TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 08/14 pp 1063-1071
DOI: 10.26599/TST.2022.9010062
Volume 28, Number 6, December 2023

Approximation Algorithms for Graph Partition into
Bounded Independent Sets

Jingwei Xie, Yong Chen, An Zhang, and Guangting Chen*

Abstract: The partition problem of a given graph into three independent sets of minimizing the maximum one is

studied in this paper. This problem is NP-hard, even restricted to bipartite graphs. First, a simple %-approximation

algorithm for any 2-colorable graph is presented. An improved %—approximation algorithm is then designed for a tree.

The theoretical proof of the improved algorithm performance ratio is constructive, thus providing an explicit partition

approach for each case according to the cardinality of two color classes.
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1 Introduction

Bodlaender and Jansen!!! introduced the partition
problem of a given graph into a bounded number
of independent sets, such that the cardinality of the
maximum one is as small as possible. This problem
mainly focuses on determining whether a connected
graph G can be partitioned into at most m independent
sets with at most v vertices in each set for given m and v.
Therefore, the restriction of G to the following classes,
namely forests, split graphs, complements of bipartite
graphs, and complements of interval graphs, involves
polynomial algorithms!!!. However, the problem remains
NP-hard when G is restricted to bipartite graphs (even
for m = 3), interval graphs, and cographs!?!.

This problem is motivated by an assignment problem
of operations given in a flow graph to processors, which
is a practical problem attributed to the manufacturing
industry!®!. One related problem is the classic k-coloring
problem!?!. Let G = (V, E) be a graph with vertex set
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V and edge set E. The k-coloring problem involves the
assignment of a color (a number chosen in {1,2,...,k})
to each vertex of G, such that no edge has both endpoints
with the same color. In other words, the k-coloring
problem corresponds to the problem of finding a partition
of the vertices into k independent sets. The introduced
problem is equivalent to the m-coloring problem in G,
where each color class can include at most v vertices. A
graph is 2-colorable if we can color each of its vertices
with one of the two colors (i.e., red and blue), such
that no two red (blue) vertices are connected by an
edge. References [4-6] present an overview of the
coloring problem restricted to different graph classes.
The work of Bodlaender et al.l¥), which proposed a
%—approximation algorithm for partitioning a vertex-
weighted tree-like graph into three independent sets to
minimize the total weight of the maximum one, is the
most relevant to the problem under investigation. Many
related studies have been conducted regarding conflict
constraints, including parallel machine scheduling!’~"!
to unrelated machine scheduling!!®'?!. Several other
studies focused on equitable coloring!'3-13), weighted
coloring!!® 71 and subgraph partitioning!'®.

We believe that no approximation algorithm result
prior to the current work exists for this problem even
when m = 3 and G is restricted to 2-colorable graphs.
In this paper, we first present a simple %—approximation
algorithm for partitioning a graph in any 2-colorable
graph into three independent sets, and then a slightly
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complex %-approximation algorithm in trees.

2 Preliminary

First, we provide a simple %—approximation algorithm
for any 2-colorable graph. Given a 2-colorable graph
G = (V, E) with |V | = n, let R and B be the vertex set
with red and blue colors, respectively. Without loss of
generality, we assume that 1 < |R| < |B| <n—1. The
first simple approximation algorithm assigns a subset of
the independent sets to each color class: one independent
set 7 is assigned to R, and two other independent sets
I, and I3 are assigned to B as evenly as possible. Let
Alg(G) = max{|l1]|,|l2]|,|I3]} and OPT(G) denote
the solution obtained by the proposed algorithm and the
optimal solution, respectively. By simple calculations,
we have Alg(G) = max{|I|,|I>|,|I5|} < k'’ (whether
n= 2k’ orn = 2k’ + 1, k' € N); therefore, Alg(G) <
3x2g2 OP T(G) holds. The last inequality is due to
OPT(G) >

A tree is an organized set of nodes in which each node
has one parent, except for a node called root. If a node
p is the parent of a node f, then f is the child of p; if
f has no children, then it is a leaf. The nodes of a tree
are distributed by level. Level 1 contains only the root,
Level 2 contains its children, and so on. Compatibility
indicates that two vertex sets V; and V, are compatible
if any two vertices within V; U V, are non-adjacent.

