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An Online Website Fingerprinting Defense Based on the
Non-Targeted Adversarial Patch

Xiaodan Gu�, Bingchen Song, Wei Lan, and Ming Yang

Abstract: Website Fingerprinting (WF) attacks can extract side channel information from encrypted traffic to form a

fingerprint that identifies the victim’s destination website, even if traffic is sophisticatedly anonymized by Tor. Many

offline defenses have been proposed and claimed to have achieved good effectiveness. However, such work is more

of a theoretical optimization study than a technology that can be applied to real-time traffic in the practical scenario.

Because defenders generate optimized defense schemes only if the complete traffic traces are obtained. The

practicality and effectiveness are doubtful. In this paper, we provide an in-depth analysis of the difficulties faced in

porting existing offline defenses to the online scenarios. And then the online WF defense based on the non-targeted

adversarial patch is proposed. To reduce the overhead, we use the Gradient-weighted Class Activation Mapping

(Grad-CAM) algorithm to identify critical segments that have high contribution to the classification. In addition, we

optimize the adversarial patch generation process by splitting patches and limiting the values, so that the pre-trained

patches can be injected and discarded in real-time traffic. Extensive experiments are carried out to evaluate the

effectiveness of our defense. When bandwidth overhead is set to 20%, the accuracies of the two state-of-the-art

attacks, DF and Var-CNN, drop to 10.83% and 15.49%, respectively. Furthermore, we implement the real-time patch

traffic injection based on WFPadTools framework in the online scenario, and achieve a defense accuracy of 95.50%

with 12.57% time overhead.
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1 Introduction

Currently, web has become one of the most important
applications of the Internet. According to the statistics
as of May 2023[1], the number of global websites
and users have reached 1.12 billion and 5.18 billion,
respectively. Web transmits a large amount of users’
private information, such as social information, bank
card numbers, shopping preferences, etc. Therefore,
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when users visit websites, they are increasingly
inclined to use some privacy enhancing technologies to
protect the communication contents and communication
relationships. However, even when using sophisticated
anonymous communication technologies like Tor[2],
which uses multiple layers of encryption, packet fixed-
length encapsulation, and the multi-hop forwarding
mechanism for multiple obfuscations, there is still a risk
of privacy disclosure. For example, an attacker can use
the Website Fingerprinting (WF) attacks to identify the
sites visited by a user. In the WF attack model as shown
in Fig. 1, the attacker has access to the link between the
client and Tor entry node in a passive manner, which
means that he can only record the network packets rather
than modify, delay, drop, or decrypt them. The attacker
imitates the victim to browse the target sites and extracts
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Fig. 1 WF threat model.

traffic features to form fingerprints through side-channel
analysis techniques. Then a classifier is trained to predict
a victim’s activity. A large amount of work has been
proposed to demonstrate the effectiveness[3–6].

In order to further enhance privacy, researchers
propose various WF defenses[7–10], including injecting
dummy packets[7] in the traffic sequence, loading
background pages during the web access[8], sending
packets at a constant rate and fixed size[9], and so
on. They hope to use these methods to disrupt traffic
characteristics. However, such defenses are either
difficult to deploy in practice because of the excessive
overhead or failed against the deep learning-based WF
attacks[10]. With the continuous development of the
adversarial sample techniques[11], they are introduced in
WF defenses. However, such defenses require complete
traffic traces to construct adversarial samples, and thus
can only perform offline calculations. It makes these
methods more of a theoretical optimization study and
difficult to deploy effectively in practical scenarios.

In this paper, we propose an online WF defense
based on the non-targeted adversarial patch. The main
contributions of our work are as follows:
�We provide an in-depth analysis of the difficulties

faced in porting existing offline defenses to the online
scenarios.
�We propose an online WF defense based on the non-

targeted adversarial patch. The Gradient-weighted Class
Activation Mapping (Grad-CAM) algorithm is utilized
to determine the critical segments. We also optimize the
generation of the non-targeted adversarial patch.
� We implement the real-time injection of the

pre-trained adversarial patch based on WFPadTools
framework. By carrying out extensive experiments, we
demonstrate the practicality and effectiveness of our
attack.

