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Fair k-Center Problem with Outliers on Massive Data

Fan Yuan, Luhong Diao, Donglei Du, and Lei Liu�

Abstract: The clustering problem of big data in the era of artificial intelligence has been widely studied. Because

of the huge amount of data, distributed algorithms are often used to deal with big data problems. The distributed

computing model has an attractive feature: it can handle massive datasets that cannot be put into the main memory.

On the other hand, since many decisions are made automatically by machines in today’s society, algorithm fairness

is also an important research area of machine learning. In this paper, we study two fair clustering problems: the

centralized fair k-center problem with outliers and the distributed fair k-center problem with outliers. For these two

problems, we have designed corresponding constant approximation ratio algorithms. The theoretical proof and

analysis of the approximation ratio, and the running space of the algorithm are given.
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1 Introduction

When we need to process a large amount of data, we
hope to find some representative points so that we can
make an estimate of the overall data through them. The
problem of finding representative points from a large
number of data points is called a clustering problem. The
clustering problem is a very widely used and important
problem in machine learning. For example, when we are
faced with a situation where the dataset to be processed
is particularly large, we do not want to run our machine
learning algorithm on the entire input dataset but instead
on a small set that retains the statistical properties of
the original dataset. Finding such a small set is very
important. In addition, fairness is also an important
field in machine learning. If the input data is biased in
the process of machine learning, the machine learning
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algorithm trained on these data will show the same bias.
Therefore, using the algorithm rationally to eliminate
bias is also a very important research topic. Algorithms
currently used for clustering problems have been shown
to be biased on attributes, such as gender, race, and
age[1]. This motivates scientists to propose fair clustering
algorithms. Recently, the fair k-center problem has
been shown to be useful in computationally fair data
aggregation[2].

Suppose the input data is a set of real vectors with
a gender property. Consider a scenario in which one
wishes to construct a summary of k data points so that
both genders are equally represented. The k points
represent the distribution of the original dataset, and
we call these k points the center point set. Suppose now
we are given a center point set S . The Euclidean distance
of a point from S is the price we pay for not including
it in S , and the cost of set S is the highest cost of all
other points that are not in S . We want to compute a
center point set S with minimum cost that is also fair;
e.g., a set S contains k=2 women and k=2 men. In one
sentence, we want to compute a fair center point set S
wherein each gender has the same number of centers,
and the data point that is farthest from this set is not too
far. The fair k-center problem models this task.

Now we assume that the input to the problem is a set
of vectors with attributes, and we need to find k data
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points to represent the entire set of data points. We hope
that the attribute distribution and the number of these
k data points meet our prerequisites. We call these k
points the center point set and use S to represent them.
These k points will divide the original data set into k
groups. For each group, we take the maximum distance
from the point in the group to the center point as the
cost of this grouping. Our goal is to find a center point
set that has the lowest cost and remains fair. That is,
we want to find a fair center point set and find the data
point farthest from this center point set such that the
distance between the data point and the center point set
is not too great. In the fair k-center problem, we use
Q to represent the input data set of the problem. The
number of data points in Q is n, the data points have m
different attributes, the size of the center point set is k,
and kj is the capacity constraint of each attribute. For
fairness, we have k D

Pm
jD1 kj . Our goal is to find a

center point set S , and the center points in S need to
satisfy the condition that the number of center points
that belong to attribute j is kj . In this way, we maintain
a balance of the central points, so we consider it to be
fair. Furthermore, we want maxi2Q ı.i; S/, where ı
represents the distance function, to be minimized. Here
each data point belongs to only one attribute. Under this
definition of fairness, some relevant research on the fair
k-center problem has been done[3]. Here we give the
definition of the approximation ratio of the algorithm.

Definition 1 For any optimization problem P and
any instance I of this problem, we use OPT.I/ to
represent the value of the optimal solution of instance I
and A.I/ to represent the objective function value when
we use algorithm A for instance I . For the maximization
problem, the approximate ratio of algorithm A is
defined as

r.A/ WD inf
I

A.I/
OPT.I/

:

For the minimization problem, the approximate ratio of
algorithm A is defined as

r.A/ WD sup
I

A.I/
OPT.I/

:

In the work of Ref. [3], for the fair k-center problem,
the authors proposed an algorithm with an approximate
ratio of 3, and for the distributed fair k-center problem,
they proposed an algorithm with an approximate ratio
of 17.

For the general k-center problem, a simple greedy
algorithm can achieve an approximate ratio of 2[4, 5], and
attaining an approximation ratio better than 2 is NP-

hard[6]. Therefore, the general fair k-center problem is
also NP-hard. The best result for the general fair k-center
problem is a 3-approximation algorithm whose running
time isO.n2 � logn/[7]. Later, Ref. [2] gave a linear time
algorithm for this problem with an approximate ratio of
O.2c/, where c is a constant.

The k-center clustering works well for low-noise data,
but it is not effective for clustering datasets with noisy
data. This is because the objective function of the k-
center problem is the maximum distance from the data
point to the nearest center point, and a point that is very
far away can produce particularly poor results for the
k-center problem. Therefore, it is necessary to study
the k-center problem with noise, such as in Refs. [8–
10]. Reference [11] studied the k-center problem with
outliers. In this problem, the objective function is the
same as the general k-center problem, except that the
problem allows removing at most z data points from
the dataset without clustering them. These points are
called outliers, which are not taken into account in
the objective function. The current best result for this
problem is the 3-approximation algorithm in Ref. [11].
There are also many studies that focus on the distributed
k-center problem with outliers[12–14]. The current best
results for this problem are in Ref. [13], which gave a 4-
round information exchange bicriteria algorithm with
an approximate ratio of .24.1 C �/; 1 C �/, and the
communication cost of the algorithm is independent of
the number of outliers.

