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Efficient Algorithm for the k-Means Problem with Must-Link and
Cannot-Link Constraints

Chaoqi Jia, Longkun Guo*t, Kewen Liaof, and Zhigang Lu'

Abstract: Constrained clustering, such as k-means with instance-level Must-Link (ML) and Cannot-Link (CL) auxiliary

information as the constraints, has been extensively studied recently, due to its broad applications in data science and

Al. Despite some heuristic approaches, there has not been any algorithm providing a non-trivial approximation ratio

to the constrained k-means problem. To address this issue, we propose an algorithm with a provable approximation

ratio of O(logk) when only ML constraints are considered. We also empirically evaluate the performance of our

algorithm on real-world datasets having artificial ML and disjoint CL constraints. The experimental results show that

our algorithm outperforms the existing greedy-based heuristic methods in clustering accuracy.

Key words: Constrained k-means; Must-Link (ML) and Cannot-Link (CL) constraints; approximation algorithm;

constrained clustering

1 Introduction

As a well-known clustering problem, given n data
samples/points, the k-means clustering!!"™* aims to
partition the data points into k clusters, such that the
overall squared Euclidean distance between each data
point and its closest cluster centroid (mean of the
cluster) is minimized. Due to the Non-deterministic
Polynomial (NP)-hardness of the k-means problem!>~"!,
several approximation algorithms were proposed!®-'!1.
Among these studies, Kanungo et al.l”! presented a
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local improvement heuristic based on swapping centers
and proved that this yields a (9 + €)-approximation
algorithm. ~ Ahmadian et al.l''l' provided a 6.357-
approximation algorithm with respect to the standard
Linear Programming (LP) relaxation, achieving the state-
of-the-art approximation ratio for the standard k-means
problem. With a different line of methodology, Arthur
and Vassilvitskii®! provided a k-means++ algorithm
achieving an approximation ratio of O(logk) by
improving the initialization step.

In addition to the standard k-means clustering, the
constrained k-means clustering problem, first introduced
by Wagstaff and Cardie!'”! and Wangstaff et al.['*],
has attracted research interests in recent years!!4!%,
Specifically, the constrained k-means clustering problem
considers additional Must-Link (ML) and Cannot-Link
(CL) constraints to the dataset on top of the standard
k-means setting, where any data points belong to the
same ML/CL set must/cannot be placed in the same
cluster. There are many real-life cases arising from
the constrained k-means setting. For example, we
consider a set of surveillance cameras laid out at different
locations (not closed to each other) to capture human
faces. The captured images can then be clustered by
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personal identity for face categorization. Face images
continuously captured from a single camera must come
from the same person, while images from different
cameras at the same time must be different persons.
We can use this background information to improve the
accuracy of clustering.
Davidson and Ravil?”! proved that it is NP-complete
even only to determine whether the constrained k-means
problem is feasible regarding general CL constraints;
whereas, it is polynomial solvable when only considering
ML constraints. Their results indicate that feasible
approximation solutions may exist to a simplified
constrained k-means problem considering only ML
constraints. However, to the best of our knowledge, there
is no bounded approximation even to such a simplified
problem.

Contributions. In this paper, we fill the
aforementioned research gap by providing an O(logk)
approximation algorithm leveraging the initialization
step of k-means++. Based on our approximation
algorithm, we further propose a heuristic-based
convergent k-means algorithm for the problem with
both ML constraints and Disjoint CL. (DCL) constraints,
where the DCL simplification requires the CL sets
are disjoint from each other. We also provide a
counterexample for the problem with ML constraints,
which fails to achieve an approximation ratio when
uniformly selecting a data point to be the representative
data point for the ML set at random. Instead, we show
that it is desirable for our algorithm to set a mass center
as the representative point.
evaluate the clustering accuracy of our algorithm against
the greedy-based heuristic algorithm!'3 on real-world
datasets. The practical results validate that our algorithm
consistently achieves a better performance.

Finally, we extensively

2 Related Work

Wagstaft et al.['¥l first introduced the constrained k-
means clustering, where two additional constraints, ML
and CL, were considered in addition to the classic k-
means problem. They proposed a heuristic greedy
algorithm to solve the constrained k-means problem.
Their algorithm firstly randomly picks the centers from
the set of data points, then assigns each data point to
its nearest center or to the center where its ML fellow
data points belong to. Note that a data point cannot be
assigned to any center taken by the point’s CL sets. This
work also demonstrated in their experiments that the

accuracy of k-means clustering with constraints can be
significantly improved. However, the greedy solution
is unconcerned about the loss/objective function of the
problem, and cannot guarantee the convergence of the
algorithm.

Due to the NP-completeness of the standard k-
means problem with the CL. and ML constraints, the
aforementioned works cannot provide an approximation
ratio in their solutions. Different from solving the
original constrained k-means clustering, the work in
Ref. [20] introduced two new constraint types to
make a feasible constrained k-means clustering and
provide a corresponding algorithm that satisfies the given
constraints.