We organize the rest of the paper as follows. We
introduce related work in Section 2 and describe the
problem in Section 3. We propose our online defense

in Section 4. We evaluate our defense extensively in
Section 5. Finally, we conclude our work in Section 6.

2 Related Work

2.1 WF attack

According to whether manual feature extraction is
required, we can divide the existing WF attacks
into traditional machine learning based methods and
deep learning-based methods. The former use expert
knowledge to extract effective features from network
anonymous traffic to train various classifiers, such as
objects’ sizes, packet sizes, packet ordering, inter-arrival
times, and their statistical values[8, 12–16]. However, with
the continuous development of anonymity techniques
and defense methods, many features are no longer
applicable to current WF attacks. It is difficult to
extract new effective features, and attack accuracy
cannot be further improved. In recent years, the deep
learning model has become a key technology in many
fields due to its effectiveness. Researchers have also
applied it to WF attacks, and many effective attacks
are emerged. Sirinam et al.[10] proposed the Deep
Fingerprinting (DF) attack, where they created a deeper
and more complex Convolutional Neural Network
(CNN) architecture by repeatedly stacking basic blocks
consisting of the convolution, pooling, and activation
layers. They experimented on a 95�1000 traffic sample
dataset and achieved 98% accuracy in the closed world
scenario. Rahman et al.[4] believed that the inter-arrival
times can be used to improve the accuracy. They added
temporal features of the burst traffic and use the same
CNN architecture. Bhat et al.[6] suggested that packet
sequences had more complex global relationships than
images, and the beginning packets might have a larger
ripple effect. They proposed the Var-CNN attack to
capture features by using dilated causal convolution. The
causal convolution can capture the contextual ordering
features, while dilation convolution is able to obtain a
large receptive field. They combined manual feature
extraction as well as automatic feature extraction to
improve the recognition accuracy. They achieved an
accuracy of 97.8% on a small dataset of 100�100 traces.

2.2 WF defense

The WF defenses usually modify users’ traffic to
obfuscate traffic patterns and reduce the classification
accuracy. They can be roughly divided as follows:
traffic regularization based defenses, traffic camouflage
based defenses, traffic obfuscation based defenses, and
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adversarial defenses.
� Traffic regularization based defenses[9, 17]. These

defenses shape the network traffic of all target websites
into the same pattern to severely limit the feature
space by adding constraints to the behaviors of sending
and receiving packets. Dyer et al.[17] proposed the
Buffered Fixed Length Obfuscation (BUFLO) defense
method, which regularized traffic by sending packets
at a constant rate and fixed size in both directions,
and continuously sent dummy packets for a fixed
period after the communication ends. Their defense
reduced the accuracy of K Nearest Neighbors (KNN)[16]

and K-Fingerprinting (K-FP)[3] methods to 10% and
21%, respectively. Although traffic regularization based
defenses can largely reduce the performance of WF
attacks, the resulting time and data overhead are too
large to apply them in practical scenarios.
� Traffic camouflage based defense[18, 19]. Such

methods disguise network traffic as target website
by injecting dummy packets or delays to reduce
the recognition accuracy of the classifier. Wang and
Goldberg[18] proposed an efficient WF defense called
Walkie-Talkie. It modified the communication mode
to half-duplex to generate an easy-to-operate traffic
sequence, and then decomposed the traffic sequence into
a series of bursts. For each target page, they selected
another decoy page and constructed a hyper-sequence
for two pages to fool the classifier.
� Traffic obfuscation based defenses[7, 20]. These

defenses randomly inject dummy packets or delays to
make users generate different traffic patterns each time
they visit the target website. Juarez et al.[7] proposed
an adaptive defense called WTF-PAD, which aimed to
disrupt the burst characteristics. It could detect if there
was a large delay between consecutive bursts and used
an adaptive algorithm to inject dummy packets to fill the
gaps. This defense increased the data overhead by 54%,
while the time overhead was 0. In addition, some server-
side defenses were proposed. Lin et al.[20] studied the
new mechanism Server Push of HTTP 2.0. They found
that if the server was set to actively push all objects once
an HTTP request is received, the accuracy of the DF[10]

attack dropped to 74%.
� Adversarial defenses[21, 22]. For deep learning

based WF attacks, researchers use the idea of adversarial
attack to cause misclassification of the classifiers, by
injecting tiny and adversarial perturbations into traffic.
Hou et al.[21] proposed a defense WF-GAN based on