Let T, = (V, E) be a tree rooted at vertex r with
[Vl=nand V = X UY, where X and Y denote the
two color classes (without loss of generality, 1 < |X| <
|Y| < n—1). Let L; be the vertex set of the i-th level in
Ty;then Ly, Ly, ..., L;,... alternately belong to X and
Y. The following lemma is simple due to the property
of a tree.

Lemma 1 For any two consecutive Levels L; and
Liyq1 of Ty, let F; C L; be the vertex set with at least
one childin L;41. Then, |F;| < |Lj41]-

In the figures presented in the next section, circles and

triangles are used for vertices in X and Y, respectively.

A white circle or triangle represents a single vertex in its
corresponding set, while a black one represents a number
of vertices within the same level.

3 %-Approximation Algorithm

In this section, we present an improved %-approximation
algorithm for a tree. The main result is the following
theorem.

Theorem 1 Let 7, = (V, E) be a tree rooted at

vertex r. A solution to the problem can then be observed
in polynomial time, whose cardinality of the maximum
independent set is at most % times the optimal one.

The proof is constructive according to the sizes
of X and Y. For each subcase, we provide an
explicit feasible partition approach, such that the
cardinality of the maximum independent set is at
most % times the optimal one; that is, we prove
Alg(T,) = max{| 11|, | 12|, |13]} < n without a better
low bound of OPT'(T}) than %.

Case 1: %n <X < 175n

Partition Approach 1 We assign one independent
set I to X and two other independent sets /, and I3 to
Y as evenly as possible.

7

Suppose that |I5| > |I3]. When |[I]| = |X]| < {57,
|1, = [m—l < Ln, and |I3] = LlYlJ < ls then

15
Alg(T,) < Ex5< g OPT(T)
Case2: —n < |X|
When 5 n < |X| < n, then %n < Y] < %n.

In this case the partition approach mainly focuses on
identifying two compatible vertex subsets, X' C X
and Y’ C Y, such that | X'| > n [Y'| > 115n and
X'+ Y] < —n. If the aforementloned condition is
met, thenlet [y = X' UY', L =X\X, I3 =Y \Y',
yielding Alg(T,) = max{|[1], 2], |13} < 2x % <
1OPT(Ty).

Let ® = {ulL, C X,|L,| > n} and ¥ =
{v|Ly, C Y,|Ly| = 15n} for s1mp1101ty The following
four subcases are determined.

Subcasel @ # O,V # g,andJi € @,j € V¥,
such that |i — j| > 1.

If |i — j| > 1 holds for some i and j, then any vertex
in L; is not adjacent to that in L, indicating that L; and
L; are compatible. Therefore, the following partition
approach can be applied to obtain the results.

Partition Approach 2

Step 1:  If |[L;| + |L;| < 15n let X’ = L; and
Y’ = L;. Otherwise, let X’ be any of the smallest
subsets of L;, such that | X’| > 15n let Y’ be any of the
smallest subsets of L; such that |Y'| > 1 SN

Step2: Let I; = X'UY', I, = X\ X/, and13 =Y\
Y’. Thus, Alg(T;) = max{|I], |I2], |5} is outputted.

Subcase2 & # o, ¥ # g,andVi € &, € V¥,
|i — j| = 1 holds.

|i — j| = 1 implies that L; is always adjacent to
Lj, Vi € CD,] e Y. Let L,, LDH_], cee LOH-S—I be an
adjacent sequence, such that |L,| > %n(y =a,a+
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1,...,a + s —1). Then we have the following lemma.

Lemma 2 The length of the adjacent sequence does
not exceed 3, thatis s < 3.

Proof Let Ly, Ly+1,...,Ly+s—1 be the adjacent
sequence of T, and s > 4. Suppose that L, C X, itis
not hard to see that one of Ly 4+5—2 and Ly4—1 must be
a subset of Y and is not adjacent to L. This condition
is a contradiction with the current subcase; therefore,
Lemma 2 holds. n

Based on Lemma 2, we know that the length of the
adjacent sequence is either 2 or 3. In what follows, we
distinguish these two subcases.

Subcase 2.1 The adjacent sequence is L; and L;,
where j =i + 1.

