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Approximation Algorithms for Graph Partition into
Bounded Independent Sets

Jingwei Xie, Yong Chen, An Zhang, and Guangting Chen�

Abstract: The partition problem of a given graph into three independent sets of minimizing the maximum one is

studied in this paper. This problem is NP-hard, even restricted to bipartite graphs. First, a simple 3
2

-approximation

algorithm for any 2-colorable graph is presented. An improved 7
5

-approximation algorithm is then designed for a tree.

The theoretical proof of the improved algorithm performance ratio is constructive, thus providing an explicit partition

approach for each case according to the cardinality of two color classes.
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1 Introduction

Bodlaender and Jansen[1] introduced the partition
problem of a given graph into a bounded number
of independent sets, such that the cardinality of the
maximum one is as small as possible. This problem
mainly focuses on determining whether a connected
graph G can be partitioned into at most m independent
sets with at most v vertices in each set for givenm and v.
Therefore, the restriction of G to the following classes,
namely forests, split graphs, complements of bipartite
graphs, and complements of interval graphs, involves
polynomial algorithms[1]. However, the problem remains
NP-hard when G is restricted to bipartite graphs (even
for m D 3), interval graphs, and cographs[2].

This problem is motivated by an assignment problem
of operations given in a flow graph to processors, which
is a practical problem attributed to the manufacturing
industry[3]. One related problem is the classic k-coloring
problem[2]. Let G D .V;E/ be a graph with vertex set
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V and edge set E. The k-coloring problem involves the
assignment of a color (a number chosen in f1; 2; : : : ; kg)
to each vertex ofG, such that no edge has both endpoints
with the same color. In other words, the k-coloring
problem corresponds to the problem of finding a partition
of the vertices into k independent sets. The introduced
problem is equivalent to the m-coloring problem in G,
where each color class can include at most v vertices. A
graph is 2-colorable if we can color each of its vertices
with one of the two colors (i.e., red and blue), such
that no two red (blue) vertices are connected by an
edge. References [4–6] present an overview of the
coloring problem restricted to different graph classes.
The work of Bodlaender et al.[3], which proposed a
5
3

-approximation algorithm for partitioning a vertex-
weighted tree-like graph into three independent sets to
minimize the total weight of the maximum one, is the
most relevant to the problem under investigation. Many
related studies have been conducted regarding conflict
constraints, including parallel machine scheduling[7–9]

to unrelated machine scheduling[10–12]. Several other
studies focused on equitable coloring[13–15], weighted
coloring[16, 17], and subgraph partitioning[18].

We believe that no approximation algorithm result
prior to the current work exists for this problem even
when m D 3 and G is restricted to 2-colorable graphs.
In this paper, we first present a simple 3

2
-approximation

algorithm for partitioning a graph in any 2-colorable
graph into three independent sets, and then a slightly
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complex 7
5

-approximation algorithm in trees.

2 Preliminary

First, we provide a simple 3
2

-approximation algorithm
for any 2-colorable graph. Given a 2-colorable graph
G D .V;E/ with jV j D n, let R and B be the vertex set
with red and blue colors, respectively. Without loss of
generality, we assume that 1 6 jRj 6 jBj 6 n � 1. The
first simple approximation algorithm assigns a subset of
the independent sets to each color class: one independent
set I1 is assigned to R, and two other independent sets
I2 and I3 are assigned to B as evenly as possible. Let
Alg.G/ D maxfjI1j; jI2j; jI3jg and OPT .G/ denote
the solution obtained by the proposed algorithm and the
optimal solution, respectively. By simple calculations,
we have Alg.G/ D maxfjI1j; jI2j; jI3jg 6 k0 (whether
n D 2k0 or n D 2k0 C 1, k0 2 N); therefore, Alg.G/ 6
3
2
�
n
3
6 3

2
OPT .G/ holds. The last inequality is due to

OPT .G/ > n
3

.
A tree is an organized set of nodes in which each node

has one parent, except for a node called root. If a node
p is the parent of a node f , then f is the child of p; if
f has no children, then it is a leaf. The nodes of a tree
are distributed by level. Level 1 contains only the root,
Level 2 contains its children, and so on. Compatibility
indicates that two vertex sets V1 and V2 are compatible
if any two vertices within V1 [ V2 are non-adjacent.

Let Tr D .V;E/ be a tree rooted at vertex r with
jV j D n and V D X [ Y , where X and Y denote the
two color classes (without loss of generality, 1 6 jX j 6
jY j 6 n� 1). Let Li be the vertex set of the i -th level in
Tr ; then L1; L2; : : : ; Li ; : : : alternately belong to X and
Y . The following lemma is simple due to the property
of a tree.