Generative Adversarial Networks (GAN) network to
generate adversarial samples. They divided the sites
into the source site set and the target site set, and
trained the generator to inject perturbations to the source
sites’ traffic, making its characteristics similar to the
target sites. The experimental results showed that the
WF-GAN defense made the accuracy of DF down to
10%. Gong et al.[22] proposed Surakav, which made
use of a GAN to generate different sending patterns and
regulated buffered data according to the sampled patterns.
Although the adversarial defenses can greatly reduce
the performance of WF attacks with lower bandwidth
overhead, they need to generate adversarial samples
based on the complete traffic traces, which makes less
practicality and effectiveness in the online scenario.

3 Problem

3.1 Problem analysis

Given the great success of deep learning models in
WF attacks, the state-of-the-art defenses are almost
focused on how to fool models with traffic obfuscation.
They always inject random dummy packets and delays
into the original flows to change the traffic patterns.
However, such approaches need to train perturbation
models based on the target websites’ complete traffic
traces offline, resulting in low possibility of being put
into practice. When we explore the practicalities of
online WF defenses, two problems are faced as follows:
� There is no guarantee that the offline optimal

perturbations will be effective in the online scenario.
In the offline scenario, WF defenders calculate the

optimal perturbations based on the complete historical
traffic traces and inject the corresponding dummy traffic
into the dataset. However, due to network jitter, site
updates, and other factors, the generated network traffic
changes in sequence patterns even when the same web
page is accessed repeatedly. As shown in Fig. 2, the
packet sequences generated by two visits on Site W
has changed. In addition, injected dummy traffic may
trigger packet loss or data retransmission, deviating the
obfuscated traffic pattern from the theoretical model.
So, it is likely to lead to poor effectiveness of applying
historical perturbations to the real-time traffic.
� Defenders can not foresee the sequence pattern

of upcoming traffic.
Assuming that an optimal perturbation strategy is

currently in place, i.e., we know what to disguise the
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Fig. 2 Packet sequences generated by two visits on Site W.

traffic pattern as, the situation is still not promising.
This is because in the online scenario, as shown in
Fig. 3, the defender can only observe the sequence of
packets generated before the current time point and
cannot foresee the upcoming network traffic pattern,
which leads to an inability to efficiently perform the
injection of the dummy traffic, making the defense less
effective.

3.2 Defense model

To improve the feasibility of the online WF defense,
we propose a defense model as shown in Fig. 4. The
defender can obtain historical traffic of target sites
for training. He also has white-box access to the
classification model used by the attacker, including
the architecture and parameters. For the sake of traffic
obfuscation in real-time, the defender needs to control
both the client and bridge node, so that he can inject or
remove dummy packets and delays.

4 Methodology

In this section, we first present the basic idea of our
online WF defense, then introduce each step of the
workflow in detail.

4.1 Basic idea

By analyzing the problems faced by online WF defenses,
we can conclude that there are two requirements for
perturbations of original traffic.
� The traffic perturbations should be robust against

changes in original traffic sequences of target websites.
� The traffic perturbations should preferably be

position-independent, meaning that the defender can

inject dummy packets and delays at any time and any
sequence position without significantly affecting the
defense effect.

We choose to use the adversarial patch technology[23]

to fix the aforementioned two problems. Adversarial
patch technology was initially proposed by researchers
in the field of image processing and belongs to one
type of adversarial attacks. However, unlike traditional
adversarial perturbation methods, defenders are not
limited to injecting tiny and imperceptible perturbations
that are specific to the target image sample. Instead, they
focus on generating a universal adversarial patch. Once
the patch is generated, it can be placed on any location of
any image sample, resulting in the classifier predicting
the desired class. The fundamental reason is that the
added patch has higher discriminability compared to the
original image sample. In other words, the pattern of the
adversarial patch is easier for the classifier to learn and
identify, resulting in scrambled images being wrongly
classified into the category to which the adversarial patch
belongs.

