streaming algorithms for the cardinality constrained
submodular maximization problem. General knapsack
constrained submodular maximization appeared in
Refs. [25, 26]. Researchers further enhanced the
models of maximizing submodular functions with highly
generalized constraints. The k-matroid[27, 28] and k-
independence system[29] can be used as a reference.
Some streaming algorithms have been developed for
maximizing submodular functions based on graphs.
A single pass 0:129-approximation can be used for
the matching constrained submodular maximization[30].
Improved results with single pass 0:172-approximation
were independently developed[31, 32]. Moreover, an
extended streaming algorithm based on the local
ratio technique for the matroid intersection constraint
was studied[33]. Notably, the previous results were
assumed that the visited order is arbitrary. References
[34–36] summarized the submodular maximization
under a random order. Additionally, streaming
algorithms were originally developed for the regularized
problems[13, 19, 37].

3 Preliminary

This study focuses on the regularized submodular
maximization problem, which aims to choose a subset of
representative elements from the ground set along with
a regularized utility.

(1) Utility
Given an element ground set E, a set function f

represents the revenue term, such that f .S/ is the
revenue that can be attributed to S for each S � E.
Given any pair .e; S/, where element e 2 E and subset
S � E, the marginal gain of e addition to S considering
f is denoted by f .ejS/ D f .S[feg/�f .S/. Similarly,
let f .T jS/ D f .S [ T / � f .S/ be the marginal gain
of subset T to additional S considering f . Set function
f is submodular if

f .ejS/ > f .ejT /;8S � T � E; e … T (3)

For any pair .e; S/, the function f is additionally
monotone if the marginal gain f .ejS/ is always
nonnegative. The regularized term is denoted by c W
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2E ! RC, such that c.S/ captures the penalty for each
S � E if S is chosen.

(2) Matroid
Recall that a pair .E; I / is defined as an independence

system if S � S 0 2 I for any S 2 I . A subset S 2 I
is referred to as an independent set and the maximum
size among all independent sets is defined as the base.
An independence system .E; I / is further defined as a
matroid if an element e 2 T n S satisfying S [ feg 2
I exists for any two independent sets S; T 2 I with
jT j > jS j. A special partition matroid is restated as
follows. Assume that E is partitioned into fEig`iD1 parts
considering constraint sizes fkig`iD1. Let I D fS � E W
jS \Ei j 6 kig denote the collection of subsets, which
mostly includes at most ki elements from each part Ei .

The computation of submodular value and
independence for subsets exponentially increase
in the size of the ground set. Thus, the independence
and value of S � E can be obtained in oracles.

(3) Problem
In the regularized submodular maximization under a

partition matroid, a regularized utility function f � c is
provided, where f is nonnegative monotone submodular,
c is nonnegative modular, and a partition matroid .E; I /
is observed in the same ground set. Formally, the
problem is cast as follows:

max
S2I WS�E

f .S/ � c.S/ (4)

where I D fS � E W jS \ Ei j 6 ki ; k D
P`
iD1 kig.

The above problem is reduced to the classic cardinality
constrained submodular maximization if the partition
matroid .E; I / decreases to ` D 1.

4 Distorted Greedy

The regularized submodular maximization under a
partition matroid constraint is considered in this section,
and a distorted greedy algorithm with a theoretical
guarantee is provided.

4.1 Algorithm description

The introduced algorithm, which is listed in Algorithm 1,
obtains a parameter � D 2 and starts with an empty set.
Algorithm 1 uses sets St for certain iterations t from 1

to k. For some iteration t and part i with jSt \Ei j < ki ,
the algorithm greedily selects element et D ei with a
maximum distorted marginal gain, that is,

ei 2 arg max
e2Ei

f .ejSt / � � � c.e/ (5)

Algorithm 1 breaks if either all the distorted marginal
gains are negative or the iterations reach to k.