Without loss of generality, we assume that L; C X
and L; C Y, then we have the following partition
approach.

Partition Approach 3

Step 1: Sort each vertex of L; in non-increasing order
according to the number of its corresponding children.
Denote the ordered #-th node in L; as Ll@ and its

children as Lj-t).
Step 2: If |L§.1)| < E” then let & be the smallest

index, such that Zt:1|Lj(.t)| > Lp let Y =

15
Z p j(t). Otherwise, let Y’ be any of the smallest
subsets of LJ(.I), such that |Y'| > fn

Step 3: Identify all nodes in L;, which are not

L(.l)

(c) IL(')l >Lknand |N| > &n

= 15 IS
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adjacent to any node in Y’, and denote them by a set N.

Step 4: If [N| > 15n let X’ be any of the smallest
subsets of N, such that |X'| > 115n Otherwise, let
X’ be any of the smallest subsets of X\{L; + L;1»},
such that | X/| > n Then, let [y = X' UY', I, =
X\X',and Iz = Y\Y/ thereby yielding Alg(T,) =
max{| /1], |I2[. [13]}.

Lemma 3 Partition Approach 3 can produce a
feasible partition solution, such that Alg(7T,) <
LOPT(Ty).

Proof If |L{"| < Ln (see Fig. 1), then V1, L <

n because L; has been sorted. In addition, Y/ =
Zt 1L( ). where k is the smallest index such that
Zz=1 |Lj(-t)| E” thus, E < Y] < %n If
|Lj(-1)| > llsn, then Y’ will be the smallest set, such
that |Y | < =

If |N | > n we can conclude that 7znn < [X'] <
125” s1m1larly If |N | < n then |L;]| < n because
ILAN| < Y| < n Combmed with |L,+2| < —n
and | X| > 175n we der1ve I X\{L; + Li+2}| > =
This condition implies the feasibility of yielding a subset
X’ from X\{L; + L; 45}, such that %n <X < %n
X’ and Y’ are compatible and can be merged into an
independent set I;. Therefore, |I1]| = | X'|+|Y’ | < —n,
L] = | X\X'| < —n |I3] = |Y\Y'| < —n and
Alg(Ty) < &n < 1 OPT(T ). [ |

Subcase 2.2 The adjacent sequence is L;, L;, and

L 100

i

L;

L[KEANY v KAX

LM L®
j j
Liy, O @) o O O
{0 O = X\ (LitLu)—— O

(1) 1 1
(b) ILj | < {snand |N| < {51

LY
1
L;
LM
J
Liz, O O o O O

______________________________

@ 1L > Lnand |N| < &

Fig.1 Overview of Partition Approach 3 (O and A represent single vertices in X and Y, respectively).
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Liy>, where j = i + 1. Then we can apply Partition
Approach 3 to L; and L; 5. Similar to Lemma 3, the
same result can be obtained.

Subcase3 ¥ =2, P # 2.

Let L; be the level satisfying |L;| >
L; be adjacent to L;.

Partition Approach 4

Step 1: Let X’ be any of the smallest subsets of L;,
such that | X”| > 15

Step 2: Let Y’ be any of the smallest subsets of
Y\{Lj—» + L;}, such that [Y'| > 15

Step 3: Let I; = X UY/, 12 = X\X/,
and I3 = Y\Y/, thereby yielding Alg(T,) =
max{| I, |I2|. [13]}.

Lemma 4 Partition Approach 4 can produce a
feasible partition solution, such that Alg(T,) <
LOPT(Ty).

Proof As|L;| > 1 157 (see Fig. 2), we can conclude
that 1 < |X] < 125n Since |L;j_»| < 1n |L;| <
115” and |Y| > 15n we obtain |Y\{L; > + L;}| >
: 5n making it feas1ble for Step 2. Therefore 11| =
|X|+|Y| < 15m || = IX\XI < &5n, [l =
IY\Y'| < &n, and Alg(T) < LEn<1OPT(T;). W

Subcase4 =V =0.

Without loss of generality, we assume that L; and L;
are the odd and even levels, respectively.