Lemma 1 For any two consecutive Levels Li and
LiC1 of Tr , let Fi � Li be the vertex set with at least
one child in LiC1. Then, jFi j 6 jLiC1j.

In the figures presented in the next section, circles and
triangles are used for vertices in X and Y , respectively.
A white circle or triangle represents a single vertex in its
corresponding set, while a black one represents a number
of vertices within the same level.

3 7
5-Approximation Algorithm

In this section, we present an improved 7
5

-approximation
algorithm for a tree. The main result is the following
theorem.

Theorem 1 Let Tr D .V;E/ be a tree rooted at

vertex r . A solution to the problem can then be observed
in polynomial time, whose cardinality of the maximum
independent set is at most 7

5
times the optimal one.

The proof is constructive according to the sizes
of X and Y . For each subcase, we provide an
explicit feasible partition approach, such that the
cardinality of the maximum independent set is at
most 7

5
times the optimal one; that is, we prove

Alg.Tr/ D maxfjI1j; jI2j; jI3jg 6 7
15
n without a better

low bound of OPT .Tr/ than n
3

.

Case 1: 2
15

n 6 jXj 6 7
15

n

Partition Approach 1 We assign one independent
set I1 to X and two other independent sets I2 and I3 to
Y as evenly as possible.

Suppose that jI2j > jI3j. When jI1j D jX j 6 7
15
n,

jI2j D
l
jY j
2

m
6 7

15
n, and jI3j D

j
jY j
2

k
6 7

15
n, then

Alg.Tr/ 6
7
5
�
n
3
6 7

5
OPT .Tr/.

Case 2: 7
15

n < jXj 6 1
2

n

When 7
15
n < jX j 6 1

2
n, then 1

2
n 6 jY j < 8

15
n.

In this case, the partition approach mainly focuses on
identifying two compatible vertex subsets, X 0 � X

and Y 0 � Y , such that jX 0j > 1
15
n, jY 0j > 1

15
n, and

jX 0j C jY 0j 6 7
15
n. If the aforementioned condition is

met, then let I1 D X 0 [ Y 0, I2 D X nX 0, I3 D Y n Y 0,
yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg 6 7

5
�
n
3
6

7
5
OPT .Tr/.
Let ˚ D f�jL� � X; jL�j >

1
15
ng and 	 D

f�jL� � Y; jL� j >
1
15
ng for simplicity. The following

four subcases are determined.
Subcase 1 ˚ ¤ ∅; 	 ¤ ∅, and 9i 2 ˚; j 2 	 ,

such that ji � j j > 1.
If ji � j j > 1 holds for some i and j , then any vertex

in Li is not adjacent to that in Lj , indicating that Li and
Lj are compatible. Therefore, the following partition
approach can be applied to obtain the results.

Partition Approach 2
Step 1: If jLi j C jLj j 6 7

15
n, let X 0 D Li and

Y 0 D Lj . Otherwise, let X 0 be any of the smallest
subsets of Li , such that jX 0j > 1

15
n, let Y 0 be any of the

smallest subsets of Lj such that jY 0j > 1
15
n.

Step 2: Let I1 D X 0[Y 0, I2 D X nX 0, and I3 D Y n
Y 0. Thus, Alg.Tr/ D maxfjI1j; jI2j; jI3jg is outputted.

Subcase 2 ˚ ¤ ∅; 	 ¤ ∅, and 8i 2 ˚; j 2 	 ,
ji � j j D 1 holds.
ji � j j D 1 implies that Li is always adjacent to

Lj , 8i 2 ˚; j 2 	 . Let L˛; L˛C1; : : : ; L˛Cs�1 be an
adjacent sequence, such that jL j > 1

15
n. D ˛; ˛ C
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1; : : : ; ˛ C s � 1/. Then we have the following lemma.
Lemma 2 The length of the adjacent sequence does

not exceed 3, that is s 6 3.
Proof Let L˛; L˛C1; : : : ; L˛Cs�1 be the adjacent

sequence of Tr and s > 4. Suppose that L˛ � X , it is
not hard to see that one of L˛Cs�2 and L˛Cs�1 must be
a subset of Y and is not adjacent to L˛. This condition
is a contradiction with the current subcase; therefore,
Lemma 2 holds. �

Based on Lemma 2, we know that the length of the
adjacent sequence is either 2 or 3. In what follows, we
distinguish these two subcases.

Subcase 2.1 The adjacent sequence is Li and Lj ,
where j D i C 1.

Without loss of generality, we assume that Li � X
and Lj � Y , then we have the following partition
approach.

Partition Approach 3
Step 1: Sort each vertex of Li in non-increasing order

according to the number of its corresponding children.
Denote the ordered t-th node in Li as L.t/i and its
children as L.t/j .

Step 2: If jL.1/j j <
1
15
n, then let k be the smallest

index, such that
Pk
tD1 jL

.t/
j j >

1
15
n, let Y 0 DPk

tD1L
.t/
j . Otherwise, let Y 0 be any of the smallest

subsets of L.1/j , such that jY 0j > 1
15
n.

Step 3: Identify all nodes in Li , which are not

adjacent to any node in Y 0, and denote them by a set N .
Step 4: If jN j > 1

15
n, let X 0 be any of the smallest

subsets of N , such that jX 0j > 1
15
n. Otherwise, let

X 0 be any of the smallest subsets of XnfLi C LiC2g,
such that jX 0j > 1

15
n. Then, let I1 D X 0 [ Y 0, I2 D

XnX 0, and I3 D Y nY 0, thereby yielding Alg.Tr/ D
maxfjI1j; jI2j; jI3jg.

Lemma 3 Partition Approach 3 can produce a
feasible partition solution, such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof If jL.1/j j <

1
15
n (see Fig. 1), then 8t; L.t/j <

1
15
n because Li has been sorted. In addition, Y 0 DPk
tD1L

.t/
j , where k is the smallest index such thatPk

tD1 jL
.t/
j j >

1
15
n; thus, 1

15
n 6 jY 0j < 2

15
n. If

jL
.1/
j j >

1
15
n, then Y 0 will be the smallest set, such

that 1
15
n 6 jY 0j < 2

15
n.

If jN j > 1
15
n, we can conclude that 1

15
n 6 jX 0j <

2
15
n similarly. If jN j < 1

15
n, then jLi j < 3

15
n because

jLinN j 6 jY 0j <
2
15
n. Combined with jLiC2j < 1

15
n

and jX j > 7
15
n, we derive jXnfLi C LiC2gj > 3

15
n.

This condition implies the feasibility of yielding a subset
X 0 from XnfLi C LiC2g, such that 1

15
n 6 jX 0j < 2

15
n.

X 0 and Y 0 are compatible and can be merged into an
independent set I1. Therefore, jI1j D jX 0jCjY 0j < 4

15
n,

jI2j D jXnX
0j < 7

15
n, jI3j D jY nY 0j < 7

15
n, and

Alg.Tr/ <
7
15
n 6 7

5
OPT .Tr/. �

Subcase 2.2 The adjacent sequence is Li , Lj ; and
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Fig. 1 Overview of Partition Approach 3 ( and444 represent single vertices in X and Y, respectively).
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LiC2, where j D i C 1. Then we can apply Partition
Approach 3 to Lj and LiC2. Similar to Lemma 3, the
same result can be obtained.

Subcase 3 	 D ∅; ˚ ¤ ∅.
Let Li be the level satisfying jLi j > 1

15
n, Lj�2 and

Lj be adjacent to Li .
Partition Approach 4
Step 1: Let X 0 be any of the smallest subsets of Li ,

such that jX 0j > 1
15
n.

Step 2: Let Y 0 be any of the smallest subsets of
Y nfLj�2 C Lj g, such that jY 0j > 1

15
n.

Step 3: Let I1 D X 0 [ Y 0, I2 D XnX 0,
and I3 D Y nY 0, thereby yielding Alg.Tr/ D

maxfjI1j; jI2j; jI3jg.
Lemma 4 Partition Approach 4 can produce a

feasible partition solution, such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof As jLi j > 1

15
n (see Fig. 2), we can conclude

that 1
15
n 6 jX 0j < 2

15
n. Since jLj�2j < 1

15
n; jLj j <

1
15
n, and jY j > 7

15
n, we obtain jY nfLj�2 C Lj gj >

5
15
n, making it feasible for Step 2. Therefore, jI1j D

jX 0j C jY 0j < 4
15
n, jI2j D jXnX 0j < 7

15
n, jI3j D

jY nY 0j < 7
15
n, and Alg.Tr/ < 7

15
n 6 7

5
OPT .Tr/. �

Subcase 4 ˚ D 	 D ∅.
Without loss of generality, we assume that Li and Lj

are the odd and even levels, respectively.
Partition Approach 5
Step 1: Let k be the smallest index, such thatPk
tD1 jL2t�1j >

1
15
n.