Recently, Baumann?!! provided a binary linear
programming-based k-means algorithm to solve the
“soft” constrained k-means problem. Instead of
attempting to satisfy all constraints, he imposed
punishment to the objective function if the constraints
are not satisfied. To ensure that must-link and cannot-
link constraints are respected, his work formulated a
binary linear program and solved it with mathematical
programming. However, the solution is inapplicable in
the case where the constraints must be satisfied. Thus,
in this paper, we aim to provide an approximation
algorithm for the constrained k-means problem and
achieve a ratio analysis on ML-constrained k-means.

3 Preliminary

Given a set of n data points P in d-dimensional space
and several sets of ML and CL, the constrained k-means
problem aims to partition n data points into k clusters
(same as the traditional k-means), however, subject to the
ML and CL constraints. In this paper, we study a special
constrained k-means problem having ML constraints
(the same as Ref. [13]) and DCL constraints.

In this paper, the ML constraint is a set of data point
sets X = {X1,X5,..., Xy}, where every X € X is
an ML set. Given data points p; and p;, if p;, p; €
X C P, then p;, pj € A, where A,, denotes cluster
m. Similarly, the DCL constraint is a set of data point
sets Y = {Y1,Y2,...,Y;}, where Y; C P is a DCL set
with |Y;| <k ,and Vi # j,Y; NY; = @ holds. Given
data points p; and p;,if p;, p; € Y € P and p; € Ap,
then p; ¢ A,, must hold, where A,, denotes cluster m.

Then finding the k centers C of an instance of
the constrained k-means problem and partitioning the
data points into k clusters A = {Ay,As,..., Ar}
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accordingly can be formulated as solving the problem
below:

k
{C,.A}:argminz Z Ip —cill3,

i=1 pEAiG.A
c;ieC

VX eX, 34 A, st,X C A4,

Yu,veY e, AAd e A, st.,u,v € A,
where X and ) are ML and DCL sets, respectively.
Moreover, || p — c;||2 is the Euclidean distance between
data points p and ¢;, and Zle Y pea; P —ci 13 is the
same cost function of the k-means clustering.

In addition to the above, in this paper, we also use

dmin(p, C) to denote the shortest distance from a data
point to its closest center we have already selected,

dmin(p’ C) = mln”p - C||2’
ceC

and use D?(p) to denote the cost of the data point p
by the constrained k-means algorithm. In particular,
if the data point p is from an ML set X;, it will be
assigned to the nearest center of X;. Moreover, we set
¢ (A;) as the cost of A; € A. For briefness, we denote
¥ = Y ¥, (4;) as the cost of the whole dataset.

The optimal center of a given cluster is the average or
mean of the cluster, which is the same characteristic as
the k-means clustering problem. Thus, Lemma 1 is also
useful for the constrained k-means problem.

Lemma 18! Let S be a set of data points with mass
center ¢(S), and let z be an arbitrary data point. Then,

Yoxesly—z13=Yxesllx—c($)I3 = [S]-[le(S)—=]5.

4 Factor-O(log k) Approximation

In this section, we provide a “D? weighting” sampling
initialization method to select k centers and then show
that the center set has a cost at most O(log k) times of
an optimal solution.

4.1 Initialization algorithm

We devise a new initialization algorithm to select the first
k centers for constrained k-means clustering with ML
sets, and show that the initialization actually deserves an
approximation ratio O(logk).

To properly assign the ML sets, we consider each ML
set as a “big point”. For each “big point”, we use the ML
set mass center to represent the set and use the number
of data points in ML as its weight. By Lemma 1, we get
the following property for ML sets.

Lemma?2 Foramust-link set X;, we denote its mass
center by X;. Then, for the data point x in X; and an
arbitrary data point p in RY, we get

Yolx—pl3= )" lx— X3+ X 1X — pl3.
x€X; x€X;

Following Lemma 1 and setting S as X;, z as p, and
¢(S) as X;, which is the mass center of the ML set X;,
we immediately have the following equation:

Dol =pl3 = D> llx—Xill3 = 1X:] - [ Xi — pli3-
x€X; xe€X;

To implement the k-means++ sampling and select
the data points of P in an uniform way, we set the
possibility of selecting a data point proportional to its
squared distance to the current center set. Note that
compared with the traditional k-means problem, we have
to focus on the cost according to the constraints.

Therefore, for the current dataset P and center set
C with |C| < k, the initialization samples a random
data point p. € P with the following possibility

D?(pc)
Yprep D2(0')’
unconstrained point or a mass center from an ML set.
Then we use the data point p. or X; (the mass center of
the ML set where p. € X;) as anew center. In particular,
when C is empty, the first step of the initialization
uniformly selects a data point py from all data points
in the entire dataset P at random. The procession of
adding the sampled data point as a center to C repeats
until |C| > k. The detailed algorithm is depicted in
Algorithm 1.

The performance guarantee of the algorithm can
be stated as in the following theorem whose proof is

where the data point p can be an

postponed to Section 4.2.