Partition Approach 5

Step 1: Let k& be the smallest index, such that
Zlfzr |L2t—1| = 151

Step 2: If [Y\Y_, Loy| > -n, then let X' =
Z’; 1L2t 1 and Y’ be any of the smallest subsets
of Y\Zt 1 L2z, such that |Y'| > —-n. Afterward,
proceed to Step 4.

Step 3: If|Y\Z, 1 Lol <
of the smallest subsets of X'\ Zz 1 L2s—1, such that

n L;j 5 and

5

n then let X’ be any

1 X'| > n and Y’ be any of the smallest subsets of
Lj_p A A A A A
L; X O O O O O
L; A A A A A
A8 ) A e Y

Fig. 2 Overview of Partition Approach 4 (O and A
represent single vertices in X and Y, respectively).

Zt 1 L2z, such that |Y'| > n Afterward, proceed to

Step 4.
Step 4: Let I; = X' UY, I, = X\X,
and I3 = Y\Y’, thereby yielding Alg(T,) =

max{|[1|, [I2], [13]}.

Lemma 5 Partition Approach 5 can produce a
feasible partition solution, such that Alg(7T,) <
IOPT(Ty).

Proof Through Steps 1 and 2 (see Fig. 3), we can
obtain compatible X’ and Y’ such that |I;| < %n,
and |/| and |13| are less than En In Step 3 (see
Fig. 4), |Y| > 2n > 15n Z |L2t| must exceed = 5
because |\ Zt 1 L2 and |L2k| are less than —n As
11511 where k
is the smallest index, leading to Zle |Los—1] < %n
Accordingly, | X\ Zlle Lo;—1] and th:} |Lo;| exceed

n allowing Step 3 to yield compatible X’ and Y.

previously discussed, Zz=1 |Lat—1| =

Therefore [I1] = |X'| + |Y | < n | 12| = |X\X | <

n, |Is] = |[Y\Y'| < 15” and Alg(T,) < 1_” <

gOPT(T,). [ |
Case3: 1 <|X| < —n

Suppose that X and Y comprise levels with odd and
even indexs, respectively. In this case, we first identify

_______________

Ly Lyk-1 Lag+2

Fig. 3 When Step 2 is active in Partition Approach 5 (A
represents single vertex in Y; ® and A represent a number
of vertices in X and Y, respectively).

[TTTTTTTToToToor o pmTTmTmomomoees ' k
Ao el AATAIN)
I,I |: \\\ \\\ \‘\\ ‘\\\\\
K ! \\\ \\\ \\\\\ \‘~\\\
Ly v Lok ! L2k+2/ /,/
JE S [Hp __|_____,_': _____ y ‘Z:,
D SR S I ST g
lmmee e 2! ! Leommmmoo 1 _________
o) X

Fig.4 When Step 3 is active in Partition Approach 5 (O and
A represent single vertices in X and Y, respectively; ® and A
represent a number of vertices in X and Y, respectively).
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the smallest index k, such that Zt L2l = Zn,
then distinguish the two cases according to the size of
Y\ Y i) Lo

Subcase 5 |Y'\ Zlle Lot > %n.

Partition Approach 6

Step 1: Let Y; be any of the smallest subsets of
Y\X:t 1 Las, such that |Y;] > n Let/; = Y1 U
Yy Lo

Step 2: All non-leaf nodes in L,; are denoted as
set Li” Ifl1 <|X| < 15n then let Y, be any of the

smallest subsets of Zt 1 L2/ \LL%, such that |Y5| >

—n If ; n < |X]| < 125n then let Y, be any of the

s;nallest subsets of Zz=1 L2t\L12’;€, such that |Y,| >
T3

Step 3: Let I, = Y, + X\ Zle Loy_q.

Step 4: Let I3 = Y \ {Y1, Y}, yielding Alg(T,) =
max{|[1|, [I2], [13]}.

Lemma 6 Partition Approach 6 can produce a
feasible partition solution, such that Alg(T,) <
LoPT(Ty).