Once the dataset becomes particularly large, the
approximation algorithm for general clustering problems
will become inefficient. In this case, we need distributed
clustering algorithms and streaming algorithms to deal
with the corresponding problems. Because of the
ever-increasing number of datasets and the emergence
of many modern parallel computing frameworks, the
problem of clustering in distributed environments has
attracted much attention in recent years. Several works
studied streaming algorithms[15–18], others focused on
distributed computing[19–22].

In addition to the methods above, there are sliding
window methods and core methods for addressing big
data clustering problems. References [23–25] examined
the sliding window method , and Refs. [26, 27] have
examined the core method.

In a distributed setting, the data is divided into T parts
and stored on T different machines, and the machines
can exchange information with each other to obtain
better clustering results. The earliest study of the k-
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center problem in the distributed computing setting
was presented in Ref. [21], which gave a MapReduce
algorithm that requires constant rounds of information
exchange, the approximation ratio is constant, and the
algorithm is a sampling-based MapReduce algorithm,
which is simple and easy to implement, and can be used
to solve various clustering problems. In the conference
version of this article[28], we considered the distributed
fair k-center clustering problem with outliers.

For the aforementioned reasons, in this work, we study
the centralized fair k-center problem with outliers and
the distributed fair k-center problem with outliers. Both
models maintain fairness and are suitable for handling
big data and noisy data. For the centralized fair k-center
problem with outliers, we give an algorithm with an
approximate ratio of 4, and for the distributed fair k-
center problem with outliers, we give an algorithm with
an approximate ratio of 18. In our article, we assume that
the data points are stored on T data storage machines
and that we can run our algorithm on these T machines.
All approximation ratios of the algorithm, running time,
space usage, and the amount of information exchange
are proved.

2 Related Work

In addition to fairness constraints, there are also many
papers that focus on the k-center problem with matroid
constraints. For this problem, Ref. [7] gave the first
polynomial time 3-approximation algorithm, Ref. [29]
gave a one-pass algorithm with an approximation ratio of
.17C�/ and a two-pass algorithm with an approximation
ratio of 3. The space complexity of both algorithms is
O.k2/ .

There are other ways to define fairness, such as using
diversity-determined standards to measure fairness[30].
There are also many different types of fair clustering.
A series of works[31–36] has studied the fair clustering
problem with capacity constraints: the number of data
points in each cluster has an upper or lower bound limit,
or the number of data points within each cluster must
be similar. There are also fair clustering problems under
other definitions, such as those in Refs. [37, 38].

The k-median problem with fairness constraints was
first proposed and studied by Ref. [39]. Later, Ref. [40]
studied the k-median problem with matroid constraints.
The works in Refs. [7, 29] are also applicable to this
problem. For more work on fair clustering, please refer

to Refs. [2, 30] for more detailed information.
The remainder of the paper is organized as follows:

Section 3 gives preliminary definitions of the paper,
Section 4 presents the algorithms and all the analysis,
and Section 5 concludes this paper.

3 Preliminary

First, we introduce some symbols and marks that are
used later. In our work, we set the input of the fair
k-center problem to contain a data point set Q, and
it has n points, a distance function ı W Q � Q !

R>0, and the number of desired center points k. All
points in the dataset have their own unique attribute,
and we use f1; 2; : : : ; mg to represent m attributes. We
use I W Q ! f1; 2; : : : ; mg to denote the attributes
assignment function. In addition, for each attribute
j , we have a fairness limit kj that corresponds to the
attribute. For all attributes, we have k D

Pm
jD1 kj . This

means that in the final selected center point set, the
number of center points of each attribute should satisfy
its corresponding fairness constraints. For the distance
function ı, for any two points q1; q2 2 Q, we require
that ı.q1; q1/ D 0 and ı.q1; q2/ D ı.q2; q1/. We also
require that the distance function ı obeys the triangle
inequality: for each triple q1; q2; q3 2 Q, we have
ı.q1; q2/Cı.q2; q3/ > ı.q1; q3/. For any point q1 2 Q

and any set S � Q, we use ı.q1; S/ D minj2S ı.q1; j /

to denote the distance between a point and a set. At the
same time, we set the symbol B.v; d;Q/ D fu W u 2
Q; ı.u; v/ 6 dg to denote a sphere of radius d centered
at point v in dataset Q. In this problem, our goal is
to find a set of center points that contains k points and
minimize maxi2Q ı.i; S/, and the attribute distribution
of the center point set satisfies the fairness constraint
given by our problem.

Here we need to emphasize that the number of center
points selected in the algorithm process may be less than
k, but it does not matter. We only need to make up
the center points to k without violating the attribute
constraints. The increase of the center point in all
clustering problems will only lead to a decrease in the
cost. In what follows, the center point selected by our
algorithm just need not violate the attribute constraints.
It does not matter if the number of center points is less
than k.

For the fair k-center problem with outliers, the
problem setting is the same as before. The only
difference is that we need to find a set of outliers Z. In
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this problem we want to find a center point set S � Q,
with S containing k points, and an outliers point set
Z, with Z containing z points. Moreover, we hope
that maxi2QnZ ı.i; S/ is minimized. At the same time,
we require the center point set to meet the attribute
constraint, that is, k D

Pm
jD1 kj . In the problem with

outliers, we do not need to select outliers immediately.
Instead, we can wait for the final k-center points to be
selected and select z points farthest from the current
center point in the data point set as outliers.

4 Problem and Algorithm

4.1 Centralized fair k-center problem with outliers

In order to solve the fair k-center problem with outliers,
we first start from the k-center problem with outliers,
and then solve the fairness constraint on the basis of this
problem. Thus, we first introduce a common algorithm
for solving the k-center problem with outliers. We know
that problems with outliers are generally harder than
problems without outliers. This is because, in this setting,
we need to determine which points will be deleted, which
has a great impact on the selection of the center point
set. Therefore, the solution of the k-center problem
with outliers may be very different from the solution of
the k-center problem without outliers. In general, the
correct algorithm strategy is to choose a point surrounded
by many data points as the center point. Since such
points are surrounded by many points, these points are
unlikely to be outlier points. This idea was proposed in
the algorithm of Ref. [11], which is famous for solving
k-center problem with outliers.

