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Distributed Truss Computation in Dynamic Graphs

Ziwei Mo, Qi Luo�, Dongxiao Yu, Hao Sheng, Jiguo Yu, and Xiuzhen Cheng

Abstract: Large-scale graphs usually exhibit global sparsity with local cohesiveness, and mining the representative

cohesive subgraphs is a fundamental problem in graph analysis. The k-truss is one of the most commonly studied

cohesive subgraphs, in which each edge is formed in at least k � 2 triangles. A critical issue in mining a k-truss

lies in the computation of the trussness of each edge, which is the maximum value of k that an edge can be in

a k-truss. Existing works mostly focus on truss computation in static graphs by sequential models. However, the

graphs are constantly changing dynamically in the real world. We study distributed truss computation in dynamic

graphs in this paper. In particular, we compute the trussness of edges based on the local nature of the k-truss in a

synchronized node-centric distributed model. Iteratively decomposing the trussness of edges by relying only on local

topological information is possible with the proposed distributed decomposition algorithm. Moreover, the distributed

maintenance algorithm only needs to update a small amount of dynamic information to complete the computation.

Extensive experiments have been conducted to show the scalability and efficiency of the proposed algorithm.

Key words: distributed algorithm; dynamic graph; graph mining; cohesive subgraph; k-truss

1 Introduction

As a data structure expressing relationships between
entities, graphs have been extensively used in modeling
social, communication, and information networks that
appear in a variety of applications. In particular,
the fundamental task of detecting and searching for
cohesive components in large-scale graphs has attracted
considerable attention from research to industry because
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cohesive subgraphs can be a critical reflection of
the compact features and key parts of the entire
graph[1–3]. The densest subgraph group in the mining
graphs is an non-determinstic polynomial (NP)-hard
problem; thus, many relaxation versions for the
group, such as quasi-clique[4], k-core[5], k-plex[6], k-
club[7], and k-truss[8], have been proposed to maintain
cohesiveness while improving computational efficiency.
A favorable tradeoff between computational efficiencies
and cohesiveness, that is, k-truss, which considers the
measurement of the closeness of two people in a social
network, plays an important role in many applications,
such as community search[9, 10], employee training[11],
circle detection[12], and social contagion[13].

A k-truss is a cohesive subgraph that requires the
containment of each edge in at least k � 2 triangles.
The relevant concept of k-truss is trussness, which is
defined on edges as the maximum value of k such that
an edge e is in a k-truss but not in a .kC1/-truss. The k-
truss decomposition problem lies in the computation of
the trussness for all edges in graphs. The most common
approaches for computing the trussness are based on the
peeling-like algorithm[14], which can compute trussness



874 Tsinghua Science and Technology, October 2023, 28(5): 873–887

in O.m1:5/ time (where m is the number of edges in
the graph). Most algorithms currently adopt the parallel
processing mode of dividing graphs or GPU acceleration
to speed up the calculation process of trussness. Figure 1
shows an example of a k-truss.

With the increasing scale of graphs in the real
world, the limitations of a single machine and memory
markedly affect the efficiency of data processing, and
data processing in a single machine or memory becomes
impossible in numerous scenarios. Another issue that
affects the truss computation is the dynamicity of graphs,
that is, the graph topology may change over time. For
example, edges and nodes are constantly inserted into
and removed from the temporal graphs. A graph can
have billions of nodes and edges, Thus, recomputing
the trussness for all edges may incur a large number
of redundant computations when only a small part of
the graph is changed. Hence, the problem of k-truss
maintenance, that is, effectively updating trussness after
the graph changes, has been proposed[15].

However, maintaining trussness in dynamic graphs
is challenging. Figure 2 shows that the number and
changes affecting the trussness of edges are different
for the same number of edges inserted in batches. In
Fig. 2b, inserting two edges .2; 9/ and .2; 6/ into the
original graph increases the trussness of two edges from
2 to 3 and that of five edges from 3 to 4, respectively.
While in Fig. 2c, two edges (5, 8) and (6, 9) are inserted
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Fig. 1 Example of k-truss.

in the same graph, demonstrating a different change in
the trussness of edges in the original graph from that in
Fig. 2b. The main difficulties for truss maintenance are
primarily from two aspects. First, determining which
edge will change the trussness is difficult. This study
shows that not only the edges directly connected to the
inserted/deleted edge may change the trussness, but also
the other edges. Second, determining the changes in
trussness of an edge after insertion/deletion of edges is
difficult. If the same number of edges are inserted, then
the changes in trussness can be different.