Algorithm 1 Initialization for center selection

Input: Database P of size n with a family of ML sets X, a
positive integer k.
Output: Set of center C.
1 Uniformly select a data point po € P at random, and set
C < po;
2 while |C| < k do
3 Select a data point p. from P with probability

D2(pe)
Y er D201’
following rule:

where D2 (p.) is computed by the

4 if p. € X € & then

5 Set DZ(PC)_: déin()(:'.C)-l- I pe _X”%,

6 Set p. < X, where X is the mass center of X;
7 else

s | | Set D2(pe) = d2,(pe, C);

9 end

10 Let C < p¢;

11 end

12 Return C
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Theorem 1 If C is a set of centers selected by
Algorithm 1, then the expectation cost of C satisfies
E[y] < 8(nk + 2)Yopr, where Y¥opr is the cost of
optimal solution for the clustering.

4.2 Proof of Theorem 1

In the following, we argue that the Algorithm 1 deserves
an approximation ratio O(log k) for the ML constrained
k-means problem.

We first analyze that the first step is simple yet
important in the case, which uniformly selects one center
at random. Below is the Lemma 3 with a similar form
to Lemma 3.1 in Ref. [8], whose proof also follows a
similar line but with different details.

Lemma 3 Let A be an arbitrary cluster from the
optimal cluster Copr, where C is an empty center set for
the clustering. We select uniformly a random center pg
and add it to C from A. Then E[¢p(A)] = 2¢opr(A).

Proof Let c(A) denote the mass center of A, which
is an optimal cluster from Copr. In addition, the
cluster A contains two kinds of data points, which
are unconstrained points and ML points. We denote
the unconstrained points in A as P(A), and a family
of ML sets belonging to A as X' (A). Because there
is only one center, so all points of the dataset are
assigned to it. Considering an ML set as a “big point”
with a relatively large weight and defining Vy4) =
Uxex(a) Xs E[#(A)] can be computed as

EpP] =~ S (3 1o - pol2+

|A]
Po€P(A) peP(A4)

S lx=pold+ Y 1XIC Y Ip-Xil3+

xGVx(A) X;jex(A) peP(A)
S ox-X03 ] =
XGV/Y(A)
1
Al Z( Z lla — poll3+
acA poeP(A)
S Xl fla - Xi]3) =
Xiex(A)
1
] Z Z lla — poll3+
acA ppeP(A)
1 _
WZ > Xl lle - X3 )
acAX;ex(A)

where X; is the mass center for the ML set X;.
Then by Lemma 2, for an ML set X; and an arbitrary

data point a, we know that |X;| - la — X;|2 =

Dxex;lla — x[l3 - D ovex; llx — Xi |3. Summing over
all data points a € A, we have

Yo IXil - lla— X3 =

a€cA

2 V|12
Yo lla=xl3=3" D Ix— X3
acA xeX; acA xeX;

By simplifying the above results and incorporating
them into the Eq. (1), we have the expectation E[¢(A)]
in the following:

1
E[p(A)] ZEZ > lla—poll3+

a€A poeP(A)

ﬁ Y fa-x2-

acA xEVX(A)

ﬁz S - X2 =

acA xEVX(A)

ﬁ 3% Jla - pol2-

acA poeA

1 _
i Yo > Ix=Xill3
acA xEVx(A)
Thus, by Lemma 1 we get > ,c4lla — pol3 =
Yaealla = c(DI3 + 14] - [ po — c(A)]3. where po
can be an arbitrary data point in A. So we have E[¢(A4)]
as given by the following formulation and complete the

proof:
1

Elp] = > O la—cAl3+
PoEA acA
Al lpo =D = > D lIx=Xil3 <
X;jex(A4) xeX;
2
=" Jla— (A3 =
|A| po€AacA
2) lla —c(4)]3. -

acA

The next step is based on one center to prove an analog
of Lemma 3, but is designated for the other data points
belonging to different optimal clusters that are not yet
covered, with D? weighting probability of section.

Lemma4 Let A be an arbitrary cluster in Copr with
AN C = @, where C is a center set for the current
clustering. If we add a random center p. to C from A4,
selected with D? weighting probability, then according
to the new clustering center the expectation potential
function satisfies E[¢p(A)] < 8¢opr(A).

Proof According to the algorithm, the probability,
at which we select an unconstrained point p. as our
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new center from an arbitrary optimal cluster A, is

precisely %. For the ML sets in A, we select

X; (mass center of X;) at a probability precisely

|X1|d,%m(Xl C)+Z‘(€X lx— Xl "2 .
P . After selecting the new

center, we process the constraints to compute the cost for
the constrained k-means problem. For each ML set X
from the cluster A, we require every data points x € X
to be assigned to the center, which is the nearest one
for X.

Therefore, we sum the cost for different kinds of
data points selected as centers. Let P(A) and X (A)
denote the unconstrained points in A and a family of ML
constraints from A, respectively.

Firstly, we consider that the center p. is selected by
the unconstrained points that E[¢ (P (A4))] is at most

EB(PN < Y ZDA(zI;C)(a)X

pcEP(A)

> min(D(p). ||p - pell2)® +

peEP(A)
> (X | min(dmin(X. C). [|IX = pell2)*+
Xex(A4)
dllx-X ||%)) )
xeX

Then we show the center is selected by a mass center
for an ML set X; € X(A). We use X; on behalf
of the new center in Eq. (3), and have the bound of
E[¢p(X(A))] as follows:

Epran< Y 2 (f(i)

X; eX(A)

> min(D(p). Ip — Xil2)* +

pEP(A)
> (X min(dmwin(X;, C). [|X — X;[2)*+
Xex(4)
dllx-X ||%)) 3)
xeX

Next, we will sum up the two cases for A to obtain
E[¢p(A)] = E[¢p(P(A))] + E[p(X(A))], and establish
its bound as the sum of the right sides of Formulas (2)
and (3).

