TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 09/14 pp 1072-1084
DOI: 10.26599/TST.2023.9010013
Volume 28, Number 6, December 2023

Fair k-Center Problem with Outliers on Massive Data

Fan Yuan, Luhong Diao, Donglei Du, and Lei Liu*

Abstract: The clustering problem of big data in the era of artificial intelligence has been widely studied. Because

of the huge amount of data, distributed algorithms are often used to deal with big data problems. The distributed

computing model has an attractive feature: it can handle massive datasets that cannot be put into the main memory.

On the other hand, since many decisions are made automatically by machines in today’s society, algorithm fairness

is also an important research area of machine learning. In this paper, we study two fair clustering problems: the

centralized fair k-center problem with outliers and the distributed fair k-center problem with outliers. For these two

problems, we have designed corresponding constant approximation ratio algorithms. The theoretical proof and

analysis of the approximation ratio, and the running space of the algorithm are given.

Key words: machine learning; distributed algorithm; fairness constraints; outlier constraints; k-center problem

1 Introduction

When we need to process a large amount of data, we
hope to find some representative points so that we can
make an estimate of the overall data through them. The
problem of finding representative points from a large
number of data points is called a clustering problem. The
clustering problem is a very widely used and important
problem in machine learning. For example, when we are
faced with a situation where the dataset to be processed
is particularly large, we do not want to run our machine
learning algorithm on the entire input dataset but instead
on a small set that retains the statistical properties of
the original dataset. Finding such a small set is very
important. In addition, fairness is also an important
field in machine learning. If the input data is biased in
the process of machine learning, the machine learning

e Fan Yuan, Luhong Diao, and Lei Liu are with the Beijing
Institute for Scientific and Engineering Computing, Faculty
of Science, Beijing University of Technology, Beijing 100124,
China. E-mail: yuanfan@amss.ac.cn; diaoluhong @bjut.edu.cn;
liuliu_leilei @bjut.edu.cn.

e Donglei Du is with the Faculty of Management, University
of New Brunswick, Fredericton, E3B 5A3, Canada. E-mail:
ddu@unb.ca.

* To whom correspondence should be addressed.

Manuscript received: 2022-10-04; revised:

accepted: 2023-03-13

2022-12-02;

algorithm trained on these data will show the same bias.
Therefore, using the algorithm rationally to eliminate
bias is also a very important research topic. Algorithms
currently used for clustering problems have been shown
to be biased on attributes, such as gender, race, and
agel!l. This motivates scientists to propose fair clustering
algorithms. Recently, the fair k-center problem has
been shown to be useful in computationally fair data
aggregation!?!,

Suppose the input data is a set of real vectors with
a gender property. Consider a scenario in which one
wishes to construct a summary of k£ data points so that
both genders are equally represented. The k points
represent the distribution of the original dataset, and
we call these k points the center point set. Suppose now
we are given a center point set S. The Euclidean distance
of a point from S is the price we pay for not including
it in S, and the cost of set S is the highest cost of all
other points that are not in S. We want to compute a
center point set S with minimum cost that is also fair;
e.g., a set S contains k /2 women and k /2 men. In one
sentence, we want to compute a fair center point set .S
wherein each gender has the same number of centers,
and the data point that is farthest from this set is not too
far. The fair k-center problem models this task.

Now we assume that the input to the problem is a set
of vectors with attributes, and we need to find k data

© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Fan Yuan et al.: Fair k-Center Problem with Outliers on Massive Data 1073

points to represent the entire set of data points. We hope
that the attribute distribution and the number of these
k data points meet our prerequisites. We call these k
points the center point set and use S to represent them.
These k points will divide the original data set into k
groups. For each group, we take the maximum distance
from the point in the group to the center point as the
cost of this grouping. Our goal is to find a center point
set that has the lowest cost and remains fair. That is,
we want to find a fair center point set and find the data
point farthest from this center point set such that the
distance between the data point and the center point set
is not too great. In the fair k-center problem, we use
0 to represent the input data set of the problem. The
number of data points in Q is n, the data points have m
different attributes, the size of the center point set is k,
and k; is the capacity constraint of each attribute. For
fairness, we have k = Y7L, k;. Our goal is to find a
center point set S, and the center points in S need to
satisfy the condition that the number of center points
that belong to attribute j is k;. In this way, we maintain
a balance of the central points, so we consider it to be
fair. Furthermore, we want max;ep (i, S), where §
represents the distance function, to be minimized. Here
each data point belongs to only one attribute. Under this
definition of fairness, some relevant research on the fair
k-center problem has been donel’!. Here we give the
definition of the approximation ratio of the algorithm.

Definition 1 For any optimization problem P and
any instance Z of this problem, we use OPT(Z) to
represent the value of the optimal solution of instance 7
and A(Z) to represent the objective function value when
we use algorithm A for instance Z. For the maximization
problem, the approximate ratio of algorithm A is
defined as

A)

For the minimization problem, the approximate ratio of

algorithm A is defined as
A@)
r(A) = s1;p OPT(D)’

In the work of Ref. [3], for the fair k-center problem,
the authors proposed an algorithm with an approximate
ratio of 3, and for the distributed fair k-center problem,
they proposed an algorithm with an approximate ratio
of 17.

For the general k-center problem, a simple greedy
algorithm can achieve an approximate ratio of 243!, and
attaining an approximation ratio better than 2 is NP-

hard!®. Therefore, the general fair k-center problem is
also NP-hard. The best result for the general fair k-center
problem is a 3-approximation algorithm whose running
time is O(n?-logn)!"!. Later, Ref. [2] gave a linear time
algorithm for this problem with an approximate ratio of
0(2°), where c is a constant.

The k-center clustering works well for low-noise data,
but it is not effective for clustering datasets with noisy
data. This is because the objective function of the k-
center problem is the maximum distance from the data
point to the nearest center point, and a point that is very
far away can produce particularly poor results for the
k-center problem. Therefore, it is necessary to study
the k-center problem with noise, such as in Refs. [8-
10]. Reference [11] studied the k-center problem with
outliers. In this problem, the objective function is the
same as the general k-center problem, except that the
problem allows removing at most z data points from
the dataset without clustering them. These points are
called outliers, which are not taken into account in
the objective function. The current best result for this
problem is the 3-approximation algorithm in Ref. [11].
There are also many studies that focus on the distributed
k-center problem with outliers!'>~'4l. The current best
results for this problem are in Ref. [13], which gave a 4-
round information exchange bicriteria algorithm with
an approximate ratio of (24(1 + €),1 + €), and the
communication cost of the algorithm is independent of
the number of outliers.

Once the dataset becomes particularly large, the
approximation algorithm for general clustering problems
will become inefficient. In this case, we need distributed
clustering algorithms and streaming algorithms to deal
with the corresponding problems.
ever-increasing number of datasets and the emergence
of many modern parallel computing frameworks, the
problem of clustering in distributed environments has
attracted much attention in recent years. Several works
studied streaming algorithms!!>~'8! others focused on
distributed computing!'%-221,

In addition to the methods above, there are sliding
window methods and core methods for addressing big
data clustering problems. References [23-25] examined
the sliding window method , and Refs. [26, 27] have
examined the core method.