Proof When —n < |X| < n (see Fig. 5), then

|Y1| < 15511 in Step 1. Together w1th Zt L Lai—1] <
| X]| < 15n we derive —5 < L < 7n In Step

2, as |Log4+1| < |X| < n by Lemma 1, we then
have |L;’;c| |Lok+1]| < 15” and | Zz 1L2t\L ';c| >
%n, implying the feasibility of yielding Y>. L%} is not
included in Y>, which is incompatible with Lk 1; thus,
1 2 becomes an independent set. Similar to Y7, we have

< Y2l < n Together with |X\Zt 1 Lo 1| <
|X| < %n we can conclude that 51 < || < E”
and | 13| = |Y|— |Y1|—|Y2|<—n—%n—%n—%n.
Therefore, Alg(T,) = max{|l1|,|l2],|13]} < E” <
LoPT(Ty).
Similarly, we can prove the lemma when 1 < |X| <
1
En. u
-------------- . k
1 A Y —: s :Y L
1 ’ ’ { 1 L_Q\_A\_\__A_\_\__ AP
’ \ N \\ \\\ \\\\
I’l 1\ \\\ LLZT;'( \‘\ \\ \\\
Ly / Lokq ! / o
," /’ e ieaves /I S

Fig. 5 Overview of Partition Approach 6 (A represents
single vertex in Y; ® and A represent a number of vertices
in X and Y, respectively; A and A represent non-leaf and leaf
nodes of Ly, respectively).
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k 4,

Subcase 6 |Y\) ;_, L2,| < 1zn

Since |Y| > }gn and Zt 1 |L2,| < 15
inferred that |Lyg| > 7 5n Sort each vertex in Loj_q
in non-increasing order according to the number of its
corresponding children in L. Denote the ordered ¢-th
vertex in L,;_q and its children, respectively, as Lglz 1
and Lg,z

Now we distinguish four subcases mainly according
to the size of |L(1)|

Subcase 7 |L(1)| > 15

In this subcase a superior low bound of the optimal
solution is first provided and then used for the proof of
the worst-case ratio.

Lemma?7 OPT(T;) >

=n, it can be

(1)
L] 5 o
= 3'

Proof Since any vertex in L() is adjacent to

L;lk) ,» then vertices in Lgk) cannot occupy all three
independent sets in the optimal solution. Hence, we

have OPT(T;) > [ —‘ > 3. |

Partition Approach 7

LY
Step 1: Denote arbitrary ’7| i
set Y*, and all the children of ¥ * by set Y *.

Step2: Let I; = Y* + X\{L{)  + v,

Step 3: Assign LSC)\Y* together with Y * and the
parent of sz , into 1.

Step 4: Assign all the residual vertices into I3,
yielding Alg(T,) = max{|l1], |12|, |13]}.

Lemma 8 Partition Approach 7 can produce a
feasible partition solution, such that Alg(7,) <
1OPT(Ty).

Proof In Step 2, the total number of vertices in

X\{Lgc) .t Y*} is less than —n due to |X| <

(1)
Zn. Thus, || < [MW + &n < OPT(Ty) +

()
—‘ nodes in L,,’ by

2OPT(T) = LOPT(T;). In Step 3, since |L2k L+

Y*| < |X| < Z&n, then the number of vertices in

15
Y* and the parent of sz “=n. Thus,

L
|I2] < {' %"'J + f5n

TOPT(Ty). In addition, |I5] < n —|[LY| <
Hence, Alg(T;) = max{|[1], |L2|. [I3]} < §0PT(Tr)

is less than

1 15

< OPT(Ty) + %OPT(T,) =

holds (see Fig. 6). |
Subcase 8 %n |L(1)| < 1z

Let Y * be any of the smallest subsets of L(1 such that
[Y*| > 15” and Y * are denoted as the chlldren of Y'*.
For completeness, we then distinguish three subcases
and provide a partition approach for each one despite
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|
}}
5485 & 6]
[ n

© X\ (Lok-1 + Lok+1) | I,

o ©

Fig. 6 Overview of Partition Approach 7 (O and A
represent single vertices in X and Y, respectively).

the substantial similarity of the following three partition

approaches.
Subcase 9 1 < |X| < 15” (see Fig. 7).
Partition Approach 8

Step1: Let [y = Y* + X\{Lgc)_1 +Y*).
Step 2: Assign LSC)\Y* together with the parent of

L;lk) , into 1.
Step 2.1: If || < 14511 then add as few nodes as

possible from Y \{Y* —|— I} excluding the children of
Y*, such that | 1| > 5
Y, which are compatlble with Y* to I, until | 15| >

Step 2.2: Assign Y * into I>.