Below we will separately compute the results for the
two cases in cluster A. According to Eq. (2), we calculate
the expected value of the cases where the new center is
an unconstrained point or a mass center of an ML set.

Thus, we gain the expectations for the corresponding
clustering as in the following.

For Eq. (2), assume that we select an unconstrained
point as the new center. Due to the feature that data
point in the k-means algorithm will be assigned to its
la = pell2 +
D(a) to all p., where a follows the property of triangle

closest center, we can obtain D(p.) <

inequality. Thus, the power-mean inequality deduces
that D?(p.) < 2|la — pell3 + 2D?(a). Summing over
alla € A, we then have that D?(p.) < % D aeallpe—
al? + ﬁ Y .4 D?(a), and hence E[p(P(A))] is at
most
% %Ha Pc||2 \A\ ZDZ(")
E A))] < ae
(P < D = D)

pcEP(4) acA

Y min(D(p), |lp — pell2)’+

DEP(A)

> (1 X|s min(dmin(X. C). [|X = pell2)*+
Xex(A)

e Xué)) .

xeX
= seallpe —all3
allpe —all
P — D; 20 Y b+
peepny 2aca D*(@) pEeP(A)

3 (X]-d2, X0+ Y Ik - XD | +

Xex(4) xeX
|if| Y aea D?(a) )
Z S Da) Z lp— pelz+
peeP(4) —acd PEP(A)
ST AUXI-IX = pell3 + D llx = X13)
Xex(4) xeX

Furthermore, we clearly have Y ,., D?(a) =

Y peep(4) D7 (pe) + Y xex(4) 2xex D(X).
Therefore, by Lemma 2, we know E[¢(P(A))] is

boundedby
Z > lla—pel3+— Z > lla=pel3<
pceP(A)aeA pLEP(A)aEA
Z > lla—pel3-
peP(A)aeA
That is, Formula (2) could be
E[$(P(4)] < | Z dlla=pel3 @

p eP(A)acA
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In addition, by Formula (3), we assume that the new
center is selected by forming an ML set X;. According
to the algorithm, the must-link set has a possibility
Yvex, D2(0) = [Xi[d2,(Ki. C) + X e, v — Xill3
to get its mass center X; selected as the new center.

Compared with Formula (2), the case also satisfies
triangle inequality dmin(X;, C) < dmin(a, C)+|la—X; ||
for any a, and X; follows a similar way as the above case.
Due to the influence for the constrained relationships, the

data point a has d2, (a,C) < D?(a). Thus, summing
over all a € A, we have
|X;|d2 (X;,C) <
2| X; | 2| X; | -
2N Do)+ =Y lla— X3
|A| acA |A| acA
by the power-means inequality as well. Thus for D?(X;),
we have
D*(Xi) = ) D*x) =
x€X;
|X | dmln(Xiv C) + Z ||X - Xl”% <
xeX,-
2|Xi| >
Y D*a )+ 2%l Zn — Xi[3+
|A| acA |A| acA
3l - Xl =
x€X;

21X,
|A| ZD<>+ |A| 1S - Xl +

acA
o LSS - X2,

acA xeX;

Then by Lemma 1, the above equation can be deduced
0
21X | —
W’Zna—xini Z D llx—Xill3 =
aeAxeX
i 23 Y a—xE.

acA xeX;

t

Thus, combining the above equation with Formula (2),
we get the bound of E[¢ (X (A))] as

OICECODLECRED B BIIERL

Xiex(A) acA acAxeX;

Y Do) Y. min(D(p). |p - Xil2)* +

acA peP(4)

> X[ min(dmin(Xi. ©). [ X — X;[2)*+
Xex(A)
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> llx - Xn%) <

xeX

21Xi| Y qen D*(@)
2 |41 X 4ea D*(@)

Y lp—Xil3+

Xiex(A) peP(4)
Yo XX = Xil3+ Y e —XI3) | +
Xex(A) xeX
T Taea Lex,la = x13 ,
Z S 4 D2(a) Z D=(p) +
X;ex(A) acA peP(A)

Y (X|-d2 (X )+ ) x = X))

XeX(A) xeX
In the next step, we deal with Formula (3) in a similar
way as for Formula (2). Also defining Vyq) =
Uxex(a) X, we obtain

E [¢ (X(4)] <

a2 2 2 lla—xli=

X €X(A) xeX; acA

o Lla-xl

xEVx(A) a€cA

Finally, combining with the two aforementioned cases,
we obtain the bound of E [gb(A)] and complete the proof,

|A| > lla—pel3+ |A| Do Y lla—x|3<
pcEP(A)acA x€Vx(a) acd
8¢opr(A). [

Based on Lemmas 3 and 4, we shall show the total
error is at most O(logk) times of the optimum. We
first give an even more general bound by Lemma 5
as in the following, whose special case will yield the
approximation ratio of our algorithm.