Because of the

In a distributed setting, the data is divided into T parts
and stored on 7" different machines, and the machines
can exchange information with each other to obtain
better clustering results. The earliest study of the k-

1074 Tsinghua Science and Technology, December 2023, 28(6): 1072-1084

center problem in the distributed computing setting
was presented in Ref. [21], which gave a MapReduce
algorithm that requires constant rounds of information
exchange, the approximation ratio is constant, and the
algorithm is a sampling-based MapReduce algorithm,
which is simple and easy to implement, and can be used
to solve various clustering problems. In the conference
version of this article!?8!, we considered the distributed
fair k-center clustering problem with outliers.

For the aforementioned reasons, in this work, we study
the centralized fair k-center problem with outliers and
the distributed fair k-center problem with outliers. Both
models maintain fairness and are suitable for handling
big data and noisy data. For the centralized fair k-center
problem with outliers, we give an algorithm with an
approximate ratio of 4, and for the distributed fair k-
center problem with outliers, we give an algorithm with
an approximate ratio of 18. In our article, we assume that
the data points are stored on 7' data storage machines
and that we can run our algorithm on these 7" machines.
All approximation ratios of the algorithm, running time,
space usage, and the amount of information exchange
are proved.

2 Related Work

In addition to fairness constraints, there are also many
papers that focus on the k-center problem with matroid
constraints. For this problem, Ref. [7] gave the first
polynomial time 3-approximation algorithm, Ref. [29]
gave a one-pass algorithm with an approximation ratio of
(17+¢€) and a two-pass algorithm with an approximation
ratio of 3. The space complexity of both algorithms is
0(k?) .

There are other ways to define fairness, such as using
diversity-determined standards to measure fairness?®".
There are also many different types of fair clustering.
31-36] has studied the fair clustering
problem with capacity constraints: the number of data

A series of works!

points in each cluster has an upper or lower bound limit,
or the number of data points within each cluster must
be similar. There are also fair clustering problems under
other definitions, such as those in Refs. [37, 38].

The k-median problem with fairness constraints was
first proposed and studied by Ref. [39]. Later, Ref. [40]
studied the k-median problem with matroid constraints.
The works in Refs. [7, 29] are also applicable to this
problem. For more work on fair clustering, please refer

to Refs. [2, 30] for more detailed information.

The remainder of the paper is organized as follows:
Section 3 gives preliminary definitions of the paper,
Section 4 presents the algorithms and all the analysis,
and Section 5 concludes this paper.

3 Preliminary

First, we introduce some symbols and marks that are
used later. In our work, we set the input of the fair
k-center problem to contain a data point set Q, and
it has n points, a distance function § : O x Q0 —
R0, and the number of desired center points k. All
points in the dataset have their own unique attribute,
and we use {1, 2,...,m} to represent m attributes. We
use I : QO — {1,2,...,m} to denote the attributes
assignment function. In addition, for each attribute
J, we have a fairness limit k; that corresponds to the
attribute. For all attributes, we have k = Z;?Ll k. This
means that in the final selected center point set, the
number of center points of each attribute should satisfy
its corresponding fairness constraints. For the distance
function 4, for any two points g1, g> € O, we require
that §(¢1,¢1) = 0 and 8(q1,92) = 8(g2,91). We also
require that the distance function § obeys the triangle
inequality: for each triple ¢g1,¢2,q93 € Q, we have
8(q1,92) +68(q2,93) = 8(q1,¢q3). For any pointgy € Q
and any set § € Q, we use 6(¢1, S) = minjes §(q1, j)
to denote the distance between a point and a set. At the
same time, we set the symbol B(v,d, Q) = {u : u €
0, 68(u,v) < d} to denote a sphere of radius d centered
at point v in dataset Q. In this problem, our goal is
to find a set of center points that contains k points and
minimize max;cp (i, §), and the attribute distribution
of the center point set satisfies the fairness constraint
given by our problem.

Here we need to emphasize that the number of center
points selected in the algorithm process may be less than
k, but it does not matter. We only need to make up
the center points to k without violating the attribute
constraints. The increase of the center point in all
clustering problems will only lead to a decrease in the
cost. In what follows, the center point selected by our
algorithm just need not violate the attribute constraints.
It does not matter if the number of center points is less
than k.

For the fair k-center problem with outliers, the
problem setting is the same as before. The only
difference is that we need to find a set of outliers Z. In

Fan Yuan et al.: Fair k-Center Problem with Outliers on Massive Data 1075

this problem we want to find a center point set S € Q,
with S containing k points, and an outliers point set
Z, with Z containing z points. Moreover, we hope
that max;eg\z 8(i, §) is minimized. At the same time,
we require the center point set to meet the attribute
constraint, that is, k = Z;?;l kj. In the problem with
outliers, we do not need to select outliers immediately.
Instead, we can wait for the final k-center points to be
selected and select z points farthest from the current
center point in the data point set as outliers.

4 Problem and Algorithm

4.1 Centralized fair k-center problem with outliers

In order to solve the fair k-center problem with outliers,
we first start from the k-center problem with outliers,
and then solve the fairness constraint on the basis of this
problem. Thus, we first introduce a common algorithm
for solving the k-center problem with outliers. We know
that problems with outliers are generally harder than
problems without outliers. This is because, in this setting,
we need to determine which points will be deleted, which
has a great impact on the selection of the center point
set. Therefore, the solution of the k-center problem
with outliers may be very different from the solution of
the k-center problem without outliers. In general, the
correct algorithm strategy is to choose a point surrounded
by many data points as the center point. Since such
points are surrounded by many points, these points are
unlikely to be outlier points. This idea was proposed in
the algorithm of Ref. [11], which is famous for solving
k-center problem with outliers.

Theorem 11! For the k-center problem with
outliers, Algorithm 1 is an algorithm with an
approximate ratio of 3, and the algorithm finds no more
than z outliers.

Algorithm 1 was proposed by Charikar et al.l'!l

Algorithm 1 Outliers (Q, k, d, 3d)
Input: dataset Q, integer k, and radius d
Step 1: Initialize Q' = Q and P = &
Step 2: while | P |< k do

Step 3: For all points v € Q calculate the corresponding
ball B(v,d, Q’);

Step 4: Find point v,y = argmaxyeo’ | B(v,d, Q') |;
Step5: P <« P U {vmul};

Step 6: Calculate the corresponding ball B(vmay, 3d, Q7);
Step7: Q' < O'\B(vmax,3d, Q’);

Step 8: end while
Output: P

The input of the algorithm is the data point set Q, the
number of center points k, and a radius d. The radius
d is actually an estimate of the value of the optimal
solution to our problem. We use OP T to represent the
value of the optimal solution to the k-center problem
with outliers. When d = OPT, the performance of
Algorithm 1 can achieve the best. Since the value of
the solution to the k-center problem is the distance
between two points, the value of the optimal solution
can be obtained by searching the possible values of the
minimum and maximum distances between the input
points. We can find a good estimate of the value of
the optimal solution in polynomial time using a binary
search.