Step 2: If jY n
Pk
tD1L2t j >

1
15
n, then let X 0 DPk

tD1L2t�1 and Y 0 be any of the smallest subsets
of Y n

Pk
tD1L2t , such that jY 0j > 1

15
n. Afterward,

proceed to Step 4.
Step 3: If jY n

Pk
tD1L2t j <

1
15
n, then let X 0 be any

of the smallest subsets of Xn
Pk
tD1L2t�1, such that

jX 0j > 1
15
n, and Y 0 be any of the smallest subsets of

��

��

���� ...

...�'

... � \ (����+��) �'

...

...

Fig. 2 Overview of Partition Approach 4 ( and 444
represent single vertices in X and Y, respectively).

Pk�1
tD1 L2t , such that jY 0j > 1

15
n. Afterward, proceed to

Step 4.
Step 4: Let I1 D X 0 [ Y 0, I2 D XnX 0,

and I3 D Y nY 0, thereby yielding Alg.Tr/ D

maxfjI1j; jI2j; jI3jg.
Lemma 5 Partition Approach 5 can produce a

feasible partition solution, such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof Through Steps 1 and 2 (see Fig. 3), we can

obtain compatible X 0 and Y 0 such that jI1j < 4
15
n,

and jI2j and jI3j are less than 7
15
n. In Step 3 (see

Fig. 4), jY j > 1
2
n > 7

15
n,
Pk�1
tD1 jL2t j must exceed 5

15
n

because jY n
Pk
tD1L2t j and jL2kj are less than 1

15
n. As

previously discussed,
Pk
tD1 jL2t�1j >

1
15
n, where k

is the smallest index, leading to
Pk
tD1 jL2t�1j <

2
15
n.

Accordingly, jXn
Pk
tD1L2t�1j and

Pk�1
tD1 jL2t j exceed

5
15
n, allowing Step 3 to yield compatible X 0 and Y 0.

Therefore, jI1j D jX 0j C jY 0j < 4
15
n, jI2j D jXnX 0j <

7
15
n, jI3j D jY nY 0j < 7

15
n, and Alg.Tr/ < 7

15
n 6

7
5
OPT .Tr/. �
Case 3: 1 6 jXj < 2

15
n

Suppose that X and Y comprise levels with odd and
even indexs, respectively. In this case, we first identify

�� �����
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......
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�
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Fig. 3 When Step 2 is active in Partition Approach 5 (444
represents single vertex in Y; � and N represent a number
of vertices in X and Y, respectively).
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Fig. 4 When Step 3 is active in Partition Approach 5 ( and
444 represent single vertices in X and Y, respectively; � and N
represent a number of vertices in X and Y, respectively).
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the smallest index k, such that
Pk
tD1 jL2t j >

5
15
n,

then distinguish the two cases according to the size of
Y n

Pk
tD1L2t .

Subcase 5 jY n
Pk
tD1L2t j >

4
15
n.

Partition Approach 6
Step 1: Let Y1 be any of the smallest subsets of

Y n
Pk
tD1L2t , such that jY1j > 4

15
n. Let I1 D Y1 [Pk

tD1L2t�1.
Step 2: All non-leaf nodes in L2k are denoted as

set Lin
2k

. If 1 6 jX j 6 1
15
n, then let Y2 be any of the

smallest subsets of
Pk
tD1L2tnL

in
2k

, such that jY2j >
4
15
n. If 1

15
n < jX j < 2

15
n, then let Y2 be any of the

smallest subsets of
Pk
tD1L2tnL

in
2k

, such that jY2j >
3
15
n.
Step 3: Let I2 D Y2 CXn

Pk
tD1L2t�1.

Step 4: Let I3 D Y n fY1; Y2g, yielding Alg.Tr/ D
maxfjI1j; jI2j; jI3jg.

Lemma 6 Partition Approach 6 can produce a
feasible partition solution, such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof When 1

15
n < jX j < 2

15
n (see Fig. 5), then

jY1j <
5
15
n in Step 1. Together with

Pk
tD1 jL2t�1j <

jX j < 2
15
n, we derive 4

15
n 6 jI1j <

7
15
n. In Step

2, as jL2kC1j < jX j < 2
15
n, by Lemma 1, we then

have jLin
2k
j 6 jL2kC1j <

2
15
n and j

Pk
tD1L2tnL

in
2k
j >

3
15
n, implying the feasibility of yielding Y2. Lin

2k
is not

included in Y2, which is incompatible with L2kC1; thus,
I2 becomes an independent set. Similar to Y1, we have
3
15
n 6 jY2j <

4
15
n. Together with jXn

Pk
tD1L2t�1j <

jX j < 2
15
n, we can conclude that 3

15
n 6 jI2j <

6
15
n

and jI3j D jY j� jY1j� jY2j < 14
15
n� 4

15
n� 3

15
n D 7

15
n.