Step 3: Assign all the residual vertices into I3,
yielding Alg(Ty) = max{|1 .||, | I3}.

Subcase 10 Ln < |X| < Zn, [X\{LYY . +

n that is, add minimum nodes in

-, 5 15 15 2k—1
Y }| < El’l .
Partition Approach 9

Step 1: Let I; = Y* + X\{L{)  +7*).

Step 2: Assign L(l)\Y* together with the parent of
Lglk) , into 1.

Step 2.1: If |15 < n then add as few nodes as
poss.1b1e from Y\{Y * + 12} excluding the children of

Y*, such that | I | > 5 n that is, add minimum nodes in

———
(@ = &0 ©%0

Loks1| v [e)

S 48]

I

Y\ (Lak-2 + Lai) l:l t
vee X\ (Low_q +1L ~

© \ Qa1 Lok )l 1AL e child nodes of T I,

Fig.7 Overview of Partition Approach 8 (O and A represent
single vertices in X and Y, respectively).

> Ay
Z 15

Y, which are compatlble with Y* to I, until | 15| > i

Step 2.2: Assign Y * into . 1=

Step 3: Assign all the residual vertices into I3,
yielding Alg(Ty) = max{| 1|, o], | 5]}

Subcase 11 =n < |X| < En |X\{L2k Lt
) > g

Partition Approach 10

Step 1: Readjust the size of Y™* to be any of the
smallest subsets of Lgk such that |[Y*| > and
then update Y * correspondingly.

Step 2: Let I; = Y* + X\{L{)_ +7*).

Step 3: Assign Lglk)\Y* together with the parent of
LY into I.

Step 3.1: If |15 < 15n then add as few nodes as
possible from ¥ \{Y* + I} excluding the children of
Y *, such that | I | > 5 n that is, add minimum nodes in
Y, which are compatlble with Y* to I, until | 15| > E”'

Step 3.2: Assign Y * into /5.

Step 4: Assign all the residual vertices into I3,
yielding Alg(T;) = max{|],].[l2].[13]}.

For simplicity, we only consider the proof of
Subcase 11 in what follows because the two other
subcases can be verified similarly.

Lemma 9 Partition Approach 10 can produce
a feasible partition solution, such that Alg(T;)
10PT(Ty).

15

E 5

Proof After Step 1, 1sn < |Y*| < $n holds.
When 1= |X\{L$€) . —l— Y*}| < |X]| < 12511 we
can 1nfer |Il| < |Y*| + —n < 17511 accordingly by
Step 2.

If |1 > 145n then Step 3.1 is sklpped Since

1 1
X\LG, + 7Y > fsm 1150+
Y*| < Ln holds. Accordlngly, the total size of Y'*

15
and the parent of sz | 18 less than En Based on

|L(1)| < ign and |Y*| > 15n the size of L(l)\Y* is
estimated to be less than —n Thus, | 15| = |L;}3\Y*|+
V¥ +1< 15”+ 5= 15h.

If |I| < n then Step 3.1 is activated. After some
additional nodes are added to I, the size of I, will

nand | X| <

IIU,

end up as i < |2] < in because nodes are added
1nd1V1dually to satisfy |/»| > 145n From |L$€) Lt

Ln, we know that |Y*| < En Therefore,

Y* | < 15
|12|< I’l+|Y|<15

The aforementioned discussion proves that the upper
bound of |I5] is n whether Step 3.1 is active or not. It
should suffice to demonstrate the continuous success of

the aforementioned approach in complementing the size
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of I to satisfy 1 5n when Step 3.1 is active. Suppose that
|| < n after all tr1angles compatlble with ¥* are
putlnto 12 Since |Y*| < n |12| < n and|Y| >

n the size of the ch1ldren of Y* must exceed
contrad1ct1ng |Y\Zt 1L2t| < iz
guarantees that at least 15N triangles are included in /5.