We propose a distributed truss ecomposition algorithm
for trussness decomputation in static graphs and a
distributed truss maintenance algorithm for trussness
maintenance in dynamic graphs to tackle the above
challenges. The current work is inspired by node-
centric graph processing models, such as Pregel[16],
GraphLab[17], and GPSA[18], which limit algorithms
for a single node to manipulate local graph structures.
On this basis, we extend the node-centric graph
computation model and propose two indexes for each
node, which effectively implements the distributed
truss decomposition and maintenance algorithm. In our
algorithms, each node updates its local data according
to the receiving messages from adjacent nodes. The
system runs in a synchronous environment until all
nodes no longer update data and then the system
stops. The distributed truss decomposition algorithm
maximizes the local property of the k-truss, and
completion of the computation for a graph with 10

million nodes only takes approximately 20 rounds.
The distributed truss maintenance algorithm, which
is based on decomposition, can also complete the
computation quickly by resetting the initial values after
the graph change. The following presents the original
contributions of this study to truss calculations in several
important aspects.
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(b) Insertion of .2; 9/ and .2; 6/
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Fig. 2 Example of inserting the same number of edges in the graph but with different trussness changes. In graphs, the values
marked on the edges are the trussness of the edges, and the edges with different trussness are distinguished by the thickness of
the edges. A large edge trussness is indicated by thick lines in the graphs.
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� We study the distributed algorithms for computing
trussness. The proposed synchronous distributed model
relies on the local property of the k-truss, where nodes
only need to focus on neighboring topology and can
process large-scale graphs. Based on the distributed
model, we propose two indexes, trussMap and adjMap
for each node to record the status. Nodes update the two
indexes by exchanging information with neighboring
nodes in each round.
� We propose a top-down distributed truss

decomposition algorithm, which maximizes the local
properties of the k-truss and can significantly reduce
the number of computational rounds. The distributed
truss maintenance algorithm requires remarkably
few node-aware dynamic changes to maintain the
computation. A detailed analysis proves the accuracy
and effectiveness of the proposed algorithm.
� We conduct comprehensive experiments on

synthetic, real-world, and temporal graphs. The
proposed distributed truss decomposition algorithm can
compute the trussness of all edges in most graphs using
only tens of rounds. In particular, the proposed algorithm
is about twice as fast as the baseline in dense graphs. The
distributed truss maintenance algorithm also shows good
scalability and efficiency.

Roadmap. This paper is organized as follows. Section
2 surveys the works related to k-truss decomposition
and maintenance. Section ?? introduces preliminaries
regarding conceptions about k-truss and problem
definition. Sections 4 and 5 present the distributed
truss decomposition algorithm and distributed truss
maintenance algorithm, respectively. In Section 6, the
experiments and results on synthetic, real-world and
temporal graphs are illustrated. Finally, Section 7
concludes this paper and discusses the future works of
truss computation.

2 Related Work

As k-truss was firstly presented in Ref. [8], A steady
stream of research emerged with the introduction of
the k-truss in Ref. [8]. We briefly surveyed studies
considering k-truss in this section.

Truss decomposition. In recent years, numerous
solutions to truss decomposition, including sequential,
distributed, and parallel ones[14, 19–22], have been
presented. Cohen[8, 23] found the maximal k-truss in
graphs and provided a method for truss decomposition
and processing large-scale graphs using streaming
graphs on a single machine. Wang and Cheng[14] and

Che et al.[24] proposed in-memory truss computation
algorithms, and two I/O-efficient algorithms in large-
scale graphs. Sariyüce et al.[20, 21] provided “efficient”
algorithms to construct the hierarchical structure based
on k-truss, and then presented parallel local algorithms
for approximated trussness by reducing traversal
vertices.

Considerable attention has been provided to
distributed and parallel processing techniques
for truss decomposition[23, 25–28]. Chen et al.[25]

proposed a parallel truss decomposition algorithm
based on the MapReduce framework. Shao et al.[28]

introduced a novel parallel and efficient truss detection
algorithm. Smith et al.[29] presented a parallel
algorithm for computing truss decomposition on shared
memory systems. Kabir and Madduri[26, 27] proposed
a new shared-memory parallel algorithm for truss
decomposition of large sparse graphs.