Therefore, Alg.Tr/ D maxfjI1j; jI2j; jI3jg < 7
15
n 6

7
5
OPT .Tr/.
Similarly, we can prove the lemma when 1 6 jX j 6

1
15
n. �

......��

�����

���
��

...... ...

... � \�
�=1

�
���...��

...

��

... ... ���� ...
��
��

 Leaves

▲

▲

▲

Fig. 5 Overview of Partition Approach 6 (444 represents
single vertex in Y; � and N represent a number of vertices
in X and Y, respectively; N and N represent non-leaf and leaf
nodes of L2k, respectively).

Subcase 6 jY n
Pk
tD1L2t j <

4
15
n.

Since jY j > 13
15
n and

Pk�1
tD1 jL2t j <

5
15
n, it can be

inferred that jL2kj > 4
15
n. Sort each vertex in L2k�1

in non-increasing order according to the number of its
corresponding children in L2k . Denote the ordered t -th
vertex in L2k�1 and its children, respectively, as L.t/

2k�1

and L.t/
2k

.
Now we distinguish four subcases mainly according

to the size of jL.1/
2k
j.

Subcase 7 jL.1/
2k
j > 10

15
n.

In this subcase, a superior low bound of the optimal
solution is first provided and then used for the proof of
the worst-case ratio.

Lemma 7 OPT .Tr/ >

�
jL

.1/

2k
j

2

�
> n

3
.

Proof Since any vertex in L
.1/

2k
is adjacent to

L
.1/

2k�1
, then vertices in L.1/

2k
cannot occupy all three

independent sets in the optimal solution. Hence, we

have OPT .Tr/ >
�
jL

.1/

2k
j

2

�
> n

3
. �

Partition Approach 7

Step 1: Denote arbitrary
�
jL

.1/

2k
j

2

�
nodes in L.1/

2k
by

set Y �, and all the children of Y � by set eY �.
Step 2: Let I1 D Y � CXnfL

.1/

2k�1
C eY �g.

Step 3: Assign L.1/
2k
nY � together with eY � and the

parent of L.1/
2k�1

into I2.
Step 4: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
Lemma 8 Partition Approach 7 can produce a

feasible partition solution, such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof In Step 2, the total number of vertices in

XnfL
.1/

2k�1
C eY �g is less than 2

15
n due to jX j <

2
15
n. Thus, jI1j <

�
jL

.1/

2k
j

2

�
C

2
15
n 6 OPT .Tr/ C

2
5
OPT .Tr/ D

7
5
OPT .Tr/. In Step 3, since jL.1/

2k�1
CeY �j 6 jX j < 2

15
n, then the number of vertices ineY � and the parent of L.1/

2k�1
is less than 2

15
n. Thus,

jI2j <

�
jL

.1/

2k
j

2

�
C

2
15
n 6 OPT .Tr/ C

2
5
OPT .Tr/ D

7
5
OPT .Tr/. In addition, jI3j 6 n � jL

.1/

2k
j 6 5

15
n.

Hence, Alg.Tr/ D maxfjI1j; jI2j; jI3jg < 7
5
OPT .Tr/

holds (see Fig. 6). �
Subcase 8 5

15
n 6 jL.1/

2k
j < 10

15
n.

Let Y � be any of the smallest subsets ofL.1/
2k

such that
jY �j > 5

15
n, and eY � are denoted as the children of Y �.

For completeness, we then distinguish three subcases
and provide a partition approach for each one despite
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�����
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�����
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� \ (����� + �����)...

�*

��
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Fig. 6 Overview of Partition Approach 7 ( and 444
represent single vertices in X and Y, respectively).

the substantial similarity of the following three partition
approaches.

Subcase 9 1 6 jX j 6 1
15
n (see Fig. 7).

Partition Approach 8
Step 1: Let I1 D Y � CXnfL

.1/

2k�1
C eY �g.

Step 2: Assign L.1/
2k
nY � together with the parent of

L
.1/

2k�1
into I2.

Step 2.1: If jI2j < 4
15
n, then add as few nodes as

possible from Y nfY � C I2g excluding the children ofeY �, such that jI2j > 4
15
n; that is, add minimum nodes in

Y , which are compatible with eY � to I2 until jI2j > 4
15
n.