The main idea of our algorithm to solve the fair k-
center problem with outliers comes from Algorithm 1.
Next, we give a detailed introduction to Algorithm 1, so
that we can have a deeper understanding of the algorithm.
For all data points v € Q, the ball B(v, d, Q) contains
all data points in Q whose distance to point v is less
than or equal to d. The algorithm first calculates the
corresponding ball B(v, d, Q') for all data points, and
then selects the center point v, of the ball that covers
the most data points to add to the current solution.
The idea of Algorithm 1 is consistent with what we
mentioned earlier: finding the point surrounded by many
data points as the center point. Then, Algorithm 1 deletes
all points whose distance from the point vy, is less
than or equal to 3d from the current data point set Q’,
to ensure that the points selected by Algorithm 1 are
representative rather than selecting all the center points
together. Finally, repeat the operation above k times.
In this way, the final set of center points P is selected.
In addition, we know that when d is equal to OPT and
the final set of center points P is selected, no more
than z points will remain in Q’, which are the outliers
finally selected by Algorithm 1. The steps of Algorithm
1 are simple, but the inner thoughts of Algorithm 1 are
profound. In addition, we know that the running time of
Algorithm 1 is O(k|Q]).

After knowing how to deal with outliers, we next
introduce how to deal with fairness constraints. We use
the algorithms FindNeighbor () and FindMatching () to
solve the fairness constraints of the problem. These two
algorithms were proposed by Ref. [3] to deal with the
fairness constraints of the problem. The input of the
FindNeighbor () (Algorithm 2) contains a data point set
0, a number of center points k, a distance function §,
a radius d, an attribute assignment function /, and a

1076 Tsinghua Science and Technology, December 2023, 28(6): 1072-1084

Algorithm 2 FindNeighbor (Q, I, P, d)
Input: Set Q, P, number of center points k, attribute
assignment function 7, radius d, and distance function §.
Step 1: for all points p € P
Step2: Np < p;
Step 3: end for.
Step 4: for all points p € P
Step 5: for all points ¢ € QO
Step 6: if there is no point in N, with the same attribute
as point g, we have §(p,q) < d;

Step 7: Np < Np U {q};
Step 8: end if
Step 9: end for

Step 10: end for
Output: {N, : p € P}

subset P C Q. First, Algorithm 2 initializes N, = p
for all points p € P, and then we make N, contain
one point from each attribute. The premise is that such
data points exist in a ball with p as the center and d as
the radius. In the end, we get a neighborhood of each
point p € P, which contains as many data points of
various attributes as possible. Obviously, we can know

that the running time of FindNeighbor () is O(| P|| Q).

In short, if P is an infeasible center point set (points
lacking some attributes), then FindNeighbor () finds as
many data points of various attributes as possible in the
neighborhood of each p € P, so as to construct a set N,
of points that contain as many attributes as possible. In
this way, from N, we can find a solution that satisfies
the fairness constraint.

The main purpose of the algorithm FindMatching ()
(Algorithm 3) is to find a feasible solution to our
problem from a set of disjoint sets. The algorithm
FindMatching () takes the pairwise disjoint sets
N = (Ni,N,,...,Ny), the attribute assignment
function 7, and the attribute capacity constraint k =
(k1,ka, ..., k) of the problem as inputs. It returns a
set of feasible solutions S that intersect as many N, as
possible. This is obtained primarily by constructing a
suitable bipartite graph and then finding the maximum
cardinality matching in the bipartite graph. The running
time of the algorithm is O(J?max;|N;|), where J is the
number of the input sets,

Algorithm FindMatching () constructs the bipartite
graph we need according to the following steps. We set
J vertices on the left side of the bipartite graph, which
means that each vertex on the left side of the graph
corresponds to a set N;. There are |A| = | U;"zl Al
points on the right vertex set of the bipartite graph, where

Algorithm 3 FindMatching (N, 1, k)
Input: Set N = (N1, Na,...,Ny), attribute assignment
function I, and vector k = (k1,ko,..., k) of fairness
constraints
Step 1: Construct bipartite graph G = (N, A, E) as follows:
Step 2: Set J vertices on the left side of the bipartite graph;
Step 3: Set | 4 |=| U;”=1Aj | vertices on the right side of the
bipartite graph, A; contains k; vertices;
Step 4: for all N; and all attribute j
Step 5: ifdp € N; such that I(p) = j;
Step 6: Connect N; to all vertices in A;;
Step 7: end if
Step 8: end for
Step 9: Find the maximum cardinality matching H of G;
Step 10: § < @;
Step 11: for all edges (N;,a) of H
Step 12: Lets be apointin N; from attribute j, wherea € A;;
Step 13: S < S U {s};
Step 14: end for
Output: S

A; contains k; vertices of each attribute j. For the edges
of the graph, if N; contains a point from attribute j, then
we connect an edge among /V; and all points in 4;, that
is, to k; vertices.

Next, we find a feasible solution set S by finding a
maximum cardinality matching H of the bipartite graph.
First, for each edge e = (N;,a) in the matching H,
here a is a vertex in A;. We add the points that belong
to attribute j from N; to S§. At this time, we know
the number of points in set A; is k;. Also, we know
that H is a maximum matching, so we know that S
contains at most k; points from attribute j. Therefore,
S satisfies the attribute constraint of the problem. Then,
because |S| = |H|, we know that the solution S that
corresponds to the maximum cardinality matching in the
bipartite graph intersects as many N; as possible. Finally,
as mentioned earlier, |S| = | H| may be less than k, but
which has no impact on the final result of the problem.

Lemma 1 The distance from the point in the
solution output by Algorithm 2 to the point in P is less
than d.

When we have the aforemetioned algorithms, we next
formally introduce the main algorithm of this section.
Algorithm 4 is a combination of the three algorithms
described above.

First, we use the algorithm Outliers (Q,k,d,3d)
to find a candidate center points set, and we denote
this set by P. Second, for each point p € P, we
use the algorithm FindNeighbor (Q, I, P,d) to find
a neighborhood N, with radius 4 around it. In these

Fan Yuan et al.: Fair k-Center Problem with Outliers on Massive Data 1077

Algorithm 4 Fair k-center with outliers

Input: Set O, attribute assignment function /, vector k =
(k1,ko,..., k) of fairness constraints, radius d, and number
of center points k

Step 1: P < Outliers (Q, k,d,3d);

Step 2: {N(p) : p € P} < FindNeighbor(Q, I, P,d);

Step 3: S <« FindMatching({N(p) : p € P}, 1.,k);

Output: S

neighborhoods, there should be as many data points
containing various attributes as possible. Finally, we use
the algorithm FindMatching({N(p) : p € P},1.,k) to
obtain a final solution S to our problem, and through
the algorithm FindMatching({N(p) : p € P}, 1.k), we
know that S is a feasible solution.

From the information above, we can see that the
first step of Algorithm 4 is to find a suitable candidate
center points set, and the second and third steps of
Algorithm 4 are to satisfy the fairness constraint. In order
to ensure that Algorithm 4 can maintain the fairness
constraint, our outliers can be deleted at the end of the
algorithm. That is, we only select k candidate center
points in the first step, and select outliers after k final
center points are selected in the third step. Those z data
points furthest from the final center points are selected
as outliers. In this way, Algorithm 4 satisfies both the
fairness constraint and the outlier constraint.

In the next theorem, we prove the approximation ratio
of Algorithm 4.

Theorem 2 For the fair k-center problem with
outliers, Algorithm 4 is an algorithm with an
approximate ratio of 4.

Proof First, we prove the approximation ratio of
Algorithm 4. Suppose S is the output set of Algorithm 4.