To obtain the trained patch Padv, the defender first
determines the target class and then optimizes the
objective function as shown in Eq. (1).
PadvD arg min

p
Ev2V;l2LŒloss .F .G .p; v; l//; yt /�

(1)
where V is the image dataset, L is the injection location,
and G is the injection function that can be used to inject
the patch p into image v at location l. F is the classifier
used to predict the classes of images, and the expectation
E is used to improve the trained patch’s robustness
regardless of what is in the background. By minimizing

Site W

Time

Complete traffic trace of Site W

Upcoming traffic
Current time

Fig. 3 Traffic trace observed by the defender.
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Fig. 4 Defense model.

the loss between the output of F and the target class yt

for all images in V, the trained patchPadv can be effective
to fool the classification model.

From the above analysis, it is clear that the trained
adversarial patch is independent of input images,
meaning that no matter what image is inputted, it
will result in incorrect classification. Therefore, the
adversarial patch technique may have better robustness
against different traffic sequences generated from the
same site, allowing defenders to pre-calculate patches
without knowing the input traffic traces. Furthermore,
the patch can be injected at any position, which satisfies
another requirement for online WF defenses.

4.2 Overview of the online WF defense

We propose an online WF defense based on non-targeted
adversarial patches and the overall workflow can be
divided into three steps.
� Step 1: Identification of critical segments. We

divide the traffic sequence generated by the target
website into multiple segments and calculate the
contribution of each segment to the classification result.
And the segments with higher contribution are called
critical segments. Identifying the key areas can help us
to find appropriate injection positions and reduce the
data overhead.
� Step 2: Generation of the adversarial patch.

By analyzing the differences between online and
offline defense scenarios, we improve the traffic
adversarial patch generation method by introducing
several constraints.
� Step 3: Online injection of the adversarial patch.

We make a Tor plug-in based on the WFPadTools[24]

framework to inject the trained patch into the real-time
traffic of the target site.

4.3 Identification of critical segments

In the field of image processing, the adversarial patch
can be position-independent because it ensures that the
generated patch is sufficiently distinguishable compared
to the original image samples. When we apply it to the

network traffic, a high bandwidth and latency overhead
is required to improve the discriminability of the traffic
patch. To reduce the overhead, we attempt to decrease
the discriminability of the original traffic trace rather
than increasing that of the traffic patch, i.e., to destroy
the sequence pattern of the critical traffic segments.

We build a classifier using the convolutional neural
network, which is the most typical deep learning
recognition model in existing work. The classification
model consists of three convolutional groups, each
of which includes a convolutional layer, a batch
normalization layer, and an activation layer. Finally, a
fully connected layer is used to output the result. This
model identifies the websites by sliding the convolutional
kernel to match specific sequence patterns of traffic. So
we utilize the Grad-CAM technique[25] to measure the
contribution degree to the model’s prediction of each
segment in the traffic sequence, as shown in Fig. 5.

We first input the network packet sequence into
the convolutional neural network to obtain the output
(denoted by A) of the last convolutional layer and the
score of the target class label c without softmax (denoted
by yc). A contains N feature maps, each of size Z D
1 � I , and Ai

k
denotes the value of the i-th row in the

k-th feature map. Then the gradient of each value in
the k-th feature map (denoted by gc

k
) is calculated using

back propagation, and we can obtain the weight value
of the k-th feature map by averaging all gradient values,
as shown in Eqs. (2) and (3). This process is equivalent
to performing a global average pooling operation on all
feature maps.

gc
k D

@yc

@Ai
k

(2)

ac
k D

1

Z

X
i

gc
k (3)

Once the weights of all feature maps are obtained, the
contribution degree of each point (denoted by f c) can
be calculated by multiplying Ak with the corresponding
weight ac

k
and then adding them together.

f c
D

X
k

ac
kAk (4)

Then the ReLU operation is performed on the f c to
obtain Lc , which keeps out only the points that have
a positive effect on the category c. Moreover, Lc is
divided into several groups, and the group contribution
degree is obtained by summing up values of all points in
the group. Finally, by comparing the group contribution
degrees, we can identify the critical traffic segments.