Some works for other types of graphs, such
as uncertain graphs[30] and bipartite graphs[31], are
depended on special structures. Huang et al.[32]

proposed local and global .k; 
/-truss models in
probabilistic graphs and developed efficient algorithms
for decomposing a probabilistic graph into such
maximal .k; 
/-trusses. Esfahani et al.[30] employed
a special version of the Central Limit Theorem to
obtain the peeling algorithm for truss decomposition
of a probabilistic graph that measures very large-scale
graphs and offers significant improvements. Zou et
al.[31] proposed a novel method for extracting k-truss
communities embedded into a bipartite graph. The
k-truss decomposition in hypergraphs and attributed
graphs[33] is also studied.

Truss maintenance. The authors of this
paper believe that minimal attention has been
provided to truss maintenance compared with truss
decomposition[15, 34–37]. Reference [22] introduced a
type of subgraph called Triangle K-Core, which is the
prototype of the combination of k-truss and k-core.
They also presented the algorithms for computing the
Triangle K-Core in static and dynamic graphs. Zhou
et al.[36] studied the problem of truss maintenance
considering the insertion and deletion of one edge
and proposed serial properties of trussness update
after changes in one edge changes. The problems
of truss-based community search have also been
investigeted in Refs. [15, 34]. They proposed the
truss-based index via computed k-truss and maintained
these indexes in the dynamic graphs. More specifically,
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Ref. [15] studied dynamic community search problems
with frequent edge insertion and deletion based on
k-truss. Zhang and Yu[35] examined the boundedness
of truss maintenance problems and argued that the
removal and insertion algorithms are boundedness and
unbounedness, respectively. Luo et al.[37] proposed a
batch processing algorithm based on a triangle disjoint
set, which allows up to one change in edge trussness
after the graph evolution.

Most of the existing computations on k-truss focus
on static graph decomposition, and most are algorithms
on a single machine. Moreover, only a small amount
of research on the maintenance of k-truss in dynamic
graphs has been conducted. This paper focused on k-
truss decomposition in static graphs using multicore
machines and maintained k-truss in dynamic graphs.

3 Preliminary

We consider an undirected and unweighted graph G D
.V;E/, where V is the node set, and E is the edge set.
Let n D jV j and m D jEj be the number of nodes
and the edges, respectively. Denote the neighbors of
node u by N.u/. Let EN.e/ be the adjacency edges of
e, which are edges that share a common node with e.
Let EN.v/ denote the incident edges of v. Denote the
triangle with endpoint u, v, and w by4uvw . Let H be
a node-induced subgraph of G with node set V.H/ and
edge set E.H/.

Definition 1 (support). The support of edge e in G,
which is denoted as supG.e/, is defined as the number
of triangles containing e.

The support of e D .u; v/ can be calculated by the
number of common neighbors of u and v as follows.
supG.e/ D jf4uvw W 4uvw 2 Ggj D jN.u/ \N.v/j

(1)
Definition 2 (k-truss). A k-truss is a maximal

connected node-induced subgraph denoted as H , in
which the support supH .e/ of each edge e is no less
than k � 2.

The definition of k-truss indicates that a k-truss is
not a subgraph of another k-truss. The trussness of an
edge e, which is denoted as t .e/, is then defined as the
value of maximum k such that e is in a k-truss. Let
H � G be a k-truss, and then supH .e/ > k � 2 for
each e 2 E.H/. The trussness of e D .u; v/ can be
computed in accordance with the definition of k-truss
using the following equation.

t .e/ D arg max
k>2
fjfwjtwmin > kgj > .k � 2/g (2)

where w 2 N.u/ \ N.v/ and twmin D min .t.u; w/;

t.v; w//.
Definition 3 (triangle connected). Given two edges

e1, e2 in G, if e1 2 4Œ1�, e2 2 4Œt� and a set of triangles
4Œ1�, 4Œ2�, : : :,4Œt� exist, where t > 1 and every two
adjacent triangles in the triangle set share a common
edge, then e1 and e2 are called triangle connected.