From Algorithm 3 , we know that the points in S are
all selected from {N(q) : ¢ € P}. And from Lemma 1,
we know that for every point s € S, there must exist a
point p € P whose distance is less than d. This means
we have §(s, p) < d.

From Algorithm 1 and Theorem 1, we know that the
solution of Algorithm 1 is a 3-approximation solution,
which means that for the solution P output by Algorithm
1, the distances of all data points to their center point
do not exceed 3OPT. Specifically, for any point v in Q,
there must exist a point in p € P whose distance from v
is less than 3d. This means we have that (v, p) < 3d.
Adding up the two distances, we know that the distances
from any point v € Q to the nearest center point in S
are less than 44.

In the proof above, we also need to prove that S has
interaction with all N(p). Suppose O* is the optimal
solution of the fair k-center problem with outliers. For
each p € P, let ¢, € O* be the center point of p
in the optimal solution. Thus we have §(p,c,) < d.
At the same time, because the distances between any
two points in P are greater than 3d, all ¢, are different.
According to the previous construction method, we have
that N(p) contains one point from every attribute, and
the distanced between these points and p are less than or
equal to d. Therefore, N(p) must contain a point b, that
has the same attribute as cp,, and we have §(p, b,) < d.
For some p € P, itis possible that ¢, = b,. Next, we
consider set B = {b, : p € P}. For each point p, set B
intersects all N(p). B contains as many attribute points
as {c, : p € P} C 0%, so B is also a feasible solution
and satisfies the fairness constraint. Therefore, we know
that there is a feasible solution B, which intersects N(p)
of each p € P. We also know that the output S of
Algorithm 4 is a feasible solution, intersecting as many
N(p) as possible. Therefore, S can also intersect all the
N(p). L

Next, we give the time complexity analysis and
memory analysis of Algorithm 4. Here we can assume
that the distance between two points is calculated in
O(1) time.

Lemma 2 The working space of Algorithm 4
is O(km), and the running time of Algorithm 4 is
O(mk? + kn).

Proof The memory space required by Algorithm
4 is used to store the set of center points and their
corresponding N(p). From Algorithm 1, the number
of points in P is k. Since in Algorithm 2, each N(p)
contains at most one point from any attribute, it has at
most m points. Therefore, we have that the storage space
of Algorithm 4 is O (km).

Carefully observing the inputs and outputs of
Algorithms 1-3 in Algorithm 4, we know that
Algorithms 1 and 2 both take time O(|k||Q]|) = O(kn),
because in Algorithm 4, the size of the input P of
Algorithm 2 is k. Algorithm 3 takes time O(J? -
max;[Ni) = O(PP - maxpep|Ny)) = O(K*m)
because the input set number of Algorithm 3 is k, and
each N(p) contains at most m points. |

4.2 Distributed fair k-center problem with outliers

Algorithm 4 we introduced in the previous section for
dealing with fair k-centers may not be very effective
when the dataset is particularly large, so in this section,

1078 Tsinghua Science and Technology, December 2023, 28(6): 1072-1084

we consider a distributed algorithm for the k-center
problem. First, we introduce our problem in a distributed
setting. In the distributed fair k-center problem with
outliers, because of the large amount of data, all data
points Q are evenly stored on T data storage machines.
Our target is the same as the goal of the previous
question. In this problem, we want to find a center point
set S € Q, with S containing k points, and an outliers
point set Z, with Z containing z points. Moreover, we
hope that max;ep\z (i, S) is minimized. At the same
time, we require that the final selected center point set S
still satisfies the fairness constraint.

Here, for the convenience of proof and reading, we
designate those machines that averagely store the data
points @ as the distributed machines, and we call
the machine that collects the processing results of all
distributed machines, runs the algorithm, and outputs
the final result as the central machine. Additionally we
denote the set of data points stored on each distributed
machine i by Q;.

Algorithm 5 is a classic greedy algorithm for k-
center problems, which will appear as a subalgorithm
of Algorithm 6. We first introduce the overall idea
and architecture of Algorithm 6, and then provide

Algorithm 5 Greedy (Q, k)
Input: Point set Q, number of center points k, and distance
function §
Step 1: Initialize S = @;
Step 2: Pick an arbitrary pointi € Q;
Step 3: S « i}
Step 4: while | S |< k
Step 5: Choose j from Q with the biggest §(7, S);
Step6: S« SUJ,O0—-{j}
Step 7: end while
Output: S

Algorithm 6 Distributed fair k-center with ourliers in each
distributed machine i
Input: Point set Q; (1 < i < T), number of center points k,
and distance function §
Step 1: Run algorithm Greedy(Q, k +z + 1) on each distributed
machine i and output a set P; <— {p1. p2,..., Pk+z}, Pi has
k + z data points;
Step 2: dl'<— minj/;lgj/gk_FZ 8([7/' s pk+z+1)/2§
Step 3: {L(p) : p € P;}<« FindNeighbor(Q;, I, P;,2d;);
Step 4: L; <~ Upep; L(p);
Step 5: for all points p € P;
Step 6: Machine i record w, =| {v :
§(Pi,v)} [+1;
Step 7: end for
Output: (P;, L;, wp)

veQidpv) =

a detailed introduction to Algorithm 5. It contains
two subalgorithms, FindNeighbor(Q;, I, P;,2d;) and
Greedy(Q, k + z + 1). The function of the algorithm
Greedy(Q, k + z + 1) is mainly to find a suitable set of
candidate center points, and the function of the algorithm
FindNeighbor(Q;, I, P;, 2d;) is mainly to find a suitable
set of feasible points that satisfy the fairness constraint.
When Algorithm 6 on the distributed machine is finished,
we send the result to the central machine.

The algorithm we run on the central machine
is Algorithm 7. It contains three subalgorithms:
the algorithm DistributeOutliers (P’, k, 5d, 11d),
the algorithm FindNeighbor (L', I, P,5d), and the
algorithm FindMatching ({N(p) : p € P}, I,k). Here
DistributeOutliers (P’, k,5d, 11d) (Algorithm 8) is
used to select a suitable set of candidate center points,
while the latter two algorithms, the algorithm
FindNeighbor (L', I, P,5d) and the algorithm
FindMatching ({N(p) : p € P}.1,k), are used to
find the center point set that satisfies the fairness
constraint.

Theorem 34! For the k-center problem, Algorithm
5 is an algorithm with an approximate ratio of 2.

Here we first introduce a classical algorithm proposed
by Dyer et al.l*!! to deal with the k-center problem,
which is a simple greedy algorithm, the point farthest

Algorithm 7 Distributed fair k-center with ourliers in central
machine i

Input: Set P’ = U_ P;, L’ = UT_| L;, number of center

points k, distance function §, and parameter wp,

Step 1: P <« Distribute Outliers (P, k,5d, 11d);

Step 2: {N(p) : p € P} < FindNeighbor(L’, I, P,5d);

Step 3: S < FindMatching({N(p) : p € P}, I,k);

Output: S

Algorithm 8 DistributeQutliers (Q, k, 5d, 11d)
Input: Set Q, number of center points k, radius d, and
parameter wp
Step 1: Initialize Q' = Q and P = &,
Step 2: while | P |< k

Step 3: for all points v in Q

Step 4: Calculate the corresponding ball B(v, 5d, Q’);
Step 5: end for

Step 6: Find a point v,;,4x in Q, the definition of point vy,

is as follows: Vmyx = argmax,e o Yy Bv.54.07) Wo's

Step7: P« P Utvma:
Step 8: Calculate the corresponding ball B (v, 11d, Q7);
Step 9: Q/ <« Q,\B(vmaxa 114, Q/);

Step 10: end while
Output:: P

Fan Yuan et al.: Fair k-Center Problem with Outliers on Massive Data 1079

from the current center point set is selected and added to
the current solution, and this step is repeated k times to
find the final k& center points.