Theorem 1[11] For the k-center problem with
outliers, Algorithm 1 is an algorithm with an
approximate ratio of 3, and the algorithm finds no more
than z outliers.

Algorithm 1 was proposed by Charikar et al.[11]

Algorithm 1 Outliers (Q, k, d, 3d)
Input: dataset Q, integer k, and radius d
Step 1: Initialize Q0 D Q and P D ∅
Step 2: while j P j< k do
Step 3: For all points v 2 Q0 calculate the corresponding
ball B.v; d;Q0/;
Step 4: Find point vmax D arg maxv2Q0 j B.v; d;Q

0/ j;
Step 5: P  P [ fvmaxg;
Step 6: Calculate the corresponding ball B.vmax; 3d;Q

0/;
Step 7: Q0  Q0nB.vmax; 3d;Q

0/;
Step 8: end while
Output: P

The input of the algorithm is the data point set Q, the
number of center points k, and a radius d . The radius
d is actually an estimate of the value of the optimal
solution to our problem. We use OPT to represent the
value of the optimal solution to the k-center problem
with outliers. When d D OPT , the performance of
Algorithm 1 can achieve the best. Since the value of
the solution to the k-center problem is the distance
between two points, the value of the optimal solution
can be obtained by searching the possible values of the
minimum and maximum distances between the input
points. We can find a good estimate of the value of
the optimal solution in polynomial time using a binary
search.

The main idea of our algorithm to solve the fair k-
center problem with outliers comes from Algorithm 1.
Next, we give a detailed introduction to Algorithm 1, so
that we can have a deeper understanding of the algorithm.
For all data points v 2 Q, the ball B.v; d;Q/ contains
all data points in Q whose distance to point v is less
than or equal to d . The algorithm first calculates the
corresponding ball B.v; d;Q0/ for all data points, and
then selects the center point vmax of the ball that covers
the most data points to add to the current solution.
The idea of Algorithm 1 is consistent with what we
mentioned earlier: finding the point surrounded by many
data points as the center point. Then, Algorithm 1 deletes
all points whose distance from the point vmax is less
than or equal to 3d from the current data point set Q0,
to ensure that the points selected by Algorithm 1 are
representative rather than selecting all the center points
together. Finally, repeat the operation above k times.
In this way, the final set of center points P is selected.
In addition, we know that when d is equal to OPT and
the final set of center points P is selected, no more
than z points will remain in Q0, which are the outliers
finally selected by Algorithm 1. The steps of Algorithm
1 are simple, but the inner thoughts of Algorithm 1 are
profound. In addition, we know that the running time of
Algorithm 1 is O.kjQj/.

After knowing how to deal with outliers, we next
introduce how to deal with fairness constraints. We use
the algorithms FindNeighbor ( ) and FindMatching ( ) to
solve the fairness constraints of the problem. These two
algorithms were proposed by Ref. [3] to deal with the
fairness constraints of the problem. The input of the
FindNeighbor ( ) (Algorithm 2) contains a data point set
Q, a number of center points k, a distance function ı,
a radius d , an attribute assignment function I , and a
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Algorithm 2 FindNeighbor (Q, I, P, d)
Input: Set Q, P , number of center points k, attribute
assignment function I , radius d , and distance function ı.
Step 1: for all points p 2 P
Step 2: Np  p;
Step 3: end for.
Step 4: for all points p 2 P
Step 5: for all points q 2 Q
Step 6: if there is no point in Np with the same attribute
as point q, we have ı.p; q/ 6 d ;
Step 7: Np  Np [ fqg;
Step 8: end if
Step 9: end for
Step 10: end for
Output: fNp W p 2 P g

subset P � Q. First, Algorithm 2 initializes Np D p

for all points p 2 P , and then we make Np contain
one point from each attribute. The premise is that such
data points exist in a ball with p as the center and d as
the radius. In the end, we get a neighborhood of each
point p 2 P , which contains as many data points of
various attributes as possible. Obviously, we can know
that the running time of FindNeighbor ( ) is O.jP jjQj/.
In short, if P is an infeasible center point set (points
lacking some attributes), then FindNeighbor ( ) finds as
many data points of various attributes as possible in the
neighborhood of each p 2 P , so as to construct a set Np

of points that contain as many attributes as possible. In
this way, from Np, we can find a solution that satisfies
the fairness constraint.

The main purpose of the algorithm FindMatching ( )
(Algorithm 3) is to find a feasible solution to our
problem from a set of disjoint sets. The algorithm
FindMatching ( ) takes the pairwise disjoint sets
N D .N1; N2; : : : ; NJ /, the attribute assignment
function I , and the attribute capacity constraint k D
.k1; k2; : : : ; km/ of the problem as inputs. It returns a
set of feasible solutions S that intersect as many Np as
possible. This is obtained primarily by constructing a
suitable bipartite graph and then finding the maximum
cardinality matching in the bipartite graph. The running
time of the algorithm is O.J 2maxijNi j/, where J is the
number of the input sets,

Algorithm FindMatching ( ) constructs the bipartite
graph we need according to the following steps. We set
J vertices on the left side of the bipartite graph, which
means that each vertex on the left side of the graph
corresponds to a set Ni . There are jAj D j

Sm
jD1Aj j

points on the right vertex set of the bipartite graph, where

Algorithm 3 FindMatching (N, I, k)
Input: Set N D .N1; N2; : : : ; NJ /, attribute assignment
function I , and vector k D .k1; k2; : : : ; km/ of fairness
constraints
Step 1: Construct bipartite graph G D .N;A;E/ as follows:
Step 2: Set J vertices on the left side of the bipartite graph;
Step 3: Set j A jDj [m

jD1
Aj j vertices on the right side of the

bipartite graph, Aj contains kj vertices;
Step 4: for all Ni and all attribute j
Step 5: if 9p 2 Ni such that I.p/ D j ;
Step 6: Connect Ni to all vertices in Aj ;
Step 7: end if
Step 8: end for
Step 9: Find the maximum cardinality matching H of G;
Step 10: S  ∅;
Step 11: for all edges .Ni ; a/ of H
Step 12: Let s be a point inNi from attribute j , where a 2 Aj ;
Step 13: S  S [ fsg;
Step 14: end for
Output: S

Aj contains kj vertices of each attribute j . For the edges
of the graph, ifNi contains a point from attribute j , then
we connect an edge among Ni and all points in Aj , that
is, to kj vertices.