If two edges are triangle-connected, we call the set of
triangles a triangle path between the two triangles. A
k-triangle is a triangle whose trussness of three edges is
not less than k, which is denoted as4k .

Definition 4 (k-triangle connected). If two edges e1,
e2 are triangle connected, t .e1/ D t .e2/ D k, and the
triangles in the triangle path from e1 to e2 is k-triangles,
then we call that e1 and e2 are k-triangle connected.

The notations and descriptions are summarized in
Table 1. Subscripts are omitted when the context is clear.

Distributed model. Our model uses the bulk
synchronous parallel model for distributed processing,
where each iteration considers the computational process
to be completed from the perspective of a single node
(i.e., user-defined node programs). Each node has two
states: active and inactive. Only the active nodes need
to participate in the computation in each iteration.
The model then uses message passing to communicate
between nodes; that is, a node program allows a node to
send messages to neighboring nodes. The node updates
its state and compute related data based on the received
messages.

Problem definition. Given a graph G, we study the
truss computation problem based on the following steps:
(1) we decompose and calculate the trussness of all edges
in G; (2) we maintain and recompute the trussness of all
edges in the evolving graph after the insertion/deletion
of a batch of edges.

4 Distributed Truss Decomposition

We propose our distributed truss decomposition
algorithm in this section based on our distributed model.

Table 1 Notations and descriptions.
Notation Description
G D .V;E/ Graph G with node set V and edge set E
e D .u; v/ Edge with u and v as endpoints
4uvw Triangle with three nodes u, v, and w
NG.u/ Set of neighbors of u in G
ENG.e/ Set of neighboring edges of e in G
ENG.v/ Incident edges of v in G
supG.e/ Support of e in G
tG.e/ Trussness of e in G
Ot .e/ Estimate trussness of e
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We first introduce two auxiliary indexes, namely adjMap
and trussMap, which are based on the locality property
of the k-truss. We then introduce the procedure and
analysis of the proposed algorithm, which is based on
the two indexes.

The distributed model encounters the following two
truss decomposition challenges.
� The most important metric for calculating the

trussness is the support of edges, which is the initial
value of trussness for edges. All neighboring nodes of
both endpoints of the edge must be identified to calculate
the support of an edge.
� Edges are virtual connections for communication

between nodes. Thus, the value of support for each edge
cannot exist on a nonexistent entity.

To address the above challenges, we calculate the
support value of all neighboring edges by utilizing
the node to store local topological information
regarding its incident edges and two-hop neighboring
nodes. Furthermore, the following property bears the
calculation of the trussness applied to the support of the
edges. The locality property is formally presented as
follows.

Property 1 (Locality[25]). Given a graph G D .V;

E/, 8e 2 E, t .e/ D k if and only if the following
conditions are met.

(1) An edge subset Ek � EN.e/ such that jEkj D

2.k�2/, edges in Ek form total .k�2/ triangles with e,
and the trussness of each edge in Ek is not less than k.

(2) There is not a subset EkC1 � EN.e/ does not
exist such that EkC1 D 2.k � 1/, edges in EkC1 form
total .k � 1/ triangles with e, and the trussness of each
edge in EkC1 is not less than k C 1.

The property describes that if the trussness of an edge
e is equal to k, then at least .k � 2/ triangles contain
e and the trussness of each edge in these triangles is
at least k. Therefore, the trussness of an edge can be

calculated from the trussness of the incident edges of the
edge. More specifically, the trussness can be calculated
from the trussness of the edges that form triangles with
the edge.

We design two indexes according to the locality
property to store the neighboring information for each
node. For a node u in our distributed system, the first
index is adjMap, which is a list of key-value pairs used
to store 2-hop adjacency nodes of u. The keys of adjMap
are the neighbor nodes of u, and the value corresponding
to each key is the linked list of neighboring nodes of the
stored node by the key. The second index is trussMap,
which stores the estimated trussness of 2-hop incident
edges of a node u. The trussness of the incident edges
of u is calculated and maintained by u. Figure 3 shows
an example of the adjMap and the trussMap for node 1
in Fig. 2. In Fig. 3a, the keys of adjMap are maintained
by node 1, and the values are received from neighboring
nodes of node 1. Figure 3 shows the change of node 1
updating the trussMap after receiving messages from
neighbors. The trussMap comprises two parts: one part
is the trussness estimates of the incident edges of node 1
(this part is calculated and maintained by node 1 itself),
and another part is the trussness estimates of the incident
edges of node 1’s neighboring nodes (this part is kept by
node1 receiving data from the neighboring nodes).