Xiaodan Gu et al.: An Online Website Fingerprinting Defense Based on the Non-targeted : : : 1153

Packet 

sequence
CNN

W1 W2 ... ... ... Wn

Output of the last convolutional layer

Fully connected 

layer

c

Score of the target 

class label

ReLU

A

y

Back 

propagation

Fig. 5 Identification of critical segments.

4.4 Generation of the adversarial patch

The adversarial image patches are injected by overlaying
the patch on the original image in the form of pixel
value replacement. However, all network packets are
encrypted. If we replace the packets, website access
errors will occur. As a result, we can inject the traffic
patch only by delaying the original packets and inserting
dummy cells, as shown in Fig. 6.

The traditional adversarial patch is usually a complete
image that has been added to any original samples.
However, in the online scenario, if we continuously
delay original packets and insert many dummy packets
at a certain position, it will cause severe packet loss
and retransmissions. Therefore, we split the traffic
patch into smaller patch blocks and inject them at

Adversarial  

patch

Time

Fig. 6 Injection method of the adversarial patch.

different positions so that they can perturb patterns of
the corresponding segments, as shown in Fig. 7.

Furthermore, we also need to make some restrictions
on the patch generation process. Since the anonymous
packets are represented as C1 or �1 depending on the
upstream and downstream directions, the patch element
is also assignedC1 or �1. In addition, the operation of
patch injection needs to be done on both the Tor client
and bridge node in the online scenario. In our design,
we obfuscate traffic from the client’s point of view, and
the client needs to send control messages to instruct
the bridge node to perform operations. Before patch
injection, the client creates a handshake with the bridge
and then sends patch information. The corresponding
first packet from the bridge is considered to be the
start of the patch traffic. So, the first element of each
small patch block is set to �1. Similarly, at the end of
the patch injection, the client needs to send a control
message to inform the end of injection. Therefore, the
last element of each small patch block needs to be set to
C1. The adversarial traffic patch is trained to optimize
the objective function
Padv D arg max

p
Ex2X Œloss.F. .p; x; l//; yt /� (5)

Adversarial  patch

Time

Patch 

splitting

Fig. 7 Process of patch splitting.



1154 Tsinghua Science and Technology, December 2023, 28(6): 1148–1159

where X is the original traffic dataset, l is the critical
segment, and  is the injection function. F is the
classifier while yt indicates the class label. We use
cross-entropy as the loss function and maximize F’s
classification loss to update the traffic patch.

We summarize the generation of the adversarial traffic
patch in Algorithm 1. In each iteration, for each original
traffic trace, an adversarial patch P is injected at
the position S . Specifically, for each selected critical
segment, we randomly select a position within the
segment to inject a small patch block. Since there is
no guarantee that the small patch blocks will be injected
precisely to the specified positions in the online scenario,
the random selection method enhances robustness. Then
we calculate the loss value and back propagates it using
Stochastic Gradient Descent (SGD). To apply SGD, we
relax the restriction during the patch optimization by
allowing each element to be a continuous value between
Œ�1; 1�. When the optimization is finished, all elements
greater than 0 are set to C1 and the opposite are set to
�1. Finally, by continuously iterating, the adversarial
patches for each site are generated.

4.5 Injection of the adversarial patch

Once the adversarial patch is generated, we need to inject
it into the real-time packet sequence at the selected
positions. So, we make a Tor plug-in based on the
WFPadTools framework to implement the patch loading
and injection. WFPadTools provides the necessary
building modules for the development of link-padding
based WF strategies in Tor. It allows one side to

Algorithm 1 Adversarial patch generation algorithm
Input: Group contribution degree D, small patch block length

pblen, bandwidth overhead (in percentages) B , minimum
sequence length minseqlen, original traffic trace dataset Xw ,
iteration number T , and classifier F , and loss function Loss.

Output: Adversarial traffic patch P and injection position S.
1: Calculate the number of small patch blocks N D minseqlen�B

pblen
2: Initialize the adversarial patch P and split it into N small

patch blocks
3: Select top N critical segments and get the injection position
S D fs1; s2; : : : ; sN g

4: for EPOCH D 1 to T do
5: for x in Xw do
6: X  InsertPatch.x; P; S/
7: pre F.x/

8: Loss Loss.pre; yx/

9: Update P by Loss.backword()
10: end for
11: end for

inject dummy messages and discard them at the other
side. Furthermore, WFPadTools defines a new protocol
between the Tor protocol layer and TCP layer. The
message formats are shown in Figs. 8 and 9, where
data messages are used to transmit real data or dummy
data, and control messages are used to send control
information.