Next, we find a feasible solution set S by finding a
maximum cardinality matching H of the bipartite graph.
First, for each edge e D .Ni ; a/ in the matching H ,
here a is a vertex in Aj . We add the points that belong
to attribute j from Ni to S . At this time, we know
the number of points in set Aj is kj . Also, we know
that H is a maximum matching, so we know that S
contains at most kj points from attribute j . Therefore,
S satisfies the attribute constraint of the problem. Then,
because jS j D jH j, we know that the solution S that
corresponds to the maximum cardinality matching in the
bipartite graph intersects as manyNi as possible. Finally,
as mentioned earlier, jS j D jH j may be less than k, but
which has no impact on the final result of the problem.

Lemma 1 The distance from the point in the
solution output by Algorithm 2 to the point in P is less
than d .

When we have the aforemetioned algorithms, we next
formally introduce the main algorithm of this section.
Algorithm 4 is a combination of the three algorithms
described above.

First, we use the algorithm Outliers .Q; k; d; 3d/
to find a candidate center points set, and we denote
this set by P . Second, for each point p 2 P , we
use the algorithm FindNeighbor .Q; I; P; d/ to find
a neighborhood Np with radius d around it. In these
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Algorithm 4 Fair k-center with outliers

Input: Set Q, attribute assignment function I , vector k D
.k1; k2; : : : ; km/ of fairness constraints, radius d , and number
of center points k
Step 1: P  Outliers .Q; k; d; 3d/;
Step 2: fN.p/ W p 2 P g  FindNeighbor.Q; I; P; d/;
Step 3: S  FindMatching.fN.p/ W p 2 P g; I; k/;
Output: S

neighborhoods, there should be as many data points
containing various attributes as possible. Finally, we use
the algorithm FindMatching.fN.p/ W p 2 P g; I; k/ to
obtain a final solution S to our problem, and through
the algorithm FindMatching.fN.p/ W p 2 P g; I; k/, we
know that S is a feasible solution.

From the information above, we can see that the
first step of Algorithm 4 is to find a suitable candidate
center points set, and the second and third steps of
Algorithm 4 are to satisfy the fairness constraint. In order
to ensure that Algorithm 4 can maintain the fairness
constraint, our outliers can be deleted at the end of the
algorithm. That is, we only select k candidate center
points in the first step, and select outliers after k final
center points are selected in the third step. Those z data
points furthest from the final center points are selected
as outliers. In this way, Algorithm 4 satisfies both the
fairness constraint and the outlier constraint.

In the next theorem, we prove the approximation ratio
of Algorithm 4.

Theorem 2 For the fair k-center problem with
outliers, Algorithm 4 is an algorithm with an
approximate ratio of 4.

Proof First, we prove the approximation ratio of
Algorithm 4. Suppose S is the output set of Algorithm 4.

From Algorithm 3 , we know that the points in S are
all selected from fN.q/ W q 2 P g. And from Lemma 1,
we know that for every point s 2 S , there must exist a
point p 2 P whose distance is less than d . This means
we have ı.s; p/ 6 d .

From Algorithm 1 and Theorem 1, we know that the
solution of Algorithm 1 is a 3-approximation solution,
which means that for the solution P output by Algorithm
1, the distances of all data points to their center point
do not exceed 3OPT. Specifically, for any point v in Q,
there must exist a point in p 2 P whose distance from v

is less than 3d . This means we have that ı.v; p/ 6 3d .
Adding up the two distances, we know that the distances
from any point v 2 Q to the nearest center point in S
are less than 4d .

In the proof above, we also need to prove that S has
interaction with all N.p/. Suppose O� is the optimal
solution of the fair k-center problem with outliers. For
each p 2 P , let cp 2 O� be the center point of p
in the optimal solution. Thus we have ı.p; cp/ 6 d .
At the same time, because the distances between any
two points in P are greater than 3d , all cq are different.
According to the previous construction method, we have
that N.p/ contains one point from every attribute, and
the distanced between these points and p are less than or
equal to d . Therefore,N.p/must contain a point bp that
has the same attribute as cp, and we have ı.p; bp/ 6 d .
For some p 2 P , it is possible that cp D bp. Next, we
consider set B D fbp W p 2 P g. For each point p, set B
intersects all N.p/. B contains as many attribute points
as fcp W p 2 P g � O�, so B is also a feasible solution
and satisfies the fairness constraint. Therefore, we know
that there is a feasible solution B , which intersectsN.p/
of each p 2 P . We also know that the output S of
Algorithm 4 is a feasible solution, intersecting as many
N.p/ as possible. Therefore, S can also intersect all the
N.p/. �

Next, we give the time complexity analysis and
memory analysis of Algorithm 4. Here we can assume
that the distance between two points is calculated in
O.1/ time.

Lemma 2 The working space of Algorithm 4
is O.km/, and the running time of Algorithm 4 is
O.mk2 C kn/.

Proof The memory space required by Algorithm
4 is used to store the set of center points and their
corresponding N.p/. From Algorithm 1, the number
of points in P is k. Since in Algorithm 2, each N.p/
contains at most one point from any attribute, it has at
mostm points. Therefore, we have that the storage space
of Algorithm 4 is O.km/.