Algorithm 1 Distorted-fair greedy
Input: Ground set E with a partition fEi g`D1, input size

constraint ki with respect to Ei , parameter � D 2
Output: Solution set S

1: Initialization. S  ∅, t0  0;
2: for t D 1 W k do
3: for i D 1 W ` do
4: if jSt \Ei j < ki then
5: Set ei  arg maxe2Ei f .ejSt / � � � c.e/I
6: if f .ei jSt / � ˛.r/c.e/ 6 0 then
7: break;
8: end if
9: Set St  St C ei ;

10: end if
11: end for
12: end for
13: return Sk

4.2 Analysis

The properties of the distorted greedy algorithm are
summarized using the following theorem. Notably, an
independent study for the general matroid constrained
regularized submodular maximization is available[19].

Theorem 1 Algorithm 1 obtains a weak 0:5-
approximation for maximizing regularized submodular
functions under a partition matroid constraint.

Proof The details for proving Theorem 1 are
omitted in this study because they mainly follow the
framework of Theorem D.1.[19], we omit it here. �

5 Streaming Algorithm

The regularized partition matroid-constrained
submodular maximization under a streaming mode is
studied in this section, and a distorted threshold based
algorithm with theoretical guarantees is provided.

5.1 Algorithm description

The proposed algorithm, which is listed in Algorithm
2, obtains parameters r D 2=3; thus let ˛.r/ D .2r C

1 �
p
4r2 C 1/=2 D 2, and h.r/ D .1 � 1=˛.r//=

.2 � 1=˛.r// D 1=3. The influence of the distorted
marginal gains is intuitively investigated by introducing
the above parameter ˛.r/. Motivated by Ref. [37], a
distorted alternative optimization problem is introduced
as follows:

T 2 arg max
T 02I;T 0�E

h.r/f .T 0/ � r � c.T 0/ (6)

where parameters r and h.r/ are stated as before.
Algorithm 2 starts with empty solution S and buffer

B . Let mt WD h.r/f .et / � rc.et / be a distorted single
element value. The lower bound of optimumO estimated



1026 Tsinghua Science and Technology, December 2023, 28(6): 1023–1029

Algorithm 2 Distorted threshold-based algorithm
Input: Stream E is partitioned by fEi g`D1 with constraints
fki g

`
iD1

. Setting r D 2=3, ˛.r/ D 2, and h.r/ D 1=3
Output: Solution set S�

1: Initialization. m0 D L D 0, B  ∅, and t  1;
2: while there exists an element et 2 Ei arrives from E do
3: Let mt  maxfmt�1; h.r/f .et / � r � c.et /g;
4: Update Ri with respect to ei using reservoir sampling;
5: Ot  f.1C "/

j W .1C "/j 2 Œmaxfmt ;Lg
k

; ˛.r/
r
mt �g;

6: Discard S� for all � … Ot ;
7: Initialize S�  ∅ for each newly added to Ot ;
8: for each � 2 Ot do
9: if jS� \Ei j < ki then

10: if f .et jS� / � ˛.r/c.et / > � then
11: S�  S� C et ;
12: else
13: if f .et jS� / � ˛.r/c.et / > L

k
then

14: B  B C et ;
15: end if
16: end if
17: end if
18: L max�2Ot f .S� / � c.S� /;
19: end for
20: end while

by candidate subsets is denoted as L and a set returned
by reservoir sampling is denoted as set Ri considering
et D ei . For any revealed element et 2 Ei from E,
we construct an increasing geometric progression f� D
.1C"/j ; j 2 Zg interval bym is constructed as follows:

Ot D

�
.1C "/j W � 2

�
maxfmt ; Lg

k
;
˛.r/mt

r

��
(7)

For each newly instantiated threshold � 2 Ot , the
algorithm starts with a corresponding candidate solution
S� D ∅. For each � 2 Ot , Algorithm 2 updates S�
with et D ei 2 Ei , if the cardinality of S� \Ei satisfies
jS� \ Ei j < ki and the distorted marginal gain of ei is
larger than threshold � , that is,

f .et jS� / � ˛.r/c.et / > � (8)

Furthermore, Algorithm 2 updates buffer B if

f .et jS� / � ˛.r/c.et / >
L

k
(9)

and returns the maximal lower bound L D

max� f .S� /�c.S� /. The postprocessing is then
followed to obtain good theoretical guarantees.