The length of the data message’s header is 5 bytes,
which consists of the Total Length field (2 bytes),
Payload Length field (2 bytes), and Flag field (1 byte).
The values of the Flag field are shown in Table 1. When
the Total Length is set to 514, the Payload Length is set
to 0, and the Flag is set to 1, it will generate a dummy
cell.

The control message contains the same header fields
as the data message, in addition to the Opcode and Args
fields, which allow the operation code and parameters
to be specified. We customize Opcode and Args to
implement the control commands between the client
and bridge node, and the specific parameter values are
shown in Table 2.

The adversarial patch injection process is shown in
Fig. 10. For both the client and bridge, they have two
states, the normal state and injection state. In the normal
state, both sides follow Tor’s communication process for
sending and receiving real data messages. Vice versa,
they delay and store real data in the buffer and send
padding cells. For instance, when a user initiates an
HTTP request for the target site, the Tor client in the
normal state first loads the corresponding pre-trained
adversarial patch. Then it records the direction of each

Total length
Payload 

length
Flag

Payload

opt

Padding

opt

2 bytes 2 bytes 1 byte
Up to MPU

Data header Payload

Fig. 8 Data message format.

Data
header

Opcode
Args

len

Args

(opt)

Payload

opt

5 bytes 1 byte 2 bytes
Up to MPU

PayloadControl header

Fig. 9 Control message format.

Table 1 Values of the Flag field.
Value Description

0 Real data
1 Padding data need to be dropped
2 Control information is stored in the payload
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Table 2 Values of the Opcode and Args fields.
Opcode Type and description Arg Direction

0 PADDING START (Indicate the beginning of the injection) The number of padding cells sent from the bridge Client! Brigde
1 PADDING STARTED (Response to PADDING START) – Bridge!Client
2 SEND PADDING (Send the padding data) The number of padding cells sent from the bridge Client! Brigde
3 PADDING END (Indicate the end of the injection) – Client! Brigde

Client BridgeRecord the  packet 
sequence

DATA

DATA

Injection 
position

PADDING_START, bi1

Real data are 
cached in the buffer

DATA, PADDING

SEND_PADDING, bij

DATA, PADDING

End of injection

Send data in the 
buffer

PADDING_END 

DATA

DATA, PADDING 

PADDING_STARTED

Real data are cached 
in the buffer

Send data in the 
buffer

bi1−1

bij −1

Fig. 10 Adversarial patch injection process.

packet sent or received to generate a real-time packet
sequence. When the i-th injection position is reached,
the client switches to the injection state. It caches
subsequent outgoing packets into the buffer, and send
the PADDING START message to the bridge, which
also indicates the padding number of the first burst
bi1 should be send from the bridge. Once the bridge
receives the PADDING START message, it changes to
the injection state and sends bi1 � 1 dummy cells plus
the PADDING STARTED message, which means the
first busrt traffic of the i-th small patch block has been
sent. Then the client continues to send dummy packets
according to the trained adversarial patch. When all the
traffic of the i -th small patch block is injected, the client
sends PADDING END message, switches to the normal
state, and then sends real data cached in the buffer. The
same operations are performed when the bridge receives
the PADDING END message. Now, the injection of
the i-th small patch block is completed. For each small
patch block, repeat the above operations. Finally the
adversarial patch can be successfully injected.

5 Evaluation
In this Section, we implement the proposed online WF

defense to evaluate the effectiveness and efficiency.

5.1 Experimental setup

To avoid interference from other traffic in the system,
we package the data collection program as a Docker
image and deployed it on 10 servers, and deploy 5
additional Tor bridge nodes. The server system is Ubuntu
18.04 with Linux kernel version 4.15.0-175, Docker
version 20.10.14, and Tor version 0.4.5.10. We use
the automation tool Selenium to launch TorBrowser
with the version 10.5.10 to simulate user’s website
access behavior. In addition, the collection program
will determine whether the webpage is successfully
accessed based on the HTTP status code. If the page is
successfully accessed, it will save the traffic sequence
and the screenshot.