Carefully observing the inputs and outputs of
Algorithms 1–3 in Algorithm 4, we know that
Algorithms 1 and 2 both take time O.jkjjQj/ D O.kn/,
because in Algorithm 4, the size of the input P of
Algorithm 2 is k. Algorithm 3 takes time O.J 2 �

maxi jNi j/ D O.jP j2 � maxp2P jNpj/ D O.k2m/

because the input set number of Algorithm 3 is k, and
each N.p/ contains at most m points. �

4.2 Distributed fair k-center problem with outliers

Algorithm 4 we introduced in the previous section for
dealing with fair k-centers may not be very effective
when the dataset is particularly large, so in this section,
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we consider a distributed algorithm for the k-center
problem. First, we introduce our problem in a distributed
setting. In the distributed fair k-center problem with
outliers, because of the large amount of data, all data
points Q are evenly stored on T data storage machines.
Our target is the same as the goal of the previous
question. In this problem, we want to find a center point
set S � Q, with S containing k points, and an outliers
point set Z, with Z containing z points. Moreover, we
hope that maxi2QnZ ı.i; S/ is minimized. At the same
time, we require that the final selected center point set S
still satisfies the fairness constraint.

Here, for the convenience of proof and reading, we
designate those machines that averagely store the data
points Q as the distributed machines, and we call
the machine that collects the processing results of all
distributed machines, runs the algorithm, and outputs
the final result as the central machine. Additionally we
denote the set of data points stored on each distributed
machine i by Qi .

Algorithm 5 is a classic greedy algorithm for k-
center problems, which will appear as a subalgorithm
of Algorithm 6. We first introduce the overall idea
and architecture of Algorithm 6, and then provide

Algorithm 5 Greedy (Q, k)
Input: Point set Q, number of center points k, and distance
function ı
Step 1: Initialize S D ∅;
Step 2: Pick an arbitrary point i 2 Q;
Step 3: S  i ;
Step 4: while j S j< k
Step 5: Choose j from Q with the biggest ı.j; S/;
Step 6: S  S [ j , Q � fj g;
Step 7: end while
Output: S

Algorithm 6 Distributed fair k-center with ourliers in each
distributed machine i

Input: Point set Qi .1 6 i 6 T /; number of center points k,
and distance function ı
Step 1: Run algorithm Greedy.Q; kCzC1/ on each distributed
machine i and output a set Pi  fp1; p2; : : : ; pkCzg, Pi has
k C z data points;
Step 2: di minj 0W16j 06kCz ı.pj ; pkCzC1/=2;
Step 3: fL.p/ W p 2 Pi g FindNeighbor.Qi ; I; Pi ; 2di /;
Step 4: Li  [p2Pi

L.p/;
Step 5: for all points p 2 Pi

Step 6: Machine i record wp Dj fv W v 2 Qi ; ı.p; v/ D

ı.Pi ; v/g j C1;
Step 7: end for
Output: .Pi ; Li ; wp/

a detailed introduction to Algorithm 5. It contains
two subalgorithms, FindNeighbor.Qi ; I; Pi ; 2di / and
Greedy.Q; k C z C 1/. The function of the algorithm
Greedy.Q; k C z C 1/ is mainly to find a suitable set of
candidate center points, and the function of the algorithm
FindNeighbor.Qi ; I; Pi ; 2di / is mainly to find a suitable
set of feasible points that satisfy the fairness constraint.
When Algorithm 6 on the distributed machine is finished,
we send the result to the central machine.

The algorithm we run on the central machine
is Algorithm 7. It contains three subalgorithms:
the algorithm DistributeOutliers .P 0; k; 5d; 11d/,
the algorithm FindNeighbor .L0; I; P; 5d/, and the
algorithm FindMatching .fN.p/ W p 2 P g; I; k/. Here
DistributeOutliers .P 0; k; 5d; 11d/ (Algorithm 8) is
used to select a suitable set of candidate center points,
while the latter two algorithms, the algorithm
FindNeighbor .L0; I; P; 5d/ and the algorithm
FindMatching .fN.p/ W p 2 P g; I; k/, are used to
find the center point set that satisfies the fairness
constraint.

Theorem 3[41] For the k-center problem, Algorithm
5 is an algorithm with an approximate ratio of 2.

Here we first introduce a classical algorithm proposed
by Dyer et al.[41] to deal with the k-center problem,
which is a simple greedy algorithm, the point farthest

Algorithm 7 Distributed fair k-center with ourliers in central
machine i

Input: Set P 0 D [T
iD1

Pi , L0 D [T
iD1

Li , number of center
points k, distance function ı, and parameter wp

Step 1: P  Distribute Outliers .P 0; k; 5d; 11d/;
Step 2: fN.p/ W p 2 P g  FindNeighbor.L0; I; P; 5d/;
Step 3: S  FindMatching.fN.p/ W p 2 P g; I; k/;
Output: S

Algorithm 8 DistributeOutliers (Q, k, 5d, 11d)
Input: Set Q, number of center points k, radius d , and
parameter wp

Step 1: Initialize Q0 D Q and P D ∅;
Step 2: while j P j< k
Step 3: for all points v in Q
Step 4: Calculate the corresponding ball B.v; 5d;Q0/;
Step 5: end for
Step 6: Find a point vmax in Q, the definition of point vmax

is as follows: vmax D argmaxv2Q

P
v02B.v;5d;Q0/wv0 ;

Step 7: P  P
S
fvmaxg;

Step 8: Calculate the corresponding ball B .vmax; 11d;Q
0/;

Step 9: Q0  Q0nB.vmax; 11d;Q
0/;

Step 10: end while
Output:: P
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from the current center point set is selected and added to
the current solution, and this step is repeated k times to
find the final k center points.