Lemma 5 Let A, be a set of clusters in Copr with
Ay, N C = @&, where C is a center set for the current
clustering and u is the number of “uncovered” optimal
clusters. Let A, denote the set of data points in these
clusters A. = Copr — Ay. Suppose we add ¢ < u
random centers to C, selected with “D? weighting”. Let
Y’ denote the corresponding potential for the resulting
clustering after selecting a new center in an iteration.
Then,

E[Y'] <(¢(Ac) + 8¢opr(Ay)) - (1 + Hi)+

u),
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where H; denotes the harmonic sum H, = 1 + % +
1

Proof We prove the lemma by induction. The 2-
tuple (¢, #) means that the clustering needs to select ¢
centers from u optimal clusters that are “uncovered”. In
fact, the key to inductive is that (¢, u) selects an arbitrary
data point and arrives to the two cases (t — 1,u) or
(t — 1,u — 1). Therefore, it is obvious that (0, ) and
(1, 1) are the base of induction.

Duetol + H; = (u —t)/u = 1, for the case (0, u),
the clustering result satisfies

E(W/) =Y < ¢(Ac) + 8¢OPT(Au) + ¢(Au)

Next, provided that (1, 1), we will select the latest
center from the uncovered cluster with probability
exactly %ﬂ. In this case, if the new center is selected
by the uncovered cluster, then the last uncovered cluster
will gain at most 8¢opr(Ay) by Lemma 4. So we have

EW)< ¢($“)-(¢(Ac>+8¢0pT(Au))+¢($C) <

2¢ (Ac) + 8¢OPT(AM)~

Then, we proceed to prove the inductive step by
considering two cases. Based on the hypotheses (r—1, u)
and (r — 1, u — 1), we shall show the lemma holds for the
(t,u) case. The first stage is supposed for our selected
center to come from a covered cluster. So the above case
happens with probability exactly %L"). Note that if any
point becomes the new center, the value of ¥ must be
decreased.

Note that in our algorithm, we use the cost of each
ML set to be the probability of selection. The cost of
ML sets is included in ¢(A4), so we will briefly describe
the proof in the inductive step.

Beginning from (t — 1,u) to (¢,u), the algorithm
selects a new center from a covered optimal cluster. So
the contribution of the case (—1, u) to E[v'] is bounded
by

P(Ac)
v

((@(Ac) + 8¢opr(Au)) - (1 + Hi1)+

u—r1t+1
— ¢ (4).

Then, we assume the algorithm selects a new center
from an uncovered optimal cluster, which has a
probability of %. By the power-mean inequality,
%qﬁz(Au) <D aca, ¢2(A) holds. So, the contribution
of the case (t — 1,u — 1) to E[y'] is bounded by

d’(j“) L(@(Ae) + B(A) + Sporr(Au)—

gorr(4)) - (1+ Hiot) + 50 (9(Au) = $(A) <

¢ (Au)
¢

—L ().

u
Finally, we combine both cases of ( — 1, u) and (t —

1,u — 1) to obtain the following bound and complete the
proof,

E[y] <

“((¢(Ae) + 8popr(Aw))(1 + Hi—1)+

u

P(Ac)
v

1+ Hi+ "0 g a) +

PO (@040 + Sgorn(A) x

1+ H_+ 2! p(4) <
u

<¢(Ac) + 8¢0PT(Au))(1 + H;—q) +

(@ (40) + 8gopr(4u) x

Ml g+ 29D L G <
u v u
$(Ae) + 8gorr(4) ) (1 + Hy) +
LA, n
u

Next, we use Lemma 5 to generate the desired bound
E[¥] < 8(Ink + 2)¢opr. Consider that the center set
C has a center after the completion of the first step of
Algorithm 1. Let Ag be a cluster of Copr that contains the
first selected center, so that ¢p(Ag) is at most 2¢opr(Ag)
by Lemma 3. We combine the case of (k — 1,k — 1) as
above with ¢(Ap), then from Lemma 5 we have

Ey] < (#(Ao) + 8gorr(4 \ 40)) - (1 + Hi—y) <
(260pr(40) + 8dorr(A\ 49)) (1 + Ink).

Then the approximation ratio immediately follows
from Theorem 1 combining with the fact that Hy_; <
1+ 1Ink.

4.3 Counterexample

In this subsection, we depict a counterexample to
show the importance of using the mass center as the
representative point (as the strategy of our algorithm).
Figure 1 demonstrates two examples catried out on the
same dataset, where p is an unconstrained point and
X = {x1,x2} is an ML set, of which x, is a data point
with the weight of n — 2. For the parameter k = 2
and {c,} as the current center set, C = {cy, cp} is
then produced by Algorithm 1 for the constrained k-
means problem (as depicted in Fig. 1a). In contrast,
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(a) Solution of Algorithm 1 with a cost of approximately ||x; —
ez 4+ —=2)llea — x213

z2 (w=n-—2) Z1
B -]
C2

p1 G

(b) Output of Algorithm 1 without Steps 4-6 that has a cost of
approximately (n — 2)||x; — x2 II% with high possibility

Fig. 1 Counterexample for the ratio of Algorithm 1 that selects a point of the ML set (instead of its mass center) as a center.