In our distributed model, each node is responsible for
computing and updating the estimated trussness of its
incident edges by maintaining trussMap. Algorithm 1
shows the execution process of node u. The proposed
algorithm has two phases: the initialization and the
execution phases.

In the initialization phase (lines 1–8), the adjacency
nodes of u exchange their adjMap values with u to
compute trussMap. The initially estimated trussness
of an edge is the support of the edge plus 2 (line 6). u
sends its trussMap to the neighboring nodes and sets the
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Fig. 3 2-hop auxiliary index for node 1 in Fig. 2.
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Algorithm 1 Procedure of distributed truss decomposition
Input: N.u/: the neighbor nodes u
Output: trussMap.e/ for e 2 EN.v/

1: procedure INITIALIZATION

2: adjMapŒu� N.u/;
3: send adjMapŒu� to v for v 2 N.u/;
4: receive adjMapŒv� for v 2 N.u/;
5: for all v 2 N.u/ do
6: trussMapŒ.u; v/� jN.u/j \ jN.v/j C 2;
7: send trussMap to v 2 N.u/;
8: Changed  False;
9: procedure EXECUTION

10: repeat
11: receive trussMap;
12: counter D Œ�;
13: for all w 2 N.u/ \N.v/, v 2 N.u/ do
14: km D minftrussMapŒ.u; w/�; trussMapŒ.v; w/�g;
15: counter .add(km);
16: t DComputeTruss.counter; trussMapŒ.v; u/�/;
17: if t < trussMapŒ.u; v/� then
18: trussMapŒ.u; v/� t ;
19: Changed  True
20: if Changed then
21: send trussMapŒ.u;�/� to v 2 N.u/;
22: until termination condition

Changed flag to false to end the process (lines 7 and 8).
The execution phase is the process of iterative

execution of the entire distributed system (lines 9–22).
In each round of the execution phase, u receives the
trussness of incident edges to neighbor nodes (line 11).
Thus, each node can receive the trussness of the 2-
hop incident edges. Afterward, u updates the trussness
of incident edges through the locality property by the
function ComputeTruss (line 16). This function then
returns the maximum k for which a value not less than
k � 2 exists in the counter, and the algorithm is shown
in Algorithm 2. If the updated estimated trussness t
of the incident edges is smaller than the value of the
current record, then the value in trussMap is updated,

Algorithm 2 ComputeTruss(counter, k)
1: for i D 1 to k do
2: countŒi � 0;
3: for t 2 counter do
4: j  minfk; tg;
5: countŒj � countŒj �C 1;
6: for i D k downto 2 do
7: countŒi � 1� countŒi � 1�C countŒi �;
8: i  k;
9: while i > 2 and countŒi � < i � 2 do

10: i  i � 1;
11: return i ;

and the Changed flag is set to true (lines 17–19). The
updated trussMap is sent to the neighboring nodes of
u (lines 20 and 21) after all the incident edges of u
with their updated trussness are obtained. The steps of
the execution phase are repeated until the termination
condition is met and the system stops. Finally, the stored
values in trussMap are the trussness of the edges.

Termination mechanism. Several alternatives
for termination conditions of the distributed
computing system are avaliable[38]. We use the
barrier synchronization mechanism as the termination
condition. If none of the nodes in the system updates
trussMap in a round, that is, no active nodes are
avaliable, then the system will stop, and the computation
of trussness is complete.

Efficient message strategy. Two strategies that can
further reduce the volume of passing messages are
avaliable.

(1) The support of an edge is determined by the
number of triangles where the edge is contained.
Therefore, some edges may not be in any triangle and
hence will not participate in any computing. Thus,
the trussness of these edges will not be stored in the
trussMap.

(2) The trussMap maintained by each node stores the
estimated trussness of all incident edges. In the phase of
sending messages in each round, the entire trussMap is
sent to the neighbor nodes. This approach is substantially
inefficient because only some items in trussMap may
have changed. Theregore, we only need to send the
updated items in trussMap to the neighboring nodes.

We then analyze the accuracy and efficiency of
Algorithