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AInvR: Adaptive Learning Rewards for Knowledge Graph Reasoning
Using Agent Trajectories

Hao Zhang, Guoming Lu�, Ke Qin, and Kai Du

Abstract: Multi-hop reasoning for incomplete Knowledge Graphs (KGs) demonstrates excellent interpretability with

decent performance. Reinforcement Learning (RL) based approaches formulate multi-hop reasoning as a typical

sequential decision problem. An intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals

make performance unstable. Current mainstream methods apply heuristic reward functions to counter this challenge.

However, the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and

unrelated object entities. To this end, we propose a novel adaptive Inverse Reinforcement Learning (IRL) framework

for multi-hop reasoning, called AInvR. (1) To counter the missing and spurious paths, we replace the heuristic rule

rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories; (2) to alleviate the

impact of over-rewarded object entities misled by inaccurate reward shaping and rules, we propose an adaptive

negative hit reward learning mechanism based on agent’s sampling strategy; (3) to further explore diverse paths

and mitigate the influence of missing facts, we design a reward dropout mechanism to randomly mask and perturb

reward parameters for the reward learning process. Experimental results on several benchmark knowledge graphs

demonstrate that our method is more effective than existing multi-hop approaches.
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1 Introduction

Knowledge Graph (KGs), such as Freebase[1], YAGO[2],
and DBpedia[3], are widely used in natural language
processing[4, 5], question-answering[6, 7], recommender
systems[8, 9], and other Artificial Intelligence (AI)
applications[10–14]. However, incompleteness and
uncertainty of KGs lead to performance degradation
on upstream assignments, which makes it a popular
research direction to predict missing facts through
Knowledge Graph Reasoning (KGR)[15, 16]. The
mainstream reasoning approaches are divided into
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neural, symbolic, and neural-symbolic methods[17].
Neural reasoning, also named Knowledge Graph

Embedding (KGE), focuses on learning low-dimensional
representation of entities and relations[18–22]. Despite
the outstanding performance of neural reasoning, it is
difficult to identify logic rules in the reasoning process,
resulting in the lack of interpretability.

Symbolic reasoning methods, also known as rule-
based reasoning, deduce logic rules from KGs and
adopt these rules to infer missing facts[23–27]. Figure 1
illustrates an incomplete subgraph that misses fact
Led sports (James, Cavaliers), which can be inferred
from a logic rule: Led sports  Plays in ^ Part
of. Although symbolic methods make a friendly
interpretation, they are limited by strict matching and
discrete logic operations, in which noise and ambiguity
are insupportable.

Neural-symbolic reasoning combines symbolism and
connectionism to solve reasoning problems[17]. Popular
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Fig. 1 Example of three king of reasoning methods in an
incomplete subgraph of NELL-995[28]. Solid lines are existing
facts and dotted lines are facts that require reasoning.

approaches of neural-symbolic reasoning aim at training
an agent to infer path and object entity over KGs, which
called walk-based reasoning. Recently, numerous walk-
based reasoning methods based on RL approaches[28–35]

solve KGR as a sequential decision process of reasoning.
Both effectiveness and interpretability are demonstrated
in these multi-hop methods.

However, RL approaches for KGR suffer from sparse
rewards, leading to unstable performance. Moreover,
the RL agent is misled by spurious search trajectories,
resulting in false-positive inference paths. Recent
efforts[30, 32–35] address the challenges via restricting the
walking action or introducing heuristic reward functions,
most of which depend on pre-trained embeddings and
rules. These methods prove effectiveness in solving
sparse reward signals, but they also introduce inaccurate
and misleading rewards. First, pre-extracted rules
result in receiving inaccurate rewards. Especially, in
the process of reasoning, incorrect rules mislead the
inference paths, and undefined rules fail to supply
rewards. In this case, the agent tends to infer paths with
rule guide rather than correct ones. Second, heuristic
reward strategies for missing facts provide unauthentic
rewards for prediction. For example, reward shaping[30]

depends entirely on the quality of embeddings, and
general rules[34, 35] cannot resolve noise. These rewards
lead to the false prediction of the object entity.

This paper proposes an adaptive IRL reasoning
framework, named AInvR, to solve the aforementioned
problems. First, instead of pre-extracted symbolic rules,
we develop an adaptively updated Rule Base (RB) and
Candidate Rule Base (CRB) to provide an adaptive rule
reward mechanism. The undefined rules are updated
to the RB and CRB, and the existing rules will receive
feedback if rules guide the agent. Second, we present
an Inverse Knowledge Base (IKB) to provide additional

negative rewards to balance over-rewards. Non-existing
object entities that suffer from unauthentic rewards are
more likely to have high prediction probability, these
entities are identified as the main target for negative
rewards design. Furthermore, to explore diverse paths
and mitigate the impact of missing facts, we design
a reward dropout mechanism to randomly mask and
perturb reward parameters at rewards learning process.

Experimental results demonstrate that our approach
achieves better performance on five well-established
KGR benchmarks (FB15K-237, WN18RR, CoDEx-S,
CoDEx-M, and CoDEx-L). Additionally, our method
outperforms traditional rule-based models significantly
on large relation-focused datasets.

2 Related Work

2.1 Knowledge graph embedding

Single-hop KGR approaches aim at learning distributed
embedding of entities and relations[36, 37]. Translation-
based models[18, 20, 38] interpret KGR as a translation
of subject entity to object entity via given relation.
Multiplicative models[19, 21, 39] measure relation and
entity as tensor products. Deep learning models[22, 40, 41]

embed entities and relations by various neural networks.
Despite their excellence, embedding is uninterpretable
because of the absence of pathfinding. Also it is limited
to single-hop reasoning scenarios.

2.2 Multi-hop reasoning

To improve interpretability, a large number of
multi-hop methods have been proposed. Rule-based
approaches[23, 26, 42] aim at generating logic rules from
KGs for multi-hop reasoning. Walk-based efforts focus
on inferring the paths between subject entity and
object entity by learning a pathfinding agent. PRA[43]

performs a random-walk based algorithm to aggregate
discrete paths with linear regression. DeepPath[28] and
MINERVA[29] model the interaction of KG and agent
as a Markov Decision Process (MDP)[44], with a 0/1 hit
reward indicating whether the prediction is an correct
object entity or not. Multi-Hop[30] proposes a soft reward
shaping mechanism, based on pre-trained embedding,
to avoid sparse reward issue. It also introduces an
action dropout to enforce effective path exploration.
DacKGR[33] utilizes embedding to provide an additional
action space to explore potential inferences. Those
approaches are associated with the object entity, but
ignore the authenticity of path. RuleGuider[34] and
RARL[35] introduce RL frameworks that make use of
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pre-trained symbolic rules to fight against spurious path
problems.

Deep RL based approaches have achieved remarkable
progress in KGR[30, 32–35]. However, compare to other
AI domains, RL-based approaches in KGR often
suffer from a larger discrete action space, resulting
in sparse reward signals[28, 45, 46]. Heuristic reward
functions[30, 32–34] address this issue to some extent, but
they also lead to inaccurate rewards, thus degrading the
agent’s reasoning ability. In addition, it is difficult for
RL-based methods to take advantage of supervised pre-
trained models because reasoning often misses correct
paths in complex scenario[47].

3 Proposed Method: AInvR

3.1 Problem formulation

The KG is formalized as G D .E;R;U /, where E is
the entities set, R is the relations set, and U is the set
of the facts in KG. A fact u 2 U can be represented
by a triplet .es; rq; eo/ containing subject entity es 2 E,
relation rq 2 R, and object entity eo 2 E.

Given a query .es; rq; ‹/, the definition of KGR task
is to predict a possible object entity eo through a k-
hop entities-relations path es

r1
! e1

r2
! e2 � � �

rk
! eo. An

example is shown in Fig. 1, the possible path for query

(Lebron James, Led sports, ?) is Lebron
Plays in
�! NBA

Part ofinv
�! Cleveland Cavaliers that concludes the object

entity Cleveland Cavaliers where ofinv is the inverse
relalion.

3.2 RL framework for reasoning

The interactive process of RL is modeled as a MDP,
which is represented by a tuple .S; A; P;Rg/, where S is
the state space, A is the set of all actions, P.stC1jst ; at /
is the state transition probabilities, and Rg.s; a/ refers
to the reward function.

(1) State
In the modeling structure of MDP for KGR, the

state st 2 S at step t is defined as a tuple .et ; rt ;
.es; rq/; .h

E
t ; h

R
t //, where et is the current entity, rt

is the current relation, .es; rq/ is the initial query, and
the encoding .hEt ; h

R
t / represent the historical path of

entities and relations, respectively.
(2) Action
The action space At � A refers to the action

space at step t . We formulate At D f.etC1; rtC1/j
.et ; rtC1; etC1/ 2 G/g indicating the set of outgoing

edges of et . In addition, each At includes a terminate
edge so that the agent can stop walking at the current
step.

(3) Transition
The transition function S � A! S defines

the probability distribution for the next states:
P.stC1jst ; at /. In the current state st , the agent reaches
the next state stC1 according to the current action at .

(4) Reward
In our framework, the reward function is divided into

two parts: rule reward Rr and hit reward Rh, the global
reward function is shown as below:

Rg D Rr CRh (1)

The rule reward Rr represents feedback on the agent’s
inference path and the hit reward Rh indicates the
validity of the reasoning object.

3.3 Architecture for AInvR

The architecture of AInvR includes two parts: the
reasoning process and the rewards learning process. The
overall architecture is illustrated in Fig. 2.

(1) Policy network
The policy network consists of two interactive sub-

policy networks parameterized by fully connected layers:
relation policy network �.rtC1jst / and entity policy
network �.etC1jst /.

The relation policy network infers the next hop
relation probability distribution pRt based on the
information of the current state,

pRt � �.rtC1jst / D
�.ARt �W

R
1 �ReLU.W

R
2 ŒrqI rt I h

R
t �// (2)

where ARt is the stacking of relation action space, W R
1

and W R
2 are trainable parameters, �(�) is the softmax

function, rq is the initial query relation, and rt is the
relation of the current state. The vector hRt represents the
LSTM-encoded[48] historical information of the relation
from the beginning to step t ,

hRt D LSTM.h
R
t�1; rt / (3)

hR0 D LSTM.0; rq/ (4)

The entity policy network outputs the next entity
probability distribution pEt after the calculation of the
following formula:

pEt � �.etC1jst / D
�.AEt �W

E
1 �ReLU.W

E
2 ŒesI rqI et I h

E
t �// (5)

where AEt is the stacking of entity action space,W E
1 and

W E
2 are trainable parameters. hEt is encoded by another
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Fig. 2 Overall architecture. In the reasoning process, the entity policy network infers the next entity probability, and the
relation policy network infers the next relation probability. Then, the distribution of the next action is calculated by the
multiplication of two probabilities, and the historical information is encoded after selecting the action. In the rewards learning
process, RB and CRB are updated based on the agent trajectories, rule rewards in RB are updated, and undefined rules are
added into the CRB. The negative facts sampled by the agent are selectively updated to the IKB. At each update step, the reward
dropout mechanism randomly masks and perturbs the undefined rules and negative facts.

LSTM,
hEt D LSTM.hEt�1; et / (6)

hE0 D LSTM.0; es/ (7)
At each step t , the agent policy �.at ; st / is

composed of relation policy �.rtC1jst / and entity policy
�.etC1jst /. The action .etC1; rtC1/ is sampled by the
probability distribution pRt �pEt until the k-hop inference
is completed. Then, the agent output the predicted
inference rule .rq; .r1; r2; : : : ; rk// and object entity ek .
As described above, we design separate reward functions

for rules and hits.
(2) Rule base and candidate rule base
We introduce an adaptive RB to store rules and

generate rule rewards. We also present a CRB to make
use of undefined rules at each iteration. Note that, the
rules stored in RB and CRB are different, and there is
no intersection between them. We formulate the query
relation rq and relations path .r1; r2; : : : ; rk/ as a rule l ,
which is represented as a quaternion form,

l D .rq; .r1; r2; : : : ; rk/; ql ; cl/ (8)
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where ql is the times that the agent hits the correct object
entity following rule l , and cl is the total times that the
agent traverses rule l . The rule reward Rr provided by
RB and CRB is defined as

Rr D �rprf.rq; .r1; r2; : : : ; rk// is lg;

pr D
ql

cl
(9)

where �r is a discount factor. When the agent walks
through rule .rq; .r1; r2; : : : ; rk//, it receives rule
confidence pr as rule reward.

(3) Knowledge base and inverse knowledge base
We propose the KB and the IKB in the form of KGs

with uncertainty[49]. KB is used to store the existing facts
in KG, and IKB is designed to store negative facts that
are over-rewarded. Each of their edges is represented as
a quaternion .es; rq; eo; ph/ including subject entity es ,
relation rq , object entity eo, and prediction confidence
ph. Given a predicted entity ek , the hit reward Rh is
calculated as

Rb D 1fek D eog (10)

Rh D �h.phRb C .1 �Rb/f .es; rq; ek// (11)

where �h is a discount factor, Rb is a binary reward,
which will be set to 1 if the object entity is correctly
inferred. f .es; rq; eo/ is a composition function for
reward shaping with embeddings[30]. If the reasoning
hits the fact in KB or IKB, the hit reward is set to the
fact confidence ph, otherwise, the output probability
f .es; rq; eo/ is used as a substitute for the hit reward.

3.4 Rule update algorithm

Walk-based approaches taking advantage of rules[34, 35]

show superiority in solving unauthentic paths and the
sparse reward problem. However, the performance
of these methods relies on the quality of pre-trained
symbolic models heavily. In particular, inadequately pre-
extracted rules mislead the agent’s walking, resulting in
erroneous reasoning. To this end, we design a rule update
algorithm to adjust the rule rewards and update undefined
rules based on the agent’s search paths. Specifically,
for each rule exploited, the confidence will be adjusted
according to the result of path searching. The undefined
rules, which are derived from unknown valid paths, are
added to the CRB as temporary rules. The detail of the
process is shown in Algorithm 1, where 
r and �r are
hyper-parameters that constrain the capacity of RB, ˛r
is a hyper-parameter for reward dropout, and L0 is the
set of rules after paths perturbing. The impact factor �l

Algorithm 1 Rule update algorithm
Require: � D f�1; �2; : : : g; �i D f.riq ; .ri1; r

i
2
; : : : ; ri

k
/;Rir ;

Ri
h
/g

for i D 1 to k�k do
if .r iq ; .r i1; r

i
2
; : : : ; r i

k
// is l 2 RB or CRB then

ql D ql CR
i
h
�Rirfcl < 
rg;

cl D cl C 1fcl < 
rgI
else if Ri

h
D 1 then

Define l D .r iq ; .r
i
1
; r i
2
; : : : ; r i

k
/; ql ; cl /; ql D 1; cl D 1;

Update rule l to CRB;
end if

end for
Descending sort rules in CRB by impact factor �l ;
Extract the top �r rules L D fl1; l2; : : : g in CRB;
Initialize m � Bernoul li.1 � ˛r /I
Randomly mask rules L using reward dropout;
Obtain masked rules L0 D fl 0

1
; l 0
2
; : : :g;

Randomly perturb paths .r1; r2; : : : ; rk/ from L0;
Add rules LC L0 to RB;
Clear CRB.

is calculated by the sum of exploration and exploitation.

�l D
ql

cl
C

cl

max
ui2CRB

.ui /
(12)

Exploration is calculated by the correct rate of rule l ,
which is shown as the first term of Eq. (12). The second
term formulates the exploitation as the normalized
frequency of the rule queried.

3.5 Knowledge update algorithm

The potential problem of heuristic rewards is that
the global reward function may mislead reasoning.
Specifically, the robustness of rules and quality of
embeddings are dubious for walk-based methods. For
example, a high reward rule personNationality.X;
Y / birthPlace.X; Y / does not apply to persons who
change nationality. Since the agent is more inclined
to predict paths and entities with a higher global
reward, as a result, heuristic rewards provide incorrect
fact prediction for personNationality. Generally, non-
existing object entities with high rewards lead to false
predictions. To solve this problem, the knowledge
update algorithm provides adaptive negative hit rewards
for unauthentic entity predictions to balance excessive
rewards. We formulate these over-rewarded object
entities and initial queries as negative These negative
facts are considered as the main target for reward
correction and are handled in the IKB. The pseudo-code
is shown in Algorithm 2, where �h and 
h are hyper-
parameters that constrain the bandwidth and algorithm
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Algorithm 2 Knowledge update algorithm
Require: � D f�1; �2; : : : g; �i D f.r iq ; .r i1; r

i
2
; : : : ; r i

k
/; Rir ;

Ri
h
/g,

if epoch=
h D 0 then
Clear IKB;
for i D 1 to k�k do

Set B D f.e1
k
; p1
k
/; .e2

k
; p2
k
/; : : : g  Agent.es ; rq ; ‹/I

Ascending sort B by confidence pi
h

;
Retain top �h tuple in B;
Initialize m � Bernoul li.1 � ˛h/;
Randomly mask B using reward dropout;
for es ; rq ; eik ; p

i
h

in kBk do
Define negative fact u D .es ; rq ; eik ;�p

i
h
/;

Randomly perturb es ; rq ; and eo from u;
if u is not in KB then

Add fact u to IKB;
end if

end for
end for

end if

interval, respectively, so as to reduce the running time
of the knowledge update algorithm. ˛h is a hyper-
parameter for reward dropout.

3.6 Reward dropout

Undefined rules derived from agent’s experience are
inadequate to guide agent to explore diverse paths
completely. On the other hand, the negative hit rewards
of missing facts weaken the prediction ability to a certain
extent. To further explore diverse paths and reduce the
impact of missing facts, we propose a reward dropout
mechanism, which randomly masks and perturbs the
element of rules and facts in the reward learning process.
The reward dropout used in both algorithm is similar
except for the perturbation part.

In the rule update algorithm, reward dropout randomly
masks rules based on the Bernoulli distribution with
parameter ˛r . The paths of masked rules are randomly
perturbed. Then, the rules after path perturbing are
updated to CRB along with other unmasked rules.

QL D L � mC L0 � .1 � m/;

m � Bernoulli.1 � ˛r/ (13)

The path .r 01; r
0
2; : : : ; r

0
k
/ of rule l 0 is randomly

rearranged by its initial path .r1; r2; : : : ; rk/ of rule l .
In the knowledge update algorithm, facts in the

prediction set are randomly selected based on the
Bernoulli distribution with parameter ˛h. The remaining
selected facts QB are updated to IKB after randomly
perturbing the facts,

QB D B0 � m;

m � Bernoulli .1 � ˛h/ (14)
where B 0 D fu01; u

0
2; : : : g refer to the set of negative

facts. The triplet .e0s; r
0
q; e
0
k
/ of facts u0 is formulated

by the predicted fact .es; rq; ek/ after the random
perturbation of the subject, relation, and object position.

3.7 Optimization and training

The optimization process of policy networks aims to
maximize the global reward over all queries sampled in
KB and IKB,
J.�/ D E.es ;rq ;eo;ph/2KB[IKBŒEa��� ŒR.skjes; rq/��

(15)
where a represents the action of �� :

We adopt Guided Cost Learning (GCL)[50] to optimize
the policy network and reward function alternately.
The REINFORCE[51] algorithm is used as a policy
gradient optimization by utilizing the reward function,
while the reward update algorithm is called using the
agent’s trajectories. The training procedure is shown in
Algorithm 3, where � denotes the network parameters.
To improve the performance of the agent, we use
KGE[19, 40] to pre-train the representation of entities and
relations. Additionally, other techniques proposed in
previous walk-based reasoning methods are adopted in
the training procedure, including beam search, action
dropout, etc. Implementation details are available in
Appendix A.

Algorithm 3 Training procedure
Initialize �; KB, RB
for epoch D 1 to episode do

Sample queries .es ; rq ; eo; ph/ 2 .KB [ IKB);
for j D 1 to kqueriesk do

Initialize state s0 using ejs and rjq ;
for t D 0 to k � 1 do

Sample action a � pRt � pEt ;
Calculate hRt and hHt ;
Observe state stC1;
if a is terminate edge then

break;
end if

end for
Obtain set �j D f.r1; r2; : : : ; rk/; ek ; phgI
Calculate R D Rr CRh;
Update � using
r�J.�/ D r�

Pk
tD1R.sk jes ; rq/ log�� .at jst /I

Update Rr using Algorithm 1 with set �j ;
end for
Obtain set � D f�1; �2; : : : ; �kquerieskg;
Update Rh using Algorithm 2 with �;

end for
Output: Agent�
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4 Experiment

4.1 Experiment setup

(1) Dataset
We evaluate our proposed AInvR on five appropriately

difficult benchmark datasets: FB15k-237[52],
WN18RR[40], CoDEx-S, CoDEx-M, and CoDEx-
L[53]. Table 1 shows the dataset statistics.

(2) Baseline
We compare our experiments with other reproducible

baselines for KGR, both the embedding models
ComplEx[19], ConvE[40], QuatE[54], and the multi-hop
approaches Neural-LP[42], AnyBURL[26], RNNLogic[55],
MINERVA[29], Multi-hop[30], RuleGuider[34], and
RARL[35].

(3) Experimental setup
During evaluation, for each test edge .es; rq; eo/, we

mask the tail entity and compute the query .es; rq; ‹/
through AInvR search by beam search. Two popular
evaluation metrics are used to evaluate the ranks from
prediction, including Hit@N with cut-off values N D 1
and 10, and Mean Reciprocal Rank (MRR)[18].

Hit@1 corresponds to the correct rate of the object
entity with the highest prediction probability. Hit@10
is the accuracy of the top ten predictions. MRR is the

Table 1 Datasets statistics used in the experiments.

Dataset Number of
Entities

Number of
Relations

Number of Triples
Train Valid Test

FB15k-237 14 541 237 272 115 17 535 20 466
WN18RR 40 943 11 86 835 3034 3034
CoDEx-S 2034 42 32 888 1827 1828
CoDEx-M 17 050 51 185 584 10 310 10 311
CoDEx-L 77 951 69 551 193 30 622 30 622

average reciprocal of the first ranking of correct entities.
(4) Hyperparameter
We define the dimension of entity, relation, and

historical encoding to 200. During the training steps
of the reasoning process, the agent makes a maximum
of 3-hops per reasoning. In the reward learning
process, we set 
r D 1000, �r D 10%, and �h is in
the interval Œ0; 300 000�. See Appendix A for detailed
hyperparameters settings.

4.2 Result

Tables 2 and 3 list the experimental results on multiple
datasets. We observe that the AInvR obtains better
performance on most metrics across the five benchmarks.

Table 2 Experimental results on FB15k-237 and WN18RR.
The best score of multi-hop approaches are bolded and the
best score of embeddings are underlined. (%)

Method
FB15k-237 WN18RR

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR
Neural-LP 16.6 34.8 22.7 37.6 65.7 46.3
AnyBURL 26.9 52.0 – 42.9 53.7 –

RNNLogic (w/o emb.) 17.5 36.3 23.8 41.4 51.9 45.1
MINERVA 21.7 45.6 29.3 41.3 51.3 44.8

Multi-Hop (ComplEx) 32.9 54.4 39.3 42.5 52.6 46.1
Multi-Hop (ConvE) 32.7 56.4 40.7 41.8 51.7 45.0

RuleGuider (ComplEx) 31.3 56.4 39.5 44.3 55.5 48.0
RuleGuider (ConvE) 31.6 57.4 40.8 42.2 53.6 46.0

RARL – – – 44.2 53.3 46.9
AInvR (ComplEx) 30.2 56.8 39.2 45.8 56.9 49.6

AInvR (ConvE) 32.1 58.4 40.5 44.0 53.1 45.8
DistMult 32.4 60.0 41.7 35.7 38.4 36.7
ComplEx 32.8 61.6 42.5 41.8 48.0 43.7

ConvE 34.1 62.2 43.5 40.3 54.0 44.9
RotateE 32.2 61.6 42.2 42.2 54.1 46.4
QuatE 33.1 62.5 43.0 45.2 58.2 49.9

Table 3 Experimental results on CoDEx-S, CoDEx-M, and CoDEx-L. The best scores of multi-hop approaches are bolded and
the best scores of embeddings are underlined.