We run Algorithm 6 on each distributed machine.
Algorithm 6 has three main steps. In the first step, each
distributed machine i runs Algorithm 5 to find .kCzC1/
points. Then we use the first .k C z/ points to form a
new set Pi . At this time, the last point pkCzC1 is the
farthest point from the new dataset Pi , and its distance
from Pi is 2di . Therefore, the distance between each
point in Qi and the set Pi is less than 2di . We use the
point pkCzC1 to construct a suitable distance parameter
2di for the following algorithm to use.

In the second step, we use the algorithm
FindNeighbor .Qi ; I; Pi ; 2di / to calculate the set
L.p/ for all points in Pi . L.p/ contains as many data
points of various attributes as possible, and the distances
between these points and point p are less than 2di .
Then, in machine i , we record the parameter wp of each
point, which is the number of data points centered on p.

Finally, we send the set Pi , set Li  [p2Pi
L.p/,

and parameter wp to the central machine. Because the
set Li contains at most one point of each attribute, we
know that there are only be at most m points in Li . And
because jPi j D k C z, we know that all distributed
machines only deliver at most m.k C z/ points to the
central machine.

We run Algorithm 7 in the central machine.
Algorithm 7 also has three main steps. In the first step,
the central machine receives information .Pi ; Li ; wp/

from all distributed machines. Then, we use the
algorithm DistributeOutliers .P 0; k; 5d; 11d/ to find a
candidate center point set P .

In the second step, we use the algorithm
FindNeighbor.L0; I; P; 5d/ to find a multi-attribute
point set N.p/ for each p 2 P . According to the
parameters 5d , we know that the distances from all
points in N.p/ to point p are less than or equal to 5d .
Since the distances among points in P are greater than
11d , we know that for different point p, set N.p/ are
disjoint.

Finally, we use the algorithm FindMatching.fN.p/ W
p 2 P g; I; k/ to find and return a feasible solution S
that intersects as many N.p/ as possible.

Definition 2 Suppose q is stored by a distributed
machine i . This means point q is in the data point setQi .
We use cen.q/ to denote a point in Pi whose distance
from point q is less than or equal to 2di .

Since the data storage machine only sends some

candidate center points to the central machine during
Algorithm 6, it is very likely that some points of the
optimal center point setO� of the problem are discarded
during the operation of Algorithm 6.

In the following Lemma 3, we show that even if
some points in the optimal solution O� are deleted, the
performance of the points selected by Algorithm 6 and
the optimal solution is not very different.

Lemma 3 The set L0 D [l
iD1Li of data points we

send to the central machine contains set B . We have
that the maximum distance between the points in set
P 0 D [l

iD1Pi and set B is at most 5d .
Proof For any point c 2 O� that is processed

by distributed machine i , by Definition 2, we have
that ı.c; cen.c// 6 2di . Note that the output
set L.cen.c// of the algorithm FindNeighbor ( ) in
Algorithm 6 contains one point from each attribute,
and the distances between these points and cen.c/

are less than or equal to 2di . Therefore, we know
that L.cen.c// � Li must contain a point c0, and
c0 has the same attribute as point c, so we have that
ı.c0; cen.c// 6 2di . Next, according to the triangle
inequality, we can obtain ı.c; c0/ 6 4di 6 4d .

We define a new set B D fc0 W c 2 O�g, we have
that B � L0 D [l

iD1Li . Since B contains exactly as
many points from any attribute as O�, we know that
B also satisfies the fairness constraint as well as O�.
Also, we know that the distance between any two points
in sets B and O� will not be greater than 4d . The
distance between the point in O� and the point in P 0 D
[l

iD1Pi is less than or equal to d because [l
iD1Pi � X .

Therefore, we have that the maximum distance from the
point in set P 0 D [l

iD1Pi to the point in set B doese not
exceed 5d . �

Next, we give present the main theorem of this
section and the corresponding proof. Our final output
of Algorithm 7 for the distributed fair k-center problem
with outliers has an approximate ratio of 18.

Theorem 4 Algorithm 7 is an 18-approximation
algorithm for the distributed fair k-center problem with
outliers.

Proof According to Lemma 3,L0 contains a feasible
solution B , whose distance from P 0 is no more than 5d .
For each p 2 P � P 0, we use bp to denote a point in
B that is within a distance of 5d from point p. Due
to the distance between any two points in set P being
greater than 11d, it can be known that all bp points do not
intersect. According to the properties of the algorithm
FindNeighbor ( ), set N.p/ it returns contains a point
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b0p that has the same properties as point bp. Let B 0 D
fb0p W p 2 P. /g; for each point p 2 P , we know that
set B intersects all N.p/ since bp and b0p have the same
properties and bp are disjoint. B 0 also contains as many
points of arbitrary properties as B . Since B is a feasible
solution, B 0 is also a feasible solution. Therefore, there
is a feasible solution whereby B 0 intersects all N.p/. At
the same time, we have that the output S of the algorithm
FindMatching ( ) is a feasible solution set that intersects
as many N.p/ as possible. It can thus be seen that S
also intersects all N.p/.

Now we know that the distance between any point in
set P and any point in set S will not exceed 5d . For all
p 2 P , S intersects N.p/, the solution P returned by
the first step of Algorithm 7 is at most 11d from the set
P 0. Also, the distance between set Q and set P 0 is at
most 2d , because the distance between Qi and each Pi

is at most 2d . Adding these three distances together, we
have that the distance between sets Q and S is at most
18d . �

We have proved above that the approximate ratio of
Algorithm 7 is 18. Next, we need to prove that Algorithm
7 selects no more than z outliers during the operation of
the algorithm.

First, we use O1; O2; : : : ; Ok to denote those clusters
in the optimal solution. All the clusters in the optimal
solution are a subset ofQ and do not include the outliers
that correspond to the optimal solution. We want to
show that the set of data points removed from Q0 in
the algorithm DistributeOutliers ( ) can be mapped one-
by-one to some clusters in the optimal solution when
Algorithm 7 selects each center. Also, at the end of the
algorithm DistributeOutliers ( ) there should be at most z
points left in Q0, which are the outliers of Algorithm 7.