The red points (i.e., c; and c;) are the selected centers.

for Algorithm 1 but without using mass center as in
Steps 4-6, C = {p, x1} is a produced solution with a
high probability as shown in Fig. 1b. Provided {c;} as
the current center set, the probability of selecting x; as
a new center is as below:
lx1 =13
(n=2)x2 =13 + llx1 —cll3

Note that if (n — 2)||x2 — ¢1]|5 < [|x1 — ¢1]|3 holds,
(n—2)|lx2 —c1]3 = 0.01 x ||x1 — ¢1||3, then the above
probability can be relatively high. i.e.,

lx1 —c1ll3

> 0.99 &)
(n—=2)|lx2 —c1ll3 + [lx1 — c1 I3

In that case, we have the set of centers as C = {p, x;}
in Fig. 1b at the probability 0.99, whose cost is
1 = c1ll3
(n =2)|lx2 =13 + llx1 — x|
(n=2)|x2 —c13
(n —2)||x2 =13 + [lx1 — 1
0.99 x (n —2) || x1 — x23,
where the inequality holds due to Formula (5). That

5 —2)[|x1 — xa 3+
2

2
2 X1 —x2ll5 =
2

is, when ||x; — x2[|3 dominates [lc; — x2|3 (c2 in Fig.
la), the cost of the solution output by our algorithm is
less than ||x1 — x23, and hence the solution of using x;
instead of the mass center consumes at least 0.99x (n—2)
times of our cost. Therefore, it is essential to use the
mass center instead of immediately using the discrete
data points of P as centers in Algorithm 1.

5 Grand Algorithm for Constrained k-
Means with Convergence

In the section, we propose an iterative phase to fast
decrease ¥ of the k-means problem with DCL and ML
constraints. Observing that the conventional k-means
algorithm is convergent, the key idea of our algorithm
is to deal with the constrained points, which is shown
in Algorithm 2. To reassign the constrained points, we
divide them into two cases: DCL constraints and ML

Algorithm 2 Assignment step of iterative phase
Input: Database P of size n with CL sets ) and ML sets X’
and a set of center C*.
Output: Set of clusters A’.
1 Set A’ <—{Af =0|i=12,....k};
/¥ At is k clusters that partition the data points of P regarding
Cl.#/
for each p € P do
Assign p to its nearest center ¢! ;
Af < p:

end

for each X € Y do

Let X as the mass center for X with |X| weight on
behalf of these data points to assign to the its nearest center
chof X;

8 A§ ~ X;

9 end

10 for each Y € Y do

11 foreachg € X NY do

N A R WN

12 Compute X that is the mass centers of X and is with X
weight, and the use X to replace ¢ € Y;

13 end

14 Compute the corresponding center ¢ (p) within C? for every

data point p € Y by the min-sum matching method??,
such that the total square distance is minimized,

min Y d*(p,c(p));

pEY

15 if 3¢ € (X NY) for some X € X then
16 Assign every data point in X to the corresponding
cluster regarding ¢;
17 end

18 end
Return A’

—
b

constraints. For DCL constraints, we use min-sum
matching!??! to assign the data point of each DCL set
to the current centers at minimum cost. Following the
key idea of Algorithm 1, we consider an ML set to be
a “big point” and then assign the data points following
the rule designated for unconstrained points or DCL sets
(e.g., the data point in this ML set is also included in
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DCL set). Then we update the new center set by the
mass centers for the current k clusters. Repeating the
two steps, the iteration terminates until the cost is less
than a very small constant. The detailed algorithm is
depicted in Algorithm 3.

Next, we shall show the convergence of the cost
of our algorithm’s clustering, which indicates that our
algorithm always terminates.

Lemma 6 Algorithm 3 always terminates and the
cost of the clustering is convergent to a local minimum.

Proof The key idea of the proof is to treat the
iterative phase of Algorithm 3 following a similar line
for the convergence analysis of traditional k-means.
In essence, our proof incorporates the behavior of
the algorithm against the constraints with the analysis
process of Refs. [23, 24]. Assume that C? is the center
set of the ¢-th iteration, and A’ denotes the clustering
for the center sets C”.

By definition, the cost of the clustering for C? is as
follows:

cost(A",C") = Z Z la—cl|3 (6)
Aleal geAl
clect
where the data point a is assigned against the clustering
result of A’. Moreover, let P(X,))) denote the set of
the unconstrained points. Then we use cost (X, A?, C?),
cost(Y, A*,CY), and cost (P (X,)), A, C?) to denote
the costs regarding the points of all ML constraints X,
DCL constraints ), and the unconstrained points when
assigning to C’ for A’, respectively.

Algorithm 3 Iterative phase for constrained k-means
Input: Database P of size n with CL sets ) and ML sets X,
and a positive integer k.

Output: Set of centers C and set of clusters A.