Step 2.2: Assign eY � into I2.
Step 3: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
Subcase 10 1

15
n < jX j < 2

15
n, jXnfL.1/

2k�1
CeY �gj < 1

15
n.

Partition Approach 9
Step 1: Let I1 D Y � CXnfL

.1/

2k�1
C eY �g.

Step 2: Assign L.1/
2k
nY � together with the parent of

L
.1/

2k�1
into I2.

Step 2.1: If jI2j < 3
15
n, then add as few nodes as

possible from Y nfY � C I2g excluding the children ofeY �, such that jI2j > 3
15
n; that is, add minimum nodes in

...

...

�*

�����

���

�����

�����

�����
(�)

���
(�)

� \ (����� + �����)

...

...

...

...

�*

� \ (����� + ���)
Exclude child nodes of �*

��

��

Fig. 7 Overview of Partition Approach 8 ( and444 represent
single vertices in X and Y, respectively).

Y , which are compatible with eY � to I2 until jI2j > 3
15
n.

Step 2.2: Assign eY � into I2.
Step 3: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
Subcase 11 1

15
n < jX j < 2

15
n, jXnfL.1/

2k�1
CeY �gj > 1

15
n.

Partition Approach 10
Step 1: Readjust the size of Y � to be any of the

smallest subsets of L.1/
2k

such that jY �j > 4
15
n, and

then update eY � correspondingly.
Step 2: Let I1 D Y � CXnfL

.1/

2k�1
C eY �g.

Step 3: Assign L.1/
2k
nY � together with the parent of

L
.1/

2k�1
into I2.

Step 3.1: If jI2j < 4
15
n, then add as few nodes as

possible from Y nfY � C I2g excluding the children ofeY �, such that jI2j > 4
15
n; that is, add minimum nodes in

Y , which are compatible with eY � to I2 until jI2j > 4
15
n.

Step 3.2: Assign eY � into I2.
Step 4: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
For simplicity, we only consider the proof of

Subcase 11 in what follows because the two other
subcases can be verified similarly.

Lemma 9 Partition Approach 10 can produce
a feasible partition solution, such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof After Step 1, 4

15
n 6 jY �j < 5

15
n holds.

When 1
15
n 6 jXnfL.1/

2k�1
C eY �gj < jX j < 2

15
n, we

can infer jI1j < jY �j C 2
15
n < 7

15
n accordingly by

Step 2.
If jI2j > 4

15
n, then Step 3.1 is skipped. Since

jXnfL
.1/

2k�1
C eY �gj > 1

15
n and jX j < 2

15
n, jL.1/

2k�1
CeY �j < 1

15
n holds. Accordingly, the total size of eY �

and the parent of L.1/
2k�1

is less than 1
15
n. Based on

jL
.1/

2k
j < 10

15
n and jY �j > 4

15
n, the size of L.1/

2k
nY � is

estimated to be less than 6
15
n. Thus, jI2j D jL

.1/

2k
nY �jC

jeY �j C 1 < 6
15
nC 1

15
n D 7

15
n.

If jI2j < 4
15
n, then Step 3.1 is activated. After some

additional nodes are added to I2, the size of I2 will
end up as 4

15
n 6 jI2j <

5
15
n because nodes are added

individually to satisfy jI2j > 4
15
n. From jL.1/

2k�1
CeY �j < 1

15
n, we know that jeY �j < 1

15
n. Therefore,

jI2j <
5
15
nC jeY �j < 6

15
n.

The aforementioned discussion proves that the upper
bound of jI2j is 7

15
n whether Step 3.1 is active or not. It

should suffice to demonstrate the continuous success of
the aforementioned approach in complementing the size



Jingwei Xie et al.: Approximation Algorithms for Graph Partition into Bounded Independent Sets 1069

of I2 to satisfy 4
15
nwhen Step 3.1 is active. Suppose that

jI2j <
4
15
n after all triangles compatible with eY � are

put into I2. Since jY �j < 5
15
n, jI2j < 4

15
n, and jY j >

13
15
n, the size of the children of eY � must exceed 4

15
n,

contradicting jY n
Pk
tD1L2t j <

4
15
n. This condition

guarantees that at least 4
15
n triangles are included in I2.

Since I1 and I2 contain at least 4
15
n triangles,

we derive jI3j 6 7
15
n. Hence, Alg.Tr/ D

maxfjI1j; jI2j; jI3jg 6 7
5
OPT .Tr/ holds. �

Subcase 11 jL.1/
2k
j < 5

15
n, jL2kj > 5

15
n.