The postprocessing, which is listed as Algorithm 3,
starts with identifying an index � 0, such that � 0 is the
smallest � if jS� \ Ei j < ki for each i ; if some part i
holds jS� \Ei j D ki for each � , then the largest � 2 On
is denoted by � 0. For each � 6 � 0, Algorithm 3 relies on
the distorted greedy. Distorted greedy, which is listed as

Algorithm 3 Post processing
Input: Buffer B and samples fRi g`iD1
Output: Solution set S�

1: Let � 0 D

(
min�2On �; if jS� \Ei j < ki for any i 2 Œ`�I
max�2On �; otherwise:

2: for any � 6 � 0 in On do
3: Run Algorithm 1 to add elements from buffer B and

independently choose Ri for all i 2 Œ`� to S� with non-
negative marginal gains;

4: end for
5: return S�  arg max�2On f .S� / � c.S� /

Algorithm 1, recalculates the elements in B and Ri , and
adds them to S� if their marginal gains are nonnegative.

5.2 Analysis

Algorithms 2 and 3 together imply that the main result
is summarized by the following theorem.

Lemma 1 below addresses to the set produced by
stream processing without postprocessing.

Lemma 1 Assume we have access to h.r/f .T / �
rc.T //=.1 C "/ 6 k� 6 h.r/f .T / � rc.T /.
Considering the following two cases of jS� j D k and
jS� \Ei j < ki for any part i , then
f .S� / � c.S� / > .1 � "/h.r/f .T / � r � c.T / (10)

Proof The proof is separately divided into the two
subcases below.
� Case of jS� j D k. S t� D fe1; e2; : : : ; etg denotes

set of the first 1 6 t 6 k elements added to S� according
to their visited order. Since any element et added to
S t�1� must be larger than or equal to � , we have f .S� /�
˛.r/c.S� / D

Pk
tD1 f .et jS

t�1
� / � ˛.r/c.et / > k�:

Following the assumption, the lower bound k� can be
further lower bounded by .h.r/f .T /�r �c.T //=.1C"/.
Therefore, f .S� / � c.S� / > f .S� / � ˛.r/c.S� / >
.h.r/f .T / � r � c.T //=.1C "/ > .1 � "/h.r/f .T / �
r � c.T /, where the first inequality obtains as ˛.r/ > 1
and the last two equalities readily hold.
� Case of jS� \ Ei j < ki for any i 2 Œ`�. Consider

any element e D et 2 E n S� , f .ejS t�1� /� ˛.r/c.e/ <

� holds, and then f .ejS� / � ˛.r/c.e/ 6 � based on
submodularity. Adding this inequality over all elements
e 2 T n S� , then yields the following: f .T / � f .S� / �
˛.r/c.T / 6

P
e2T nS�

f .ejS� / � ˛.r/c.e/ < k� 6
h.r/f .T /�r �c.T /. Rearranging the obtained inequality
implies
f .S� / > .1 � h.r//f .T / � .˛.r/ � r/c.T / (11)

Moreover, f .S� / � ˛.r/c.S� / > 0. Adding a 1=˛.r/
fraction of this inequality to a 1 � 1=˛.r/ fraction of
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Formula (11) obtains f .S� /�c.S� / > .1�1=˛.r//.1�
h.r//f .T /�.1�1=˛.r//.˛.r/�r/c.T / D h.r/f .T /�

r � c.T /; where the equality holds due to the following
setting: h.r/ D .1 � 1=˛.r//.1 � h.r// and r D .1 �

1=˛.r//.˛.r/ � r/.
The proof is then completed. �

Considering the setting of maximizing fair
submodular maximization without regular term[38],
the approximation ratio might drop to O.1=k/ when
the partition budgets are exhausted but the others are
not. Similar buffer and postprocessing procedures are
introduced. This finding indicates that the algorithm still
achieves good theoretical guarantees, as summarized by
Lemma 2 in the following.