For all points v 2 Qi , we use c .v/ to denote the
point in Pi that is closest to v. That is, the point
c .v/ is the closest center point to v found by the
algorithm Greedy ( ). For the output of the algorithm
DistributeOutliers ( ), P D fp1; p2; : : : ; pkg, we sort
them in the order in which p is added to set P .

If for all u 2 Oi , we have that c.u/ 2 Q0 before
pj is added to P , then we call that the optimal cluster
Oi is good in the j -th iteration of the algorithm
DistributeOutliers ( ). That is, not all c .u/ have been
deleted. If a cluster is not good, it means that we cannot
estimate its cost using the path from u to c .u/ to pj ,
which makes it more difficult to estimate the cost of
these points. Consequently, we first analyze the cost of
those good clusters. Lemma 4 in the following shows

that when pj is added to P , we have that the sum of the
weights of all points removed fromQ0 is at least as large
as the number of data points contained in any one good
cluster in the optimal solution.

Lemma 4 When a point pj is added to P , then
for any good cluster Oi we have the following formulaP

v02B.pj ;5d;Q0/wv0 > jOi j established.
Proof First, consider any cluster Oi that is good at

time j . Since the cluster is good, we have c .v/ 2 Q0

for all points v 2 Oi before pj is added to P . Let
u D c.v�/, where v� is the center point of the optimal
solution in cluster Oi . We need to show that for all
points v 2 Oi , the distance between point u and point
c .v/ will not be greater than 5OPT .

To bound the distance between point u and point c .v/,
it suffices to bound the sum of the distance of u to any
point v in Oi and v to c .v/ by the triangle inequality.
According to the definition of the optimal solution, we
can know that the distance from any point v 2 O� to v�

will not be greater than OPT. Because Algorithm 5 is a
2-approximation algorithm, in Algorithm 6, after Step
1, we have that each point in Qi is at most a distance of
2OPT from its center point in set Pi . In other words,
the distance between any point v 2 Qi to center point
c .v/ 2 Pi is 2OPT .

Thus, we have that u is at most a distance of 2OPT
from v�. Next, we have that ı.u; v/ 6 ı.v; v�/ C

ı.v�; u/ 6 OPT C 2OPT D 3OPT . This means
that u is at most a distance of 3OPT from any point v in
Oi . Furthermore, we know that every point v 2 Oi is at
most a distance of 2OPT from c .v/. Thus, u is at most
a distance of 5OPT from any point c .v/ for v 2 Oi .
We have that ı.u; c.v// 6 ı.u; v/ C ı.v; c.v// 6
3OPT C 2OPT D 5OPT .

Now we show that
P

v02B.u;5d;Q0/wv0 > jOi j. This
is because every point c.v/ must be in B.u; 5d;Q0/
according to the definition of B.u; 5d;Q0/ and the fact
that ı .u; c .v// 6 5OPT . Furthermore, every point in
v 2 Oi contributes to the weight of c .v/. Knowing
that our algorithm always chooses the point pj such thatP

v02B.pj ;5d;Q0/wv0 is maximized, this completes the
proof. �

Lemma 5 in the following says that for a point v in a
cluster Oi , if we have c .v/ in B.pj ; 5d;Q

0/ when the
point pj is to be added to P . For this case, we can use
B.pj ; 11d;Q

0/ to enclose all points in clusterOi . It can
be shown that, in this case, after pj is added to P , for
all points v 2 Oi , all points c .v/ are not in Q0; that is,
they are deleted.
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Lemma 5 Suppose there is now a point pj to be
added to P . For some i and for some point v 2 Oi , if we
have c.v/ 2 B.pj ; 5d;Q

0/, then for all points u 2 Oi ,
either we have c.u/ 2 B.pj ; 11d;Q

0/ established or
c.u/ has already been removed from Q0.

Proof Consider a cluster Oi in the optimal solution
and some point v 2 Oi where c.v/ 2 B.pj ; 5d;Q

0/.
Note that it suffices to prove that ı.pj ; c.u// 6 11OPT
by definition of B.pj ; 11d;Q

0/ for any point u 2 Oi .
To prove this, we will use several applications of the
triangle inequality. In particular, we will construct a
path from pj , c.v/, v, u, and c.u/. According to the
triangle inequality, if ı.pj ; c.v//Cı.c.v/; v/Cı.v; u/C

ı.u; c.u// 6 11OPT , the proof is complete.
Let us consider ı.pj ; c.v//. This is at most 5OPT

according to the definition of B.pj ; 5d;Q
0/ and the

assumption that c.v/ 2 B.pj ; 5d;Q
0/. We know

that ı.c.v/; v/ 6 2OPT and ı.u; c.u// 6 2OPT

according to the definitions of c.v/ and c.u/. Finally, we
know that ı.u; v/ 6 2OPT . This is because both u and
v are assigned to the same center in the optimal solution;
therefore, both of them are at a distance of OPT from
some point. The triangle inequality dictates that they
must be at most 2OPT from each other. Putting
this all together completes the proof. Thus, we have
that ı.pj ; c.v//C ı.c.v/; v/C ı.v; u/C ı.u; c.u// 6
5OPT C 2OPT C 2OPT C 2OPT D 11OPT . �

At last, in the following Lemma 6, we want
to show that the weights of the points inS

pi W16i6k B.pi ; 11d;Q
0/ are at least as large as

the number of points in
S

16i6k Oi . Because the
optimal solution to this problem contains z outliers, we
have that j

S
16i6k Oi j D n�z. Also, we know that the

weight contained in ball B.pi ; 11d;Q
0/ represents the

number of points in the dataset. Lemma 6 proves that
the number of points covered in all balls B.pi ; 11d;Q

0/

is bigger than n � z, so we know that the number of
points uncovered by our algorithm is not bigger than z.