(%)

Method
CoDEx-S CoDEx-M CoDEx-L

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR
AnyBURL 33.6 61.6 – 22.9 42.4 – 23.0 42.4 –

RNNLogic(w/o emb.) 19.7 50.4 30.2 15.1 32.8 21.1 – – –
Multi-Hop(ComplEx) 37.4 75.2 50.1 34.1 66.9 43.7 37.6 65.7 47.0
RuleGuider(ComplEx) 35.6 78.1 49.6 32.2 64.8 42.5 33.2 59.4 42.1

RuleGuider(ConvE) 38.7 79.6 52.5 34.3 69.2 46.2 35.1 62.2 46.0
AInvR(ComplEx) 38.9 79.5 52.1 34.5 68.7 46.0 35.6 66.2 45.9

AInvR(ConvE) 40.0 80.5 54.0 36.1 70.8 47.8 36.7 68.0 47.3
DistMult 47.2 82.6 59.6 40.7 71.4 51.3 39.4 69.7 49.8
ComplEx 46.3 67.0 59.4 43.4 75.1 54.4 41.8 70.1 51.6

ConvE 48.6 85.8 61.4 43.7 75.4 54.7 43.9 72.3 53.7
QuatE 42.4 86.1 56.8 40.6 75.4 52.3 38.1 69.4 48.7
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On FB15k-237, our model achieves the best result
in Hit@10 and the suboptimal result in MRR. On
WN18RR, our model performs best on Hit@1, Hit@10,
and MRR among walk-based models, but Hit@10 is
lower than the rule-based approach. On CoDEx-S and
CoDEx-M, our model outperforms other baselines in
terms of Hit@1, Hit@10, and MRR. On CoDEx-L, our
model achieves the best result in terms of Hit@10 and
MRR. Moreover, to overall compare the AInvR with
other state-of-the-art models in the same experimental
conditions, we add the reverse edge in KGs to train and
test the agent. The experimental detail and results are
shown in Appendix B.

During the tuning process of discount factor �h and
�r , we find that the agent is more dependent on the
rule guidance on datasets with fewer relation types
(WN18RR and CoDEx). Conversely, although rules
are still helpful, the over introduction of rule rewards on
dataset with complex relation types (FB15k-237) lead to
performance degradation.

The highest prediction probability (Hit@1) of our
model performs suboptimally on large KGs (FB15k-237
and CoDEx-L). One potential reason is that there are
more missing facts in large KGs. Part of missing facts
are extracted into IKB along with negative facts, which
affect the effectiveness of IKB.

Walk-based methods show advantages when the
relation hierarchy is obvious. The experimental results of
comprehensive benchmarks (CoDEx-S, CoDEx-M, and
CoDEx-L) support this argument. In contrast to FB15k-
237, CoDEx is more suited to evaluate the effectiveness
of models learning non-frequency relation patterns[53]. It
can be found that walk-based models show astonishingly
excellent performance on CoDEx compared to rule-
based methods, especially in ultra-large-scale knowledge
graph (CoDEx-L). The conclusion is that the walk-based
models are more sensitive to non-frequency relations,
particularly when the amount of entities is huge, walk-
based models show more powerful reasoning ability than
others. We consider that it is because the actions inferred
by the agent are limited by the action space in the current
state, which is mostly miniature, resulting in simpler
reasoning.

Note that, 25 percents of the facts in the WN18RR test
set cannot be reached within 3-hops, even if the reverse
relations are added to KG. Conversely, In FB15k-237
and CoDEx, less than 0.3% of the facts are inaccessible.
We also prove that the difference between KGE and walk-
based methods shown on WN18RR in Appendix C.

4.3 Ablation analysis

Separately, we respectively train a CRB-only agent and
an IKB-only agent to verify the effectiveness of the two
adaptive components. Their MRR scores on FB15k-
237, WN18RR, CoDEx-S, and CoDEx-M are shown in
Table 4.

We observe that freeze IKB or CRB performs worse
than the original model, this result supports the validity
of the two components from our model. In general,
except for WN18RR, deleting IKB cause more serious
performance degradation. In other words, the rule
rewards in WN18RR provide a more effective boost
than other benchmarks. This is because the reasoning of
the agent in WN18RR is more dependent on rules, as we
mentioned earlier.

4.4 Rewards comparision

To study the impact of the rule update algorithm
proposed by our adaptive approach, we compare
the rule rewards between RuleGuider[34] and AInvR.
AnyBURL[26] is an efficient rules extraction model,
which is the rule reward function used in RuleGuider.
Table 5 shows the comparison of the rules from other
pre-trained methods or our model. Table 6 shows a
difference of rules from the heuristic approach and
AInvR. Obviously, pre-training does not show enough
ability to promote path searching. The rule reward
learning mechanism expands multifarious paths for walk-
based reasoning, which further enhance the reasoning
performance. The average confidence of AnyBURL’s
rules decreases with the number of extractions because
many low-scoring rules are mixed in. Obviously, AInvR
provides higher quality rules. The reason is that we only

Table 4 Ablation study results (MRR) on FB15k-237,
WN18RR, CoDEx-S, and CoDEx-M. Best scores are bolded
in each category.

(%)
Component FB15k-237 WN18RR CoDEx-S CoDEx-M

AInvR 39.2 49.6 52.1 46.0
Only IKB 39.0 48.5 50.5 45.8
Only CRB 38.8 48.7 49.7 43.7

Table 5 Comparison of rule number and average confidence
extracted from AInvR and rule-based reasoning methods.