Similar to previous work, we turn off cache. We
also disable some browser features which may generate
noise traffic, such as automatic updates and speculative
pre-connections. When deploying the defense policy
online, we modify the Onion Proxy (OP) and bridge’s
configuration in the Tor configuration file as shown in
Table 3 to use a custom plug-in in both sides.
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Table 3 OP and bridge’s configuration file.
Tor entity Torrc configuration file

OP

SocksPort 4997
Exitpolicy reject *:*
UseBridges 1
ClientTransportPlugin MLpatch exec
/wfpadtools/bin/obfsproxy n
–log-min-severity=debug n
–log-file=/root/mlpatch client/server.log n
managed
Bridge MLpatch 45.77.71.64:40535

Bridge

AssumeReachable 1
PublishServerDescriptor 0
Exitpolicy reject *:*
ORPort 4053
BridgeRelay 1
ServerTransportListenAddr MLPatch 0.0.0.0:40535
ServerTransportPlugin MLPatch exec /wfpadtools/
bin/obfsproxyn
–log-min-severity=debug n
–log-file=/root/mlpatch server/server.log n
managed

5.2 Data collection

We Select 100 most popular websites from the Alexa,
which ranks all sites in the Internet according to the
number of visitors, links, etc. For the domains of
different countries or regions of the same website,
we unify them, i.e., Google.com and Google.com.hk
are unified as Google.com. We generate two datasets
collected called Undefended traffic and Defended traffic,
which are shown in Table 4.

For Undefended traffic dataset, the collection program
visits 100 target websites respectively, 600 times each
and finally 60 000 traffic instances are collected. When
the collection is completed, the blank pages’ instances
were removed according to the screenshots, and then
the sites with insufficient numbers were supplemented.
Websites with insufficient instances will be revisited.
For Defended traffic dataset, we first deploy the online
defense policy and collect traffic data by visiting 100
target websites, each 100 times. It is important to note
that Defended traffic dataset is used as a test set for the
online WF defense.

5.3 Evaluation indicator

We propose 3 evaluation indicators as follows:

Table 4 Traffic trace dataset.
Name Size

Undefended traffic 100�600
Defended traffic 100�100

� Defense Accuracy (DACC). We use the defense
accuracy DACC to evaluate the defense capability of the
proposed method, which represents the probability that
the classifier misidentifies.

DACC D 1 � Accuracy (6)

� Bandwidth Overhead (BWOH). Bandwidth
overhead represents the additional data overhead caused
by the defense. Note that padding packets are dropped
on the bridge and do not affect the web server.

BWOH D
NP

NO

� 100% (7)

where NP is the number of dummy packages, and NO

is the number of original packets generated by the target
website.
� Time Overhead (TOH). The time overhead is

calculated as shown in Eq. (8). A large time overhead
may degrade the customer experience.

TOH D
TE

TO

� 100% (8)

where TE represents the additional time generated by
the defense, while TO is the time required for the normal
access to the target site.

5.4 Experimental result

For two datasets, we represent each instance as a time-
directional sequence with a fixed length of 5000 packets.
If some instance’s length is less than 5000, we fill 0 at the
end of the sequence. Conversely, truncate for sequences
longer than 5000.

5.4.1 Identification of critical segments
We use Undefended traffic dataset to identify the critical
segments of each site. Firstly, we use the Grad-CAM
method to generate the contribution degree of each point
in the traffic sequence. Then we divide the sequence
into 100 groups with the length of 50 packets, and
obtain the group contribution degrees. Take the site
chaturbate.com as an example, the visual heat map of its
group contribution degrees is shown in Fig. 11.

We can see that the contribution degrees of each group
are not exactly the same, and most critical segments
are located at the head and tail of the sequence, while
the middle region contributes less to the classification.

Fig. 11 Heat map of the group contribution degrees for
chaturbate.com.
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Therefore, when we perform the injection of the
adversarial patch, identifying critical segments helps
mislead the classifier.

5.4.2 Offline experiment results
We also use Undefended traffic dataset to perform offline
experiments. The dataset is divided into training set and
test set in the ratio of 5 to 1. Then we use the training
set to generate a traffic patch for each site. Finally, the
trained patches are applied to the test set to evaluate the
defense effectiveness.