Lemma 6
Pk

iD1

P
u2B.pi ;11d;Q0/wu > n � z:

Proof To prove Lemma 6, we will show a one-to-
one mapping of each point in

S
16i6k Oi to a unique

unit of weight in
Pk

iD1

P
u2B.pi ;11d;Q0/wu. Our proof

proceeds by induction. We will show that for any
0 6 j 6 k, each unique point in

S
16i6j Oi can

be mapped to a unique unit of weight of the points inSj
iD1B.pi ; 11d;Q

0/ where O1; O2; : : : ; Oj are some
clusters in ordering in the optimal solution that we fix
inductively.

Assume we have mapped each point in
S

16i6j Oi ,

to a unique unit of weight of the points inSj
iD1B.pi ; 11d;Q

0/. Now consider the weight of the
points in the set B.pjC1; 11d;Q

0/. We divide the
analysis into two cases. For the first case, say that for
some i 0 … f1; 2; : : : ; j g and u 2 Oi 0 , it is the case that
c.u/ is in B.pi ; 5d;Q

0/ for some i 6 j C 1. Then,
according to Lemma 5, it is the case that just after pjC1

is added to P , all of the points c.u/ are no longer in Q0

for all u 2 Oi 0 . Thus, in this case, we map each point in
u 2 Oi 0 to a unit of the weight of c.u/. Intuitively, this
is the unit of weight that u contributes to c.u/.

Otherwise, say that the first case does not hold.
Then, we know that for all u 2 Oi 0 and for any
i 0 … f1; 2; : : : ; j g, it is the case that c.u/ is in Q0

after pjC1 is added to P . According to Lemma 4,
it must be that

P
u2B.pjC1;5d;Q0/wu > jOi 0 j for any

i 0 … f1; 2; : : : ; j g. In this case, take any cluster in the
optimal solution that is notOi 0 for 1 6 i 6 j and fix this
cluster to be OjC1. Map each of the points in OjC1 to a
unique unit of weight of the points in B.pjC1; 11d;Q

0/.
This completely defines the mapping.

Notice that each point must be assigned to a unique
unit of weight. This is because, in the first case,
each point is charged to the weight it contributes to,
and then it is removed from Q0. By removing the
points from Q0, we can never charge them later in
the second case. Furthermore, since we charge the
points to the weight they contribute to, no two points
are charged to the same unit of weight in the first case.
In the second case, we charge each point u 2 Oi 0 to
a unit of weight in B.pjC1; 11d;Q

0/. Knowing that
B.pjC1; 11d;Q

0/ is removed from Q0, the second case
will not be charged to this weight again. Furthermore,
since B.pjC1; 11d;Q

0/ does not contain a point c.u/
where u 2 Oi 00 for any i 00 … f1; 2; : : : ; j g, no weight
in any point in B.pjC1; 11d;Q

0/ comes from a point
in Oi 00 for any i 00 … f1; 2; : : : ; j g, so no weight of the
points in B.pjC1; 11d;Q

0/ can be charged to the first
case later. Thus, we finish the proof. �

Finally, we present the running time and working
memory analysis of the algorithm.

Lemma 7 The running time of Algorithm 6 is
O..kCzC1/.n=T /2Ckn=T / and the running time of
Algorithm 7 isO.kT .kCz/C.kCz/mT kCk2m/. The
working memory in each distributed machine isO.n=T /,
and in the central machine, it is O..k C z/mT /.

Proof The main time spent in Algorithm 6 is
Greedy .Q; kCzC1/ and FindNeighbor .Qi ; I; Pi ; 2di /.
In Greedy .Q; kCzC1/, the upper bound of the number
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of calculations for the distance between points should be
O..k C z C 1/n2/. This is because the algorithm will
run .k C z C 1/ times, and each time the distance from
each point to the center point set is calculated, we do
not know whether k and z are of the same order as n, so
the maximum number of calculations may be n2. Also,
because the number of points in each distributed machine
is n=T , the running time is O..kC zC 1/.n=T /2/. We
know from the previous conclusion that the running time
of FindNeighbor .Qi ; I; Pi ; 2di / is O.kn=T /, so the
running time of Algorithm 6 isO..kC zC 1/.n=T /2C
kn=T /.

The running time analysis of Algorithm 7 is similar to
Algorithm 4. Let us focus on the input of Algorithm
7. The size of P 0 is .k C z/T , and the size of
L0 is .k C z/mT . Therefore, the running time of
the algorithm DistributeOutliers .P 0; k; 5d; 11d/ is
O.kT .k C z//, and the running time of the algorithm
FindNeighbor .L0; I; P; 5d/ is O.jL0jjP j/ D O..k C

z/mT k/. The running time of FindMatching.fN.p/ W
p 2 P g; I; k/ is still O.k2m/, so we know that the
running time of Algorithm 7 is O.kT .k C z/ C .k C
z/mT k C k2m/.

The working memory in each distributed machine is
O.n=T / because n points are evenly placed in these T
machines. The working memory in the central machine
is O..k C z/mT / because these T machines all send
m.k C z/ points to the central machine. �

Considering Algorithm 4 above, we find that the
calculation time has nothing to do with n, which reveals
the benefits of distributed computing. The selection of
T requires a trade-off. The larger T is, the less time the
distributed machine uses and the more time the central
machine uses, and vice versa.

5 Conclusion

In this paper, we consider two fair clustering problems
with outliers, namely, the fair k-center problem with
outliers and the distributed fair k-center problem
with outliers. For these two problems, we give the
corresponding constant approximation ratio algorithm.
For the fair k-center problem with outliers, we give
an algorithm with an approximate ratio of 4. For the
distributed fair k-center problem with outliers, we give
an algorithm with an approximate ratio of 18. In addition,
the theoretical proof and analysis of the approximation
ratio, running time, and running space of the algorithm
are given.
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