We run Algorithm 6 on each distributed machine.
Algorithm 6 has three main steps. In the first step, each
distributed machine i runs Algorithm 5 to find (k+z+1)
points. Then we use the first (kK + z) points to form a
new set P;. At this time, the last point pxy,41 is the
farthest point from the new dataset P;, and its distance
from P; is 2d;. Therefore, the distance between each
point in Q; and the set P; is less than 2d;. We use the
point px4-+1 to construct a suitable distance parameter
2d; for the following algorithm to use.

In the second step, we wuse the algorithm
FindNeighbor (Q;, I, P;,2d;) to calculate the set
L(p) for all points in P;. L(p) contains as many data
points of various attributes as possible, and the distances
between these points and point p are less than 2d;.
Then, in machine i, we record the parameter w, of each
point, which is the number of data points centered on p.

Finally, we send the set P;, set L; < Upep, L(p),
and parameter w, to the central machine. Because the
set L; contains at most one point of each attribute, we
know that there are only be at most m points in L;. And
because |P;| = k + z, we know that all distributed
machines only deliver at most m(k + z) points to the
central machine.

We run Algorithm 7 in the central machine.
Algorithm 7 also has three main steps. In the first step,
the central machine receives information (P;, L;, wp)
from all distributed machines. Then, we use the
algorithm DistributeOutliers (P’, k,5d, 11d) to find a
candidate center point set P.

In the second step, we wuse the algorithm
FindNeighbor(L’, I, P,5d) to find a multi-attribute
point set N(p) for each p € P. According to the
parameters 5d, we know that the distances from all
points in N(p) to point p are less than or equal to 5d.
Since the distances among points in P are greater than
11d, we know that for different point p, set N(p) are
disjoint.

Finally, we use the algorithm FindMatching({/N(p) :
p € P}, 1,k) to find and return a feasible solution S
that intersects as many N(p) as possible.

Definition 2 Suppose g is stored by a distributed

machine ;. This means point ¢ is in the data point set Q;.

We use cen(q) to denote a point in P; whose distance
from point ¢ is less than or equal to 2d;.
Since the data storage machine only sends some

candidate center points to the central machine during
Algorithm 6, it is very likely that some points of the
optimal center point set O* of the problem are discarded
during the operation of Algorithm 6.

In the following Lemma 3, we show that even if
some points in the optimal solution O* are deleted, the
performance of the points selected by Algorithm 6 and
the optimal solution is not very different.

Lemma3 Theset L = Uf _,L; of data points we
send to the central machine contains set B. We have
that the maximum distance between the points in set
P = Uf=1Pi and set B is at most 5d.

Proof For any point ¢ € O* that is processed
by distributed machine i, by Definition 2, we have
that §(c,cen(c)) < 2d;. Note that the output
set L(cen(c)) of the algorithm FindNeighbor () in
Algorithm 6 contains one point from each attribute,
and the distances between these points and cen(c)
are less than or equal to 2d;. Therefore, we know
that L(cen(c)) € L; must contain a point ¢’, and
¢’ has the same attribute as point ¢, so we have that
8(c’,cen(c)) < 2d;. Next, according to the triangle
inequality, we can obtain §(c, ¢’) < 4d; < 4d.

We define a new set B = {¢’ : ¢ € O*}, we have
that B C L' = UleLi. Since B contains exactly as
many points from any attribute as O*, we know that
B also satisfies the fairness constraint as well as O*.
Also, we know that the distance between any two points
in sets B and O* will not be greater than 4d. The
distance between the point in O* and the pointin P’ =
Ule P; is less than or equal to d because UleP,' c X.
Therefore, we have that the maximum distance from the
point in set P’ = Uf —1 P to the point in set B doese not
exceed 5d. |

Next, we give present the main theorem of this
section and the corresponding proof. Our final output
of Algorithm 7 for the distributed fair k-center problem
with outliers has an approximate ratio of 18.

Theorem 4 Algorithm 7 is an 18-approximation
algorithm for the distributed fair k-center problem with
outliers.

Proof According to Lemma 3, L’ contains a feasible
solution B, whose distance from P’ is no more than 5d.
Foreach p € P C P/, we use bp to denote a point in
B that is within a distance of 5d from point p. Due
to the distance between any two points in set P being
greater than 11d, it can be known that all bp points do not
intersect. According to the properties of the algorithm
FindNeighbor (), set N(p) it returns contains a point

1080 Tsinghua Science and Technology, December 2023, 28(6): 1072-1084

by, that has the same properties as point b,. Let B" =
{b, : p € P()}; for each point p € P, we know that
set B intersects all N(p) since b, and b;, have the same
properties and b, are disjoint. B also contains as many
points of arbitrary properties as B. Since B is a feasible
solution, B’ is also a feasible solution. Therefore, there
is a feasible solution whereby B’ intersects all N(p). At
the same time, we have that the output S of the algorithm
FindMatching () is a feasible solution set that intersects
as many N(p) as possible. It can thus be seen that S
also intersects all N(p).

Now we know that the distance between any point in
set P and any point in set S will not exceed 5d . For all
p € P, S intersects N(p), the solution P returned by
the first step of Algorithm 7 is at most 11d from the set
P’. Also, the distance between set Q and set P’ is at
most 2d, because the distance between Q; and each P;
is at most 2d. Adding these three distances together, we
have that the distance between sets Q and S is at most
18d. |

We have proved above that the approximate ratio of
Algorithm 7 is 18. Next, we need to prove that Algorithm
7 selects no more than z outliers during the operation of
the algorithm.

First, we use Op, O, ..., O to denote those clusters
in the optimal solution. All the clusters in the optimal
solution are a subset of O and do not include the outliers
that correspond to the optimal solution. We want to
show that the set of data points removed from Q’ in
the algorithm DistributeOutliers () can be mapped one-
by-one to some clusters in the optimal solution when
Algorithm 7 selects each center. Also, at the end of the
algorithm DistributeOutliers () there should be at most z
points left in Q', which are the outliers of Algorithm 7.

For all points v € Q;, we use ¢ (v) to denote the
point in P; that is closest to v. That is, the point
¢ (v) is the closest center point to v found by the
algorithm Greedy (). For the output of the algorithm
DistributeOutliers (), P = {p1, p2,..., Pk}, We sort
them in the order in which p is added to set P.

If for all u € O;, we have that c(u) € Q' before
p;j is added to P, then we call that the optimal cluster
O; is good in the j-th iteration of the algorithm
DistributeOutliers (). That is, not all ¢ (#) have been
deleted. If a cluster is not good, it means that we cannot
estimate its cost using the path from u to ¢ (u) to p;,
which makes it more difficult to estimate the cost of
these points. Consequently, we first analyze the cost of
those good clusters. Lemma 4 in the following shows

that when p; is added to P, we have that the sum of the
weights of all points removed from Q’ is at least as large
as the number of data points contained in any one good
cluster in the optimal solution.