Lemma 2 Denote � 0 as the selected of Algorithm 3.
Then, we have
f .S� 0/�

.1C"/˛.r/
2C"

c.S� 0/ >
1�h.r/
2C"

f .T /� ˛.r/�r
2

c.T /:

Proof The proof is separately divided into the two
subcases below.
� Case of jS� 0\Ei j < ki for any i 2 Œ`�. In this case,

the elements of T are partitioned into the following three
parts: (1) The set of elements of T included in S� 0 during
the algorithms process is denoted by T1 WD T \ S� 0 ; (2)
The retained set of elements of T in B while not given to
S� 0 is denoted by T2 WD T \ .B nS� 0/; (3) The elements
discarded during the streaming process are denoted by
T3 WD T \ .E n .B [ S� 0//. An element e0 2 S� 0

exists for each e 2 T2, such that f .ejS� 0/� ˛.r/c.e/ 6
f .ejS 0� 0/ � ˛.r/c.e/ 6 f .e0jS 0� 0/ � ˛.r/c.e

0/; where
S 0� 0 � S� 0 denotes the partial solution at the time
of encountering e0. For each e 2 T3, f .ejS� 0/ �
˛.r/c.e/ < L

k
6 h.r/f .T /�r �c.T /

k
holds. Hence,

the following inequality can be obtained as f .T / �
f .S� 0/ � ˛.r/c.T / 6

P
e2T2[T3

f .ejS� 0/ � ˛.r/c.e/.
Moreover, the terms of

P
e2T2

f .ejS� 0/� ˛.r/c.e/ andP
e2T3

f .ejS� 0/ � ˛.r/c.e/ can be upper bounded byP
e02S�0

f .e0jS 0� 0/ � ˛.r/c.e
0/ D f .S� 0/ � ˛.r/c.S� 0/

and h.r/f .T /�r �c.T /, respectively. Therefore, f .T /�
f .S� 0/�˛.r/c.T / 6 f .S� 0/�˛.r/c.S� 0/Ch.r/f .T /�
r � c.T / holds. Rearranging the above inequality yields
f .S� 0/ �

˛.r/
2
c.S� 0/ >

1�h.r/
2

f .T / � ˛.r/�r
2

c.T /:

� Case of � 0 attaining the maximum in T . Notably,
˛.r/mn
.1C"/r

6 � 0 6 ˛.r/mn
r

in this case. The elements in T
can also be similarly partitioned three parts: T1, T2, and
T3. The results readily hold for T1 and T3. Thus e D
et 2 T2 is considered. Overall, f .ejS� 0/ � ˛.r/c.e/ 6
f .e/ � ˛.r/c.e/ D 1

h.r/
.h.r/f .e/ � ˛.r/h.r/c.e// D

1
h.r/

.h.r/f .e/ � r � c.e// 6 mn
h.r/

6 1
h.r/

.1C"/r� 0

˛.r/
D

.1 C "/� 0 6 .1 C "/.f .e0jS 0� 0/ � ˛.r/c.e
0//: Then

f .S� 0/ �
.1C"/˛.r/
2C"

c.S� 0/ >
1�h.r/
2C"

f .T / � ˛.r/�r
2C"

c.T /

is obtained.
Therefore, the proof in this part is completed. �

The bicriteria approximation for the algorithm in
Theorem 2 is provided.

Theorem 2 Let r D 2=3 and then ˛.r/ D 2, and
h.r/ D 1=3. A bicriteria streaming algorithm that
produces a solution set S satisfying

f .S/ � c.S/ >

�
1

3
� "

�
f .O/ �

2

3
c.O/;

which is available for the regularized submodular
maximization problem.

6 Conclusion

The regularized submodular maximization under a
partition matroid is studied in this work, and a
distorted greedy weak 1=2-approximation algorithm
is presented. The regularized problem under the
streaming model is then considered, and a threshold-
based algorithm that obtained a bicriteria .1=3; 2=3/
approximation is provided. We believe that the
state-of-the-art results for the matroid-constrained
nonnegative monotone submodular maximization are
single-pass 0:3178-approximation and multipass .1 �
1=e/-approximation[39]. The possible application of the
above developed techniques for the unregular setting to
regular cases will be further considered.
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