Since I; and I, contam at least 5 5n triangles,
we derive |I3] < %n Hence, Alg(T,) =
max{|l1|, |I2],|13]} < 7OPT(T ) holds |

Subcase 11 |L(1)| < =n, |Ly| > =

F1rst identify the smallest 1ndex l such that
YL ILY = En Letyr = YU Lg,g, then add
as few nodes as possible from L;k into Y *, such that
[Y*| > %n Let Y* be the children of Y*. For
completeness, we then distinguish four subcases and
provide a partition approach for each one despite the
considerable similarity following the four approaches.

Subcase 12 1 < |X]| < 15

Partition Approach 11

Step1:Let I, = Y* + X\{X\_, LY  +7~).

Step 2: Assign Y\_, L{)\Y* together with the

2 ;1. This cond1t1on

parents of th 1 LSC) , into I5.
Step 2.1: If || < 145n then add as few nodes as

possible from Y\{Y* + I} excluding the children of
Y*, such that | I, | > 7 n that is, add minimum nodes in

Y, which are compatlble with Y* to I, until | 15| > E”'

Step 2.2: Assign Y * into 5.

Step 3: Assign all the residual vertices into I3,
yielding Alg(T,) = max{|/1], |12| 1]}

Subcase 13 Ln<|X| < Zn, |X\{Zﬁ LY+
Y < n and|zt 1Lg,2_1| < 15n.

Partltlon Approach 12

Step 1: Let [; = Y* + X\{Y !, LY + 7~}

Step 2: Assign Zl=1 L(t)\Y* together with the
parents of Zi 1 gk) L into L.

Step 2.1: If |I5| < -%n, then add as few nodes as
possible from ¥ \{Y* —l— I 2} excluding the children of
Y * such that || > 5 n that is, add minimum nodes in
Y, which are cornpat1ble with Y* to I, until | 15| >

Step 2.2: Assign Y * into I,.

Step 3: Assign all the residual vertices into I3,
yielding Alg(T;) = max{[/,], Ilzl 151}

Subcase 14 115n < |X| < 15n |X\{Zt ng,z_1+
Y} > g5

Partition Approach 13

Step 1: Readjust / to be the smallest index such that
I LD = An Lety* = Y2V LY then add

as few nodes as poss1ble from L(l) into Y* such that

>3y
Z 15
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[Y*| > n Update Y * correspondlngly
Step 2. Let/, = Y* + X\{X!_, LY +7*).
Step 3: Assign th=1 Lg,z\Y* together with the

parents of th . LSC) | into I5.
Step 3.1: If || < 145n then add as few nodes as

possible from Y \{Y * 4+ I} excluding the children of
Y* such that |I,| >
Y, which are cornpat1ble with Y* to I, until |I,| >
Step 3.2: Assign Y * into .
Step 4: Assign all the residual vertices into I3,
vielding Alg(T;) = max{| 1|, | o], 151}
Subcase 15 En <|X| < Zn, |X\{Z, LY+
Y*}| < n and|zt 1Lg,2_1| > 15n.
Part1t1on Approach 14
Step 1: Let I; = Y* + X\(X}_, LY  +7*).
Step 2: Ass1gn Zt 1L(t)\Y* together with the

parents of Zt 1 LSC) ) 1nto L.

Step 2.1: If |15 < n then add as few nodes as
poss1ble from Y\{Y* + 12} excluding the children of
Y*, such that | I | > 7 n that is, add minimum nodes in
Y, which are compat1ble with Y* to I, until 12| > n.

Step 2.2: After Step 2.1, if |I5| < 145n (i.e., nodes
manipulated in Step 2.1 are insufficient), then reset I
to be empty and then assign the children of Y* together
with Zi 1 Lglz , into 1. Otherwise, assign Y * into I,
directly.

Step 3: Assign all the residual vertices into I3,
yielding Alg(T;) = max{[/,].[l2].[13]}.

For simplicity, we only consider the proof of Subcase
15 in what follows because the three other subcases can
be verified similarly.

Lemma 10 Partition Approach 14 can produce
a feasible partition solution such that Alg(7,) <
L0PT(Ty).

n that is, add minimum nodes in

> Ay
Z 15

Proof Vi, |L(t)| < 155n obviously holds. Since
|Log| > 155n then the feasibility of yielding Y* and

index / can be verified. Before Step 1, we have >n <

157
|Y™*| < 1_5" Since | X| < 125n and |Zt 1L§2_1| >
Ln, then [X\{X0_, L) | + 7*}| < Ln holds.