// Initialization

Sett < 0;

2 Compute CO = {c¥,c9,...
P and k;

3 Compute the clusters A9 « {A? | i =12,..., k} by
employing Algorithm 2 against P and C?;
// re-centroid step

4 for each AL € A" do

5 Update the center set C! ! by cf+l

—_

, 02} by Algorithm 1 respecting

< Tan Zpeal P

6 end
// re-assignment step

7 Update the assignment A’T! of the dataset P by
Algorithm 2 respecting C*11;

8 if cost (A!,CY) — cost (A'H1,C' 1y > 0 then

9 Sett <t + 1 and then go to Step 4;

10 end

11 Return C/+1 and A/ 1,

Following the procession of Algorithm 3, it terminates
once cost(A?, C') — cost (A1, C'T1) < 0. Then to
prove the convergence, we only need to show the value
of cost(A, C) strictly decreases during the iterations
of Algorithm 3 (excepting the last iteration), provided
that cost(A,C) > 0 always holds. In fact, we will
actually do the conversely equivalent task that shows
cost (A, C) never increases in either the re-centroid step
or the re-assignment step.

First, for the re-centroid step, as C'*1 is the set of
mass centers for A’, we clearly have

cost(A",C"™) < cost (A", CY) @)

Then for the re-assignment step, Algorithm 2
re-clusters the data points of P as A’*! according to
the set of centers C'T!. We only need to show the
distance sums of both unconstrained and constrained
points are non-increasing. Since the unconstrained
points are assigned to their nearest centers, we have

cost(P(X, ), AT, C'*) <
cost(P(X,)), A", C'th.
Similarly, because each set of ML constraints X € X

with the same mass center is assigned to its nearest
center, the cost sum regarding all ML sets satisfies

cost(X, AT, C'Y) < cost (X, AT, CTTY.
Lastly, as min-sum matching on each set of CL
constraints Y € ) attains the minimum cost, we have
cost(Y, AT, C'TY) < cost (Y, AL, CTTY.

Therefore, combining the above cases on the
re-assignment step yields

cost (AT, CTTYy L cost (AT, CTTY (8)
Then, we have

cost (AT CTth —cost (A, CY) =

cost (AT CTTY —cost (AL, CTHY+

cost(A",C'"™1) — cost (A", CY).
Eventually, combining Formulas (7) and (8), we derive
the following inequality:

cost (A Ctty —cost (A", C") <0,
where the equation is active when cost(A’,C") —

cost (A1, C'™1) = 0 holds, which immediately
results in the termination of the algorithm. |

6 Numerical Evaluation

In this section, we carry out Algorithm 1 to select k
centers, where DCL-constrained points are treated as
unconstrained. The selected centers are then input into
Algorithm 3 that completes the cluster assignment of P.
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The final solution from Algorithm 3 is compared with a
baseline method in terms of the clustering accuracy.

6.1 Experimental setup

6.1.1 Baseline method

In a nutshell, the heuristic method from Ref. [13] works
as follows:

(1) Select k centers from P uniformly at random;

(2) For each ML set X of X, link the entire
ML set to the nearest center of the first data point
encountered/processed (in input order) in the ML set;

(3) For each CL set Y of ), assign data points (in
input order) to their nearest centers. If a center is already
used by another data point in the CL set, then connect
the current data point to its second nearest center, and so
on.

We name this method as the “greedy” baseline for ML
and DCL constrained k-means.

6.1.2 Datasets

In our experiments, following the study of Ref. [13], we
also use four real-world datasets from the UCI repository
to evaluate the clustering accuracy of our proposed
algorithm against the greedy baseline. A summary of
the datasets is shown in Table 1. Detailed descriptions
of these datasets can be found in Ref. [25]. For a fair
comparison, we randomly shuffle items in each dataset
so the input order to an algorithm is not biased.

6.1.3 Clustering constraints

The datasets described previously do not contain any
constraints. In the following, we describe a simple
way to generate the disjoint cannot-link and must-
link constraints in real-world datasets with labels. We
randomly sample r data points from a given label to
produce each ML set. To produce each DCL set, we
randomly select r < k labels, and then randomly sample
one data point from each of the r labels. Note that by
construction, the established constraints are formulated
as sets instead of the pairwise constrained used in Ref.
[13]. For a DCL/ML set { p1, p2, p3}, the constraints are
the same as the three pairwise DCL/ML relationships
{p1, P2}, {p1, p3}, and {p2, p3}. In addition, we need
to take into account the implicit transitivity of ML sets

Table 1 Datasets summary.

Dataset ~ Number of instances Number of dimensions &
Soybean 43 35 4
Iris 150 4 3
Wine 178 13 3
Tic-Tac-Toe 958 9 2

such as each ML set can intersect with at most one DCL
set, as otherwise, DCL sets will not hold disjointness.
For simplicity, when sampling a DCL set, we regard
each constructed ML set as a merged single point and
the sampling is done without replacement.