In our method, there are two adjustable parameters,
which are the length of the small patch block pblen and
the bandwidth overhead BWOH. The former determines
the number of dummy packets for each critical segment,
and the latter determines the total number of dummy
packets. They all affect the defense effectiveness of the
adversarial patch. For the same bandwidth overhead, the
length of the small patch block is inversely proportional
to the number. Obviously, the longer the small patch
block length, the greater the impact on each critical
segment. And the greater the number of small patch
blocks, the greater the area of influence. It is worth
noting that the length of the small patch block should
not be too large, otherwise it will cause excessive delay
and generate problems such as packet loss and TCP
retransmission.

We set BWOH to 10%, 20%, and 30%, respectively,
and perform experiments with different small patch
block lengths. The results are shown in Fig. 12. We can
see that when BWOH is 30% and pblen is 30, the highest
DACC of 95.79% is achieved. When pblen exceeds 30,
DACC decreases as pblen increases. Therefore, it is
necessary to compromise BWOH and pblen to achieve a
higher DACC. In this paper pblen is set to 30.

Then we perform experiments to find the optimal value
of BWOH, and the results are shown in Fig. 13. We can

Fig. 12 DACC of different small patch lengths with different
bandwidth overheads.

Fig. 13 DACC with different values of BWOH.

see that DACC increases as BWOH increases. When
BWOH reaches 20%, DACC can already reach 92.34%.
When BWOH continues to grow, DACC does not grow
significantly.

Therefore, we set BWOH to 20% in order not to bring
too much bandwidth consumption. Finally, the offline
experimental results are as shown in Table 5. The results
show that under the same conditions, random positions
injection obtains 87.45% DACC, while it reaches 92.34%
by injecting into critical segments. So, we can infer that
identifying critical segments can improve the defense
effectiveness.

We also evaluate the defense effectiveness against two
classic WF attacks, DF and Var-CNN. The results are
shown in Fig. 14. When using the proposed defense
method, the accuracies of DF and Var-CNN models
decrease significantly, which are 10.83% and 15.49%,
respectively. It can be shown that our defense method is
independent of the classifier used by the attacker.

Table 5 Offline experimental results.
Injection position DACC (%)
Critical segments 92.34
Random positions 87.45

Fig. 14 Defense effect on different classification models.
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5.4.3 Online experiment results
In the online scenario, we also set BWOH to 20%
and pblen to 30. The adversarial patches pre-trained
in the offline scenario for target websites are saved
in a file. When the client visits some website, the
corresponding adversarial patch will be loaded. All the
dummy packets are injected into the real-time traffic.
The generated dataset is called Defended traffic which
contains 100�100 records. Then the attacker’s classifier
is applied to this dataset to evaluate the effectiveness of
our defense in the online scenario. We obtain 95.50%
DACC, which is better than the offline scenario. We try
to explain the reason. When dummy cells are injected
into real-time traffic, we need to delay some real packets,
which will change the packet order and further reduce
the accuracy of the classifier. Meanwhile the TOH is
only 12.57%, which does not have a significant impact
on the user experience.

6 Conclusion

In the previous work, numerous of WF defenses have
been proposed to enhance the users’ privacy, especially
by introducing adversarial learning techniques to defend
against deep learning based WF attacks. However, such
defenses require complete traffic traces to construct
adversarial samples, and thus can only perform offline
calculations. In this paper, we first provide an in-depth
analysis of the difficulties faced in porting existing
offline defenses to the online scenarios. Then an online
WF defense based on the non-targeted adversarial patch
is proposed. Aiming at improving the practicality of
defense in online scenarios, the Grad-CAM algorithm
is utilized to determine the critical segments. We also
optimize the generation of the non-targeted adversarial
patch. Furthermore, we implement the real-time patch
traffic injection based on WFPadTools framework.
Extensive experiments are carried out to evaluate the
effectiveness of our defense. In the online scenario,
when bandwidth overhead is set to 20%, we have
achieved a defense accuracy of 95.50% with 12.57%
time overhead. In our future work, we will work on
improving the robustness of the defense method without
knowing the attacker’s classification model.
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