First, identify the smallest index l , such thatPl
tD1 jL

.t/

2k
j > 5

15
n. Let Y � D

Pl�1
tD1L

.t/

2k
, then add

as few nodes as possible from L
.l/

2k
into Y �, such that

jY �j > 5
15
n. Let eY � be the children of Y �. For

completeness, we then distinguish four subcases and
provide a partition approach for each one despite the
considerable similarity following the four approaches.

Subcase 12 1 6 jX j 6 1
15
n.

Partition Approach 11
Step 1: Let I1 D Y � CXnf

Pl
tD1L

.t/

2k�1
C eY �g.

Step 2: Assign
Pl
tD1L

.t/

2k
nY � together with the

parents of
Pl
tD1L

.1/

2k�1
into I2.

Step 2.1: If jI2j < 4
15
n, then add as few nodes as

possible from Y nfY � C I2g excluding the children ofeY �, such that jI2j > 4
15
n; that is, add minimum nodes in

Y , which are compatible with eY � to I2 until jI2j > 4
15
n.

Step 2.2: Assign eY � into I2.
Step 3: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
Subcase 13 1

15
n < jX j < 2

15
n, jXnf

Pl
tD1L

.t/

2k�1
CeY �gj < 1

15
n, and j

Pl
tD1L

.t/

2k�1
j < 1

15
n.

Partition Approach 12
Step 1: Let I1 D Y � CXnf

Pl
tD1L

.t/

2k�1
C eY �g.

Step 2: Assign
Pl
tD1L

.t/

2k
nY � together with the

parents of
Pl
tD1L

.1/

2k�1
into I2.

Step 2.1: If jI2j < 3
15
n, then add as few nodes as

possible from Y nfY � C I2g excluding the children ofeY � such that jI2j > 3
15
n; that is, add minimum nodes in

Y , which are compatible with eY � to I2 until jI2j > 3
15
n.

Step 2.2: Assign eY � into I2.
Step 3: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
Subcase 14 1

15
n < jX j < 2

15
n, jXnf

Pl
tD1L

.t/

2k�1
CeY �gj > 1

15
n.

Partition Approach 13
Step 1: Readjust l to be the smallest index such thatPl
tD1 jL

.t/

2k
j > 4

15
n. Let Y � D

Pl�1
tD1L

.t/

2k
, then add

as few nodes as possible from L
.l/

2k
into Y � such that

jY �j > 4
15
n. Update eY � correspondingly.

Step 2: Let I1 D Y � CXnf
Pl
tD1L

.t/

2k�1
C eY �g.

Step 3: Assign
Pl
tD1L

.t/

2k
nY � together with the

parents of
Pl
tD1L

.1/

2k�1
into I2.

Step 3.1: If jI2j < 4
15
n, then add as few nodes as

possible from Y nfY � C I2g excluding the children ofeY � such that jI2j > 4
15
n; that is, add minimum nodes in

Y , which are compatible with eY � to I2 until jI2j > 4
15
n.

Step 3.2: Assign eY � into I2.
Step 4: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
Subcase 15 1

15
n < jX j < 2

15
n, jXnf

Pl
tD1L

.t/

2k�1
CeY �gj < 1

15
n, and j

Pl
tD1L

.t/

2k�1
j > 1

15
n.

Partition Approach 14
Step 1: Let I1 D Y � CXnf

Pl
tD1L

.t/

2k�1
C eY �g.

Step 2: Assign
Pl
tD1L

.t/

2k
nY � together with the

parents of
Pl
tD1L

.1/

2k�1
into I2.

Step 2.1: If jI2j < 4
15
n, then add as few nodes as

possible from Y nfY � C I2g excluding the children ofeY �, such that jI2j > 4
15
n; that is, add minimum nodes in

Y , which are compatible with eY � to I2 until jI2j > 4
15
n.

Step 2.2: After Step 2.1, if jI2j < 4
15
n (i.e., nodes

manipulated in Step 2.1 are insufficient), then reset I2
to be empty and then assign the children of eY � together
with

Pl
tD1L

.t/

2k�1
into I2. Otherwise, assign eY � into I2

directly.
Step 3: Assign all the residual vertices into I3,

yielding Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
For simplicity, we only consider the proof of Subcase

15 in what follows because the three other subcases can
be verified similarly.

Lemma 10 Partition Approach 14 can produce
a feasible partition solution such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof 8t , jL.t/

2k
j < 5

15
n obviously holds. Since

jL2kj >
5
15
n, then the feasibility of yielding Y � and

index l can be verified. Before Step 1, we have 5
15
n 6

jY �j < 6
15
n. Since jX j < 2

15
n and j

Pl
tD1L

.t/

2k�1
j >

1
15
n, then jXnf

Pl
tD1L

.t/

2k�1
C eY �gj < 1

15
n holds.