6.1.4 Evaluation metrics

For measuring the clustering accuracy on real-world
datasets, we again follow the previous study in Ref. [13]
to use the Rand Index (RI)[?%]. The metric is to calculate
the agreement degree between an algorithm’s clustering
result and the ground truth labeled clusters by treating
the instances with the same label as belonging to the
same cluster. For a dataset D with n data points, there
can be at most n x (n — 1)/2 pairs of matching relations
on any two nodes belonging to the same cluster or not.
Provided we have two clustering/partition results R and
R, over D with one possibly being the ground truth
partition. Let o be the total number of pairs of data
points that belong to two different clusters in both R;
and R;, and S belonging to the same cluster in both R
and R,. The RI measuring the total agreement can then
be calculated as

RI(R,, Ry) = a+p

nx(n-—1)/2
6.2 Experimental results and analysis

In this subsection, we report the experimental results on
the four real-world datasets (Soybean, Iris, Wine, and
Tic-Tac-Toe) as depicted in Fig. 2. For each respective
dataset, k is set to the number of labeled classes. Each
subfigure reports the clustering accuracy for a single
dataset (with the dataset name labeled in a yellow box)
against an increasing number of pairwise DCL and ML
constraints that are equally portioned. It is intuitive
that adding more constraints or background knowledge
can lead to a higher accuracy as in the case of semi-
supervised learning. The settings on the number of
constraints (i.e., the values on the x-axises of Fig. 2)
are aligned the same as that in Ref. [13]. To mitigate the
bias introduced by random sampling of the constraints,
from each dataset, 100 instances incorporating the same
number of different random constraints are produced.
In addition, each algorithm gets to run 100 times to
mitigate the bias introduced from different random k-
means initialization. Therefore, every obtained accuracy
value is calculated by averaging the scores of RI across
different dataset instances and runs of algorithms.

6.2.1 Clustering accuracy

Overall speaking, although with some fluctuations, all
four subfigures of Fig. 2 display a consistent trend in
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Fig. 2 Clustering accuracy of our algorithm vs. greedy across on four UCI datasets.

the growth of accuracy along with the increase in the
number of clustering constraints. In particular, the largest
gain is on the Iris dataset, where our algorithm attains
an accuracy of 97.0% (when number of constraints =
400). This is in contrast with the highest accuracy
rate of 92.2% of the greedy algorithm. While on the
Soybean dataset, greedy and our algorithm have a
similar growth trend, which demonstrates the impact of
background knowledge on both algorithms. Comparing
the improvement of accuracy on the Tic-Tac-Toe and
Wine datasets, the accuracy of the greedy algorithm only
fluctuates without much change whereas our algorithm’s
accuracy grows steadily. We consider the reason for this
phenomenon is that the greedy algorithm depends too
much on the input order of data. Moreover, different
from other three datasets, the Tic-Tac-Toe dataset seems
difficult to cluster correctly with our algorithm only
achieving an accuracy of about 55% and greedy around
53.5%. We reason that some real-world datasets are
normally used for supervised classification tasks (with
labels), so the optimal clustering does not necessarily
map to the optimal classification. In theory, the different
performance between our algorithm and the greedy
baseline is mainly due to more optimized/cost-effective
ways of center selection and cluster assignment.

Overall, our algorithm consistently outperforms the
baseline method in clustering accuracy as the number of
constraints grows. This leads to the conclusion that our
empirical results reflect the theoretical proofs and yield
the expected results.

6.2.2 Runtime

We also compare the average runtime across the different
number of constraints on the four real-world datasets.
The detailed comparison is shown in Table 2, despite the
significant improvement in clustering accuracy as shown
in Fig. 2, we can see that the practical runtime of our
algorithm is still comparable or not much inferior to that
of the greedy method. The runtime increase is mainly
due to the matching method that we adopt to effectively
deal with DCL sets.

7 Conclusion

In this paper, we constructed an algorithm for
k-means with disjoint cannot-link and must-link
constraints, where the constraints correspond to
background information that can be used to improve
the accuracy of clustering. For initialization of the
algorithm, we devised an approximation algorithm
for the k-means problem with ML constraints and
showed that the algorithm deserves an approximation
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Table 2 Runtime for the greedy & our algorithm on four UCI datasets.
(x1073 ms)
Aleorith Number of constraints
gorthm 0 20 40 60 80 100
Soybean
Greedy 866.59 857.25 871.05 860.39 865.94 854.57
Our algorithm 877.62 1076.90 1064.58 1104.16 1114.40 1210.11
 constrai
Algorithm Number of constraints
Wine 0 20 40 60 80 100
Greedy 1258.31 1290.80 1295.54 1279.67 1322.70 1301.08
Our algorithm 1258.02 1511.00 1612.88 1878.56 1807.56 1886.52
. Number of constraints
Algorithm
Iris 0 80 160 240 320 400
Greedy 402.96 445.21 476.77 498.59 525.45 502.06
Our algorithm 240.90 743.84 944.50 1171.33 1481.17 1191.72
Aleorithm Number of constraints
. gort 0 100 200 300 400 500
Tic-Tac-Toe
Greedy 3306.44 2992.15 2872.69 2867.99 2886.96 2952.98
Our algorithm 3335.62 3680.43 4093.57 4680.94 5248.77 5924.88

ratio of O(logk) by mathematical induction. Then
we proved the convergence of the iterative phase
of the algorithm considering both DCL and ML
constraints. Lastly, we carried out experiments on several
prevalent real-world datasets and demonstrated that our
approximation algorithm can achieve a significantly
improved clustering accuracy, which validates our
theoretical findings.
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