Therefore, |I;| = |Y*| + |X\{Zi=1 L;t,g_l + Y%y <
6 1 _ 7
s+ E” 157

If |[I,] > Xn, then Step 21 is skipped. Since

15
s IL")\Y | < 1LY <
(t)

the parents of Zl=1 Loy adds up to no more than

Eva I 3 1
|Y*+zt VLS ASITT L L <X <
n then |12| < E” + —n = Ln.

15
If |I>| < =%=n, then Step 2.1 is activated. If Step 2.1

n the size of Y* and

15
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succeeds to increase the size of I, such that | 15| >
then E < || < 5 751 holds after Step 2.1. Since
|| > n Step 2.2 runs the “Otherw1se branch by
putting Y * into I,. With |Y | <
that |I5]| < n +17* < n (seeFig 8).

Now we conSider |15] for the two aforementioned

n we can conclude

conditions
155 n nodes, respectively. Thus, the size of I3
is at most n and Alg(T,) = max{|l1|,|12],|13]} <
LorT(T; ) holds.

If Step 2.1 fails to add sufficient nodes, such that
|| > %n, then Step 2.2 runs the “If” branch by
resetting I,. Before Step 2.2, I, contains all the
triangles except Y* and the children of Y*. Since
Y*| < &n, || < fzn, and |Y| > }gn then the
size of children nodes of Y* exceeds ﬁn Recall
Y\ Zz 1 L2t| < 15n the size of the children of ¥ *
1s less than —n After Step 2.2, with | Z; i Lglz_1| <
S 1, and I, includes at

I, and I, are proved to contain at least
n and

n then |12| < 15n + 15n = 15

least 3 3N triangles Notably, /1 and I, contain at least

2n and —n triangles, respectively. |I3| < 15n Thus,

15

Alg(T,) = max{|]1|.|I2|.|I5]} < ZOPT(T;) holds
(see Fig. 9). |
Laj—2

LZk*l

AAAAADND .
A9
b EL

O o X\ (Log-1+ Laisr)

I
v Y\ Lozt Log) !
""Exclude child nodes of Y* I,

Fig. 8 Overview of Partition Approach 11 (O and A
represent single vertices in X and Y, respectively).

Y Al

" KAA %l
Nf
halp ot 8 & 8]
o (%

Y\ (Lok—z + L) | Iz

O+ X\ (Lak-1 + Larn) | | A "Exclude child nodes of Y” |:| I

~,

G
>/
D’

i

™~
o

Fig.9 “If” branch within Step 2.2 of Partition Approach 14
(O and A represent single vertices in X and Y, respectively).

4
= 1_5’1,

Subcase 16 |L(1)| < 55n and
n.

Partition Approach 15

Step 1: Let /1 = Log + X\{Logk—1 + Lok+41}-
Step 2: Let I, = Y X2 Loy + Loy

Step 3: Let I3 = Y\ Y5, Lo + Lojp_1.

Step 4: Output Alg(T,) = max{|/1|,|I2], 13|}
Lemma 11 Partition Approach 15 can produce
a feasible partition solution, such that Alg(T;)

4
X 15 < |Lak| <
15

Ju—

LoPT(Ty).
Proof Since the size of L, is at most n then
|X\{L2k 1+ L2k+1}| 1X| < &n and || <

n Recall that |Zt 1L2t| < 15n and |Lokt1] <
|X| < ln Thus, |I>] is less than 5 n Similarly,
from |Y\ XX, Lof| <
we can obtain |/3] <
max{| /1], |I2].[13]} <

” and |L2k 1l < 125 n,
%n. Therefore, Alg(T,) =
ZOPT(T;) holds (see Fig. 10).

4 Conclusion

We consider the partitioning problem of a given graph
into three independent sets of minimizing the maximum
one. We first provide a simple %-approximation
algorithm for any 2-colorable graph and then design an
improved %—approximation algorithm for a tree. One
of the possible and significant directions for future
research lies in the computational complexity of the
partitioning problem of a tree into three independent sets

of minimizing the maximum one.
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