Approach
Rule number Average confidence

FB15k-237 WN18RR FB15k-237 WN18RR
AnyBURL(10 ms) 4659 218 0.229 0.086
AnyBURL(100 ms) 19 166 424 0.189 0.082
AnyBURL(1000 ms) 51 873 646 0.164 0.069

AInvR 96 833 1664 0.517 0.265
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Table 6 Example of rules extracted from FB15k-237 using AnyBURL and AInvR, bolded are rules that are only extracted by
AInvR.

Approach Rule Relation Confidence

AnyBURL

LegislativeSessions! LegislativeSessions! DistrictRepresented 0.560
Religion District represented 0.224
DistrictRepresented 0.116
Crewmember 0.233
FilmReleaseDistributionMedium FilmReleaseRegion 0.170
FilmsDistributed! Film! FilmReleaseRegion 0.223

AInvR

LegislativeSessions! LegislativeSessions! DistrictRepresented 0.153
Religion 0.178
DistrictRepresented District represented 0.878
DistrictRepresented! Country! Contains 0.104
DistrictRepresented! FirstLevelDivisionOf! Countryinv 0.142
Crewmember 0.672
FilmReleaseDistributionMedium 0.648
FilmsDistributed! Film! FilmReleaseRegion FilmReleaseRegion 0.184
Titles! CountryOfOrigin 0.761
DubbingPerformances! Actor! Nationality 0.750
NominatedFor! Country 0.434

keep rules with the highest exploration and exploitation
during RB update, which guarantees the validity of the
rules.

Besides, we consider the hit reward learning
mechanism to be similar to the principle of negative
sampling. To understand the contribution of the
hit reward learning mechanism which is different
from negative sampling, we make the corresponding
experiment by using negative samples with hit reward
ph D �1 to guide the agent. We compare three types
of negative sampling strategies[56]: NegSamp, 1vsAll,
and KvsAll, and report the convergence curves of the
policy network of AInvR in Figs. 3 and 4. For WN18RR,
only KvsAll works as well as our strategy. But in
terms of stability, Kvsall is still not as good as our
strategy, as it shows a performance decline after several

rounds of training. For CoDEx-S, other strategies
are slightly less effective than our mechanics. In
general, the negative sampling strategies may lead to
sparse reward signals or excessive negative feedback to
degrade reasoning performance. As our method suggests,
designing negative rewards with the policy sampling and
reward dropout can avoid the problems effectively.

5 Conclusion

In this paper, we propose an adaptive inverse
reinforcement learning framework AInvR to address
the issue of sparse and inaccurate rewards in walk-
based reasoning. Our approach learns policy and
rewards alternately via two reward learning mechanisms.
Specifically, in the rule reward learning process, the rule
rewards of both existing and unknown rules are learned

Fig. 3 Convergence rate of reasoning success ratio on WN18RR comparing with negative sampling.
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Fig. 4 Convergence rate of reasoning success ratio on CoDEx-S comparing with negative sampling.

based on the agent’s inference trajectories, making the
agent to counter missing and spurious paths. Meanwhile,
the hit reward learning mechanism captures the agent’s
sampling strategy to offer over-rewarded object entities,
and generate negative samples to balance incorrect
rewards. Furthermore, we also propose a reward dropout
mechanism to explore the diversity of paths and mitigate
the influence of missing facts. Our model significantly
improves the effectiveness and confidence of rewards.
Experimental results on several benchmark knowledge
graphs demonstrate that our method is more effective
than state-of-the-art walk-based approaches.

In future work, we would like to further investigate
the impact of missing facts and address the issues caused
by complex rules.

Appendix
A Experimental detail

A1 Extra trick

(1) Pre-trained embedding
It is a consensus that pre-trained embeddings can

improve the performance of the multi-hop reasoning.
For comparison purposes, we leverage ComplEx[19] and
ConvE[40] to pre-train the embedding and reward shaping
function f .es; rq; eo/. For each KGs, we set the entity
dimension and relation dimension to 200, the training
epoch to 1000, the batch size to 512, and the learning rate
to 0.003.

(2) Reverse relation
Some inference paths require reverse relations. For

example, given a rule Lebron James
plays in
�! NBA

part ofrev
�!

Cleveland Cavaliers, which requires reverse relations part
of rev to guide the agent to the object entity. Adding reverse
relations also helps the agent search more edges that
cannot be explored in the original KG due to the limitation

of the number of hops.
(3) Beam search
We perform beam search reasoning to infers multiple

paths and object entities at once inference process. The
agent finally outputs the predicted paths and entities with
the maximum score of each beam. This method has proven
to be more effective than greedy search.

(4) Action dropout
To enforce effective exploration of paths, we leverage

the action dropout mechanism[30] to randomly blocks the
action edges of the agent’s walking, and replace these
edges with a random action extracted from the current
action space.

A2 Hyperparameters setting

Part of the hyperparameters used in our model refer to the
hyperparameters’ settings of previous methods. Besides,
some hyperparameters that have a significant impact on
performance are searched again. The search bounds are
shown in Table A1.

The hyperparameters setting of best models on the five
benchmark datasets are presented in Table A2.