Lemma 4 When a point p; is added to P, then
for any good cluster O; we have the following formula
D veB(p;5d,01) Wo = | Oil established.

Proof First, consider any cluster O; that is good at
time j. Since the cluster is good, we have ¢ (v) € Q’
for all points v € O; before p; is added to P. Let
u = c¢(v*), where v* is the center point of the optimal
solution in cluster O;. We need to show that for all
points v € O;, the distance between point u and point
¢ (v) will not be greater than 50PT.

To bound the distance between point u and point ¢ (v),
it suffices to bound the sum of the distance of u to any
point v in O; and v to ¢ (v) by the triangle inequality.
According to the definition of the optimal solution, we
can know that the distance from any point v € O* to v*
will not be greater than OPT. Because Algorithm 5 is a
2-approximation algorithm, in Algorithm 6, after Step
1, we have that each point in Q; is at most a distance of
20PT from its center point in set P;. In other words,
the distance between any point v € Q; to center point
c(v) € P;is20PT.

Thus, we have that u is at most a distance of 20PT
from v*. Next, we have that §(u,v) < 8(v,v*) +
s(w*,u) < OPT + 20PT = 30PT. This means
that u is at most a distance of 30P T from any point v in
O;. Furthermore, we know that every point v € O; is at
most a distance of 20P T from ¢ (v). Thus, u is at most
a distance of 50PT from any point ¢ (v) for v € O;.
We have that §(u,c(v)) < §(u,v) + §(v,c(v)) <
30PT +20PT =50PT.

Now we show that ¢ gy 54,01 Wv = |0l This
is because every point ¢(v) must be in B(u,5d, Q')
according to the definition of B(u, 5d, Q') and the fact
that § (1, ¢ (v)) < 50PT. Furthermore, every point in
v € O; contributes to the weight of ¢ (v). Knowing
that our algorithm always chooses the point p; such that
Zv’eB(pj,sd,Q’) wy is maximized, this completes the
proof. |

Lemma 5 in the following says that for a point v in a
cluster O;, if we have ¢ (v) in B(p;,5d, Q") when the
point p; is to be added to P. For this case, we can use
B(p;.11d, Q') to enclose all points in cluster O;. It can
be shown that, in this case, after p; is added to P, for
all points v € O;, all points ¢ (v) are not in Q'; that is,
they are deleted.

Fan Yuan et al.: Fair k-Center Problem with Outliers on Massive Data 1081

Lemma S Suppose there is now a point p; to be
added to P. For some i and for some point v € O;, if we
have c(v) € B(p;,5d, Q'), then for all points u € O,
either we have c(u) € B(p;,11d, Q') established or
c¢(u) has already been removed from Q’.

Proof Consider a cluster O; in the optimal solution
and some point v € O; where c(v) € B(p;,5d, Q).
Note that it suffices to prove that §(p;,c(u)) < 110PT
by definition of B(p;, 11d, Q) for any point u € O;.
To prove this, we will use several applications of the
triangle inequality. In particular, we will construct a
path from p;, ¢(v), v, u, and ¢(u). According to the
triangle inequality, if §(p;, c(v))+8(c(v). v)+8(v, u)+
8(u,c(u)) < 110PT, the proof is complete.

Let us consider 6(p;, c(v)). This is at most 5OPT
according to the definition of B(p;,5d, Q') and the
assumption that c(v) € B(p;,5d,Q’). We know
that §(c(v),v) < 20PT and §(u,c(u)) < 20PT
according to the definitions of ¢ (v) and c (u). Finally, we
know that §(u, v) < 20PT. This is because both u and
v are assigned to the same center in the optimal solution;
therefore, both of them are at a distance of OP T from
some point. The triangle inequality dictates that they
must be at most 20PT from each other. Putting
this all together completes the proof. Thus, we have
that §(p;, c(v)) + 8(c(v),v) + 8(v,u) + 8(u.c(u)) <
50PT +20PT +20PT +20PT =110PT. N

At last, in the following Lemma 6, we want
to show that the weights of the points in
Up;i<i<k B(pis11d, Q') are at least as large as
the number of points in (J;<;<x O:i- Because the
optimal solution to this problem contains z outliers, we
have that | Ulgigk O;| = n—z. Also, we know that the
weight contained in ball B(p;, 11d, Q') represents the
number of points in the dataset. Lemma 6 proves that
the number of points covered in all balls B(p;, 11d, Q')
is bigger than n — z, so we know that the number of
points uncovered by our algorithm is not bigger than z.

Lemma 6 Zf:l 2 ueB(p;11d,0) Wu =1 — Z.

Proof To prove Lemma 6, we will show a one-to-
one mapping of each point in U1<i< x Oi to a unique
unit of weight in Zf-;l > ueB(p;,11d,07) Wu- Our proof
proceeds by induction. We will show that for any
0 < j < k, each unique point in Ulgigj O; can
be mapped to a unique unit of weight of the points in

ij=1 B(pi,11d, Q') where Oy, O, ..., O; are some
clusters in ordering in the optimal solution that we fix
inductively.

Assume we have mapped each point in Ulgig ; Oi,

to a unique unit of weight of the points in

ij=1 B(p;,11d, Q’). Now consider the weight of the
points in the set B(p;4+1,11d, Q’). We divide the
analysis into two cases. For the first case, say that for
somei’ ¢ {1,2,...,j}and u € O;, it is the case that
c(u) is in B(p;,5d, Q') for some i < j + 1. Then,
according to Lemma 5, it is the case that just after p; 1
is added to P, all of the points ¢(u) are no longer in Q’
for all u € O;/. Thus, in this case, we map each point in
u € O; to aunit of the weight of c(u). Intuitively, this
is the unit of weight that u contributes to ¢ (u).

Otherwise, say that the first case does not hold.
Then, we know that for all ¥ € O, and for any
i’ ¢ {1,2,...,j}, it is the case that ¢(u) is in Q’
after p;j4; is added to P. According to Lemma 4,
it must be that 3, cp(,. . | 54,01 Wu = |0’ for any
i" ¢ {1,2,...,j}. In this case, take any cluster in the
optimal solution thatis not O;s for 1 < i < j and fix this
cluster to be O; 1. Map each of the pointsin O; 1 to a
unique unit of weight of the points in B(p; 41, 11d, Q).
This completely defines the mapping.

Notice that each point must be assigned to a unique
unit of weight. This is because, in the first case,
each point is charged to the weight it contributes to,
and then it is removed from Q’. By removing the
points from Q’, we can never charge them later in
the second case. Furthermore, since we charge the
points to the weight they contribute to, no two points
are charged to the same unit of weight in the first case.
In the second case, we charge each point u € O;s to
a unit of weight in B(p;4+1,11d, Q’). Knowing that
B(pj+1.11d, Q') is removed from Q’, the second case
will not be charged to this weight again. Furthermore,
since B(pj+1,11d, Q') does not contain a point c(u)
where u € O;» forany i” ¢ {1,2,...,j}, no weight
in any point in B(pj+1,11d, Q") comes from a point
in O;» for any i” ¢ {1,2,...,j}, so no weight of the
points in B(pj1,11d, Q') can be charged to the first
case later. Thus, we finish the proof. [|

Finally, we present the running time and working
memory analysis of the algorithm.