Therefore, jI1j D jY �j C jXnf
Pl
tD1L

.t/

2k�1
C eY �gj <

6
15
nC 1

15
n D 7

15
n.

If jI2j > 4
15
n, then Step 2.1 is skipped. Since

j
Pl
tD1L

.t/

2k
nY �j 6 jL.l/

2k
j < 5

15
n, the size of eY � and

the parents of
Pl
tD1L

.t/

2k�1
adds up to no more than

jeY �CPl
tD1L

.t/

2k�1
j. As jeY �CPl

tD1L
.t/

2k�1
j 6 jX j <

2
15
n, then jI2j < 5

15
nC 2

15
n D 7

15
n.

If jI2j < 4
15
n, then Step 2.1 is activated. If Step 2.1
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succeeds to increase the size of I2 such that jI2j > 4
15
n,

then 4
15
n 6 jI2j <

5
15
n holds after Step 2.1. Since

jI2j >
4
15
n, Step 2.2 runs the “Otherwise” branch by

putting eY � into I2. With jeY �j < 1
15
n, we can conclude

that jI2j < 5
15
nC jeY �j < 6

15
n (see Fig. 8).

Now we consider jI3j for the two aforementioned
conditions. I1 and I2 are proved to contain at least
5
15
n and 4

15
n nodes, respectively. Thus, the size of I3

is at most 6
15
n and Alg.Tr/ D maxfjI1j; jI2j; jI3jg 6

7
5
OPT .Tr/ holds.
If Step 2.1 fails to add sufficient nodes, such that
jI2j >

4
15
n, then Step 2.2 runs the “If” branch by

resetting I2. Before Step 2.2, I2 contains all the
triangles except Y � and the children of eY �: Since
jY �j < 6

15
n, jI2j < 4

15
n, and jY j > 13

15
n, then the

size of children nodes of eY � exceeds 3
15
n. Recall

jY n
Pk
tD1L2t j <

4
15
n, the size of the children of eY �

is less than 4
15
n. After Step 2.2, with j

Pl
tD1L

.t/

2k�1
j <

2
15
n, then jI2j < 4

15
nC 2

15
n D 6

15
n, and I2 includes at

least 3
15
n triangles. Notably, I1 and I2 contain at least

5
15
n and 3

15
n triangles, respectively. jI3j 6 7

15
n. Thus,

Alg.Tr/ D maxfjI1j; jI2j; jI3jg 6 7
5
OPT .Tr/ holds

(see Fig. 9). �
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Fig. 8 Overview of Partition Approach 11 ( and 444
represent single vertices in X and Y, respectively).
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Fig. 9 “If” branch within Step 2.2 of Partition Approach 14
( and444 represent single vertices in X and Y, respectively).

Subcase 16 jL
.1/

2k
j < 5

15
n and 4

15
n < jL2kj 6

5
15
n.
Partition Approach 15
Step 1: Let I1 D L2k CXnfL2k�1 C L2kC1g.
Step 2: Let I2 D

Pk�1
tD1 L2t C L2kC1.

Step 3: Let I3 D Y n
Pk
tD1L2t C L2k�1.

Step 4: Output Alg.Tr/ D maxfjI1j; jI2j; jI3jg.
Lemma 11 Partition Approach 15 can produce

a feasible partition solution, such that Alg.Tr/ 6
7
5
OPT .Tr/.
Proof Since the size of L2k is at most 5

15
n, then

jXnfL2k�1 C L2kC1gj < jX j <
2
15
n and jI1j <

7
15
n. Recall that j

Pk�1
tD1 L2t j <

5
15
n and jL2kC1j <

jX j < 2
15
n. Thus, jI2j is less than 7

15
n. Similarly,

from jY n
Pk
tD1L2t j <

4
15
n and jL2k�1j < 2

15
n,

we can obtain jI3j < 6
15
n. Therefore, Alg.Tr/ D

maxfjI1j; jI2j; jI3jg 6 7
5
OPT .Tr/ holds (see Fig. 10).

�

4 Conclusion

We consider the partitioning problem of a given graph
into three independent sets of minimizing the maximum
one. We first provide a simple 3

2
-approximation

algorithm for any 2-colorable graph and then design an
improved 7

5
-approximation algorithm for a tree. One

of the possible and significant directions for future
research lies in the computational complexity of the
partitioning problem of a tree into three independent sets
of minimizing the maximum one.
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