B Additional Experiment

Part of models such as M-walk[31] and DRUM[57],

Table A1 Hyperparameters search bound.
Hyperparameter Search bound

Embedding dropout rate Œ0:1; 0:3�

Hidden layer dropout rate Œ0:1; 0:3�

Action dropout rate Œ0:1; 0:5�

Batch size f128; 256; 512g

Number of hops f2; 3g

Discount factor �h f0:1; 0:3; 0:5; 0:7; 0:9g

Discount factor �r f0:1; 0:3; 0:5; 0:7; 0:9g

IKB update interval 
h Œ0; 300 000�

Fact update number �h f5; 10; 15; 20; 25; 30g

CRB update ratio �r f0; 0:1; 0:2g
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Table A2 Hyperparameters used in AInvR.
Hyperparameter FB15k-237 WN18RR CoDEx-S CoDEx-M CoDEx-L
Entity dimension 200 200 200 200 200

Relation dimension 200 200 200 200 200
History dimension 200 200 200 200 200

Regularization weight 0.02 0.0 0.02 0.02 0.02
Embedding dropout rate 0.3 0.3 0.3 0.3 0.3

Hidden layer dropout rate 0.1 0.1 0.1 0.1 0.1
Action dropout rate 0.5 0.5 0.5 0.5 0.5

Rule reward dropout ratio 0.1 0.1 0.1 0.1 0.1
Fact reward dropout ratio 0.5 0.5 0.5 0.5 0.5

Bandwidth 400 500 400 400 400
Batch size 128 256 128 128 128

Learning rate 0.0015 0.0010 0.0010 0.0010 0.0015
Number of hops 3 3 3 3 3
Beam search size 128 128 128 128 128
Training epoch 100 100 50 100 50

Discount factor �r 0.1 0.5 0.3 0.1 0.3
Discount factor �h 0.9 0.5 0.7 0.9 0.7

IKB update interval 
h 20 10 10 20 20
Fact update number �h 100 000 40 000 30 000 180 000 300 000

Rule sampling number 
r 1000 1000 1000 1000 1000
CRB update ratio �r 0.1 0.1 0.1 0.2 0.1

RNNLogic demonstrate excellent performance for KGR.
However, those approaches consider a different experience
setting for testing and training. To overall compare with
the state-of-the-art approaches, we conduct a comparative
experiment under the same experimental setting. To be
specific, for each triplet .es; rq; et / in train set, we reverse
the triplet to .et ; r

inv
q ; es/ and add it to the KG. The

embeddings and agent are trained by the KG with reverse
triples. For each triplet .es; rq; et / in test set and valid
set, we force the agent to reason two queries .es; rq; ‹/ and

.et ; r
inv
q ; ‹/. The experimental results on FB15k-237 and

WN18RR are shown in Table A3.

C Dataset analysis

FB15k-237 is a sub dataset of FB15k[18] extracted from
Freebase, where inverse relations are deleted. WN18RR is
a subset of WN18[18] with the inverse relations removed,
and WN18 is a dataset from WordNet. CoDEx-S, CoDEx-
M and CoDEx-L are three datasets containing different
amounts of facts taken from Wikipedia and Wikidata.

Table A3 Comparison on FB15k-237 and WN18RR with RNNLogic, M-walk, etc. The best scores of multi-hop approaches are
bolded and the best scores of embeddings are underlined.

(%)

Method
FB15k-237 WN18RR

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR
NeuralLP 17.3 36.1 23.7 36.8 40.8 38.1
DRUM 17.4 36.4 23.8 36.9 41.0 38.2
NLIL – 32.4 25.0 – – –

M-Walk 16.5 – 23.2 41.4 – 43.7
RNNLogic(w/o emb.) 20.8 44.5 28.8 41.4 53.1 45.5
RNNLogic(RotateE) 25.2 53.0 34.4 44.6 55.8 48.3

AInvR(ComplEx) 28.0 53.1 36.3 42.0 51.7 45.1
AInvR(ConvE) 28.2 55.4 37.3 39.1 47.7 41.9

DisMult 15.5 41.9 24.1 39.0 49.0 43.0
ComplEX 15.8 42.8 24.7 41.0 51.0 44.0

ConvE 23.7 50.1 32.5 40.0 52.0 43.0
RotateE 20.5 48.0 29.7 42.2 56.5 47.0
QuatE 27.1 55.6 36.6 43.6 57.2 48.2
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Note that, the prediction tasks are more challenging for
knowledge graph reasoning with more diversity of facts.

We analyze the number of hops that can be reached
using multi-hop reasoning in test sets of five benchmark
knowledge graphs, the results are shown in Table A4.
In the test sets of FB15k-237 and CoDEx, almost all
facts can be reasoned by the agent within 3-hops, which
proves that their verification is friendly for multi-hop
reasoning. Conversely, at least 25 percents of the facts
in WN18RR’s test set show non-interpretability within 3-
hops, and still 15 percents within 5-hops. Note that, we
already complement the reverse relation in those KG.

We compare the differences between walk-based model
and embedding model in terms of the inferential and non-
inferential test sets. Facts that can be inferred within 3-
hops are classified into the inferential test sets and others
are classified into the non-inferential test sets. The results
are shown in Table A5.
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