Lemma 7 The running time of Algorithm 6 is
O((k +z 4 1)(n/T)? 4+ kn/T) and the running time of
Algorithm 7is O (kT (k +z)+ (k+z)mTk +k?m). The
working memory in each distributed machine is O(n/T),
and in the central machine, itis O((k + z)mT).

Proof The main time spent in Algorithm 6 is
Greedy (Q, k+z+1) and FindNeighbor (Q;, I, P;, 2d;).
In Greedy (Q, k +z + 1), the upper bound of the number

1082 Tsinghua Science and Technology, December 2023, 28(6): 1072-1084

of calculations for the distance between points should be
O((k + z + 1)n?). This is because the algorithm will
run (k 4+ z + 1) times, and each time the distance from
each point to the center point set is calculated, we do
not know whether k and z are of the same order as 7, so
the maximum number of calculations may be n2. Also,
because the number of points in each distributed machine
is n/ T, the running time is O ((k +z + 1)(n/T)?). We
know from the previous conclusion that the running time
of FindNeighbor (Q;, I, P;,2d;) is O(kn/T), so the
running time of Algorithm 6is O((k +z + 1)(n/T)? +
kn/T).

The running time analysis of Algorithm 7 is similar to
Algorithm 4. Let us focus on the input of Algorithm
7. The size of P’ is (k + z)T, and the size of
L' is (k + z)mT. Therefore, the running time of
the algorithm DistributeOutliers (P’,k,5d,11d) is
O(kT(k + z)), and the running time of the algorithm
FindNeighbor (L', I, P,5d) is O(|L'||P|) = O((k +
z)mTk). The running time of FindMatching({N(p) :
p € PY,1,k)is still O(k%m), so we know that the
running time of Algorithm 7 is O(kT(k + z) + (k +
2)mTk + k*m).

The working memory in each distributed machine is
O(n/T) because n points are evenly placed in these T’
machines. The working memory in the central machine
is O((k + z)mT) because these T machines all send
m(k + z) points to the central machine. |

Considering Algorithm 4 above, we find that the
calculation time has nothing to do with n, which reveals
the benefits of distributed computing. The selection of
T requires a trade-off. The larger T is, the less time the
distributed machine uses and the more time the central
machine uses, and vice versa.

5 Conclusion

In this paper, we consider two fair clustering problems
with outliers, namely, the fair k-center problem with
outliers and the distributed fair k-center problem
with outliers. For these two problems, we give the
corresponding constant approximation ratio algorithm.
For the fair k-center problem with outliers, we give
an algorithm with an approximate ratio of 4. For the
distributed fair k-center problem with outliers, we give
an algorithm with an approximate ratio of 18. In addition,
the theoretical proof and analysis of the approximation
ratio, running time, and running space of the algorithm
are given.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. 12131003, 11771386, and
11728104), the Beijing Natural Science Foundadtion
Project (No. Z200002), the
Projects of Beijing Educations Committee in China
(No. KM201910005013), the Natural Sciences and
Engineering Research Council of Canada (NSERC)
(No. 06446), and the General Program of Science and
Technology Development Project of Beijing Municipal
Education Commission (No. KM201810005005).

General Research

References

[1] M. Kay, C. Matuszek, and S. A. Munson, Unequal
representation and gender stereotypes in image search
results for occupations, in Proc. 33"¢ Annu. ACM Conf.
Human Factors in Computing Systems, Seoul, Republic of
Korea, 2015, pp. 3819-3828.

[2] M. Kleindessner, P. Awasthi, and J. Morgenstern, Fair k-
center clustering for data summarization, in Proc. 36'" Int.
Conf. Machine Learning, Long Beach, CA, USA, 2019, pp.
3448-3457.

[3] A. Chiplunkar, S. Kale, and S. N. Ramamoorthy, How to
solve fair k-center in massive data models, in Proc. 37"
Int. Conf. Machine Learning, Virtual Event, 2020, pp. 1877-
1886.

[4] T. FE Gonzalez, Clustering to minimize the maximum
intercluster distance, Theor. Comput. Sci., vol. 38, pp. 293—
306, 1985.

[51 D. S. Hochbaum and D. B. Shmoys, A best possible
heuristic for the k-center problem, Math. Operat. Res., vol.
10, no. 2, pp. 180-184, 1985.

[6] W.L.HsuandG. L. Nemhauser, Easy and hard bottleneck
location problems, Discrete Appl. Math., vol. 1, no. 3, pp.
209-215, 1979.

[71 D. Z. Chen, J. Li, H. Liang, and H. Wang, Matroid and
knapsack center problems, Algorithmica, vol. 75, no. 1, pp.
27-52,2016.

[8] P. K. Agarwal and J. M. Phillips, An efficient algorithm for
2D Euclidean 2-center with outliers, in Proc. 1 6'" Annu.
European Symp. Algorithms, Karlsruhe, Germany, 2008, pp.
64-75.

[9]1 S. Guha, R. Rastogi, and K. Shim, Techniques for clustering
massive data sets, in Clustering and Information Retrieval,
W. Wu, H. Xiong, and S. Shekhar, eds. New York, NY, USA:
Springer, 2004, pp. 35-82.

[10] M. Hassani, E. Miiller, and T. Seidl, EDISKCO: Energy
efficient distributed in-sensor-network k-center clustering
with outliers, in Proc. 3¢ Int. Workshop on Knowledge
Discovery from Sensor Data, Paris, France, 2009, pp. 39—
48.

[11] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan,
Algorithms for facility location problems with outliers, in

Fan Yuan et al.:

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

Proc. 12" Annu. ACM-SIAM Symp. Discrete Algorithms,

Washington, DC, USA, 2001, pp. 642—651.
S. Guha, Y. Li, and Q. Zhang, Distributed partial clustering,

ACM Trans. Parallel Comput., vol. 6, no. 3, p. 11, 2019.
X. Guo and S. Li, Distributed k-clustering for data with

heavy noise, in Proc. 3274 [nt. Conf. Neural Information
Processing Systems, Montreal, Canada, 2018, pp. 7849—

7857.
G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger,

and B. Moseley, Fast distributed k-center clustering with
outliers on massive data, in Proc. 28'" Int. Conf. Neural
Information Processing Systems, Montreal, Canada, 2015,

pp- 1063-1071.
N. Ailon, R. Jaiswal, and C. Monteleoni, Streaming k-

means approximation, in Proc. 22"¢ Int. Conf. Neural
Information Processing Systems, Vancouver, Canada, 2009,

pp- 10-18.
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L.

O’Callaghan, Clustering data streams: Theory and practice,
IEEE Trans. Knowl. Data Eng., vol. 15, no. 3, pp. 515-528,

2003.
R. M. McCutchen, and S. Khuller, Streaming algorithms

for k-center clustering with outliers and with anonymity,
in Proc. 11'"" Int. Workshop, APPROX 2008, and 12th
Int. Workshop, RANDOM 2008 on Approximation,
Randomization and Combinatorial — Optimization:
Algorithms and Techniques, Boston, MA, USA, 2008, pp.

165-178.
M. Shindler, A. Wong, and A. Meyerson, Fast and accurate

k-means for large datasets, in Proc. 24'" Int. Conf. Neural
Information Processing Systems, Granada, Spain, 2011, pp.

2375-2383.
B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S.

Vassilvitskii, Scalable k-means++, arXiv preprint arXiv:

1203.6402, 2012.
M. E. Balcan, S. Ehrlich, and Y. Liang, Distributed k-means

and k-median clustering on general topologies, in Proc.
26'" Int. Conf. Neural Information Processing Systems,

Lake, Tahoe, NV, USA, 2013, pp. 1995-2003.
A. Ene, S. Im, and B. Moseley, Fast clustering using

MapReduce, in Proc. 17" ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, San Diego, CA,

USA, 2011, pp. 681-689.
B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A.

Krause, Distributed submodular maximization: Identifying
representative elements in massive data, in Proc. 26'" Int.
Conf. Neural Information Processing Systems, Lake Tahoe,

NV, USA, 2013, pp. 2049-2057.
V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler,

Diameter and k-center in sliding windows, in Proc. 43"¢ Int.
Colloquium on Automata, Languages, and Programming,

Rome, Italy, 2016, pp. 19:1-9:12.

P. Pellizzoni, A. Pietracaprina, and G. Pucci,
Dimensionality-adaptive k-center in sliding windows, in
Proc. 2020 IEEE 7'" Int. Conf. Data Science and Advanced

Analytics (DSAA), Sydney, Australia, 2020, pp. 197-206.

Fair k-Center Problem with Outliers on Massive Data

[25]

[26]

(27]

(28]

(29]

(30]

[31]

[32]

(33]

(34]

[35]

[36]

(37]

(38]

[39]

1083

P. Pellizzoni, A. Pietracaprina, and G. Pucci, k-center
clustering with outliers in sliding windows, Algorithms,
vol. 15, no. 2, p. 52, 2022.

H. Ding, H. Yu, and Z. Wang, Greedy strategy works for
k-center clustering with outliers and coreset construction, in
Proc. 27'" Annu. European Symp. Algorithms (ESA 2019),
Munich/Garching, Germany, 2019, pp. 40:1-40:16.

H. Zarrabi-Zadeh, Core-preserving algorithms, in Proc.
20'" Annu. Canadian Conference on Computational
Geometry, Montreal, Canada, 2008, pp. 159-162.

F. Yuan, L. Diao, D. Du, and L. Liu, Distributed fair k-
Center clustering problems with outliers, in Proc. 22*¢ Int.
Conf. Parallel and Distributed Computing, Applications and
Technologies, Guangzhou, China, 2022, pp. 430—440.

S. Kale, Small space stream summary for matroid center,
arXiv preprint arXiv: 1810.06267, 2020.

L. E. Celis, V. Keswani, D. Straszak, A. Deshpande, T.
Kathuria, and N. K. Vishnoi, Fair and diverse DPP-based
data summarization, in Proc. 35" Int. Conf. Machine
Learning, Stockholm, Sweden, 2018, pp. 716-725.

S. Ahmadian, A. Epasto, R. Kumar, and M. Mahdian,
Clustering without over-representation, in Proc. 25th ACM
SIGKDD Int. Conf. on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 2019, pp. 267-275.

S. K. Bera, D. Chakrabarty, N. J. Flores, and M.
Negahbani, Fair algorithms for clustering, in Proc. 33rd Int.
Conf. Neural Information Processing Systems, Vancouver,
Canada, 2019, pp. 4954-4965.

S. Bandyapadhyay, T. Inamdar, S. Pai, and K. Varadarajan,
A constant approximation for colorful k-center, arXiv
preprint arXiv: 1907.08906, 2019.

F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii,
Fair clustering through fairlets, in Proc. 315" Int. Conf.
Neural Information Processing Systems, Long Beach, CA,
USA, 2017, pp. 5029-5037.

X. Jia, K. Sheth, and O. Svensson, Fair colorful k-center
clustering, Math. Program., vol. 192, nos. 1&2, pp. 339-
360, 2022.

M. Schmidt, C. Schwiegelshohn, and C. Sohler, Fair
coresets and streaming algorithms for fair k-means, in
Proc. 17" Int. Workshop on Approximation and Online
Algorithms, Munich, Germany, 2019, pp. 232-251.

1. O. Bercea, M. Grof, S. Khuller, A. Kumar, C. Rosner, D.
R. Schmidt, and M. Schmidt, On the cost of essentially fair
clusterings, in Proc. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques,
Cambridge, MA, USA, 2019, pp. 18:1-18:22.

M. Bohm, A. Fazzone, S. Leonardi, C. Menghini, and
C. Schwiegelshohn, Algorithms for fair k-clustering with
multiple protected attributes, Oper. Res. Lett., vol. 49, no. 5,
pp. 787-789, 2021.

M. Hajiaghayi, R. Khandekar, and G. Kortsarz, Budgeted
red-blue median and its generalizations, in Proc. 18" Annu.
European Symp. Algorithms, Liverpool, UK, 2010, pp. 314—
325.

1084 Tsinghua Science and Technology, December 2023, 28(6): 1072-1084

[40] R. Krishnaswamy, A. Kumar, V. Nagarajan, Y. Sabharwal,
and B. Saha, The matroid median problem, in Proc. 2011
Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), San
Francisco, CA, USA, 2011, pp. 1117-1130.

Fan Yuan received the BS and MS degrees
from Hunan Normal University, China in
2011 and 2014, respectively. He is currently
a PhD candidate at Beijing University of
Technology, China. His research interests
mainly include combinatorial optimization,
approximation algorithm, and machine
learning.

Luhong Diao received the BEng and
MEng degrees in computer science from
Shandong University, China in 2000 and
2003, respectively, and the PhD degree
in computer science and technology from
the Institute of Computing Technology,
Chinese Academy of Sciences, China in
2007. From 2007 to 2010, he was a lecturer
at College of Applied Sciences, Beijing University of Technology,
China. Since 2010, he has been an associate professor at
the Beijing Institute for Scientific and Engineering Computing,
Faculty of Science, Beijing University of Technology, China. He
is the author of more than 30 articles. His research interests
include machine learning and computer vision. He is a member of
Chinese Computer of Federation, Chine Graphics Society, China
Society of Industrial and Applied Mathematics, and ACM.

i 4
R

[41] M. E. Dyer and A. M. Frieze, A simple heuristic for the p-
centre problem, Oper. Res. Lett., vol. 3, no. 6, pp. 285-288,
1985.

Donglei Du received the PhD degrees from
Chinese Academy of Sciences, China in
1996 and University of Texas at Dallas,
USA in 2003, respectively. Currently, he
is a professor in operations research at the
Faculty of Management, University of New
Brunswick, Canada. His main research
interests are quantitative investment
management, combinatorial optimization, approximations
algorithms, robust optimization, social network analysis,
algorithmic game theory, supply chain management, facility
location, and machine scheduling.

Lei Liu received the BEng and MEng
degrees in computer science from Shandong
Normal University, China in 2000 and
2003, respectively, and the PhD degree
in computer science and technology from
the Institute of Computing Technology,
Chinese Academy of Sciences, China in
2007. Since 2009, he has been an associate

professor at the Beijing Institute for Scientific and Engineering
Computing, Faculty of Science, Beijing University of Technology,

China. His research interests include machine learning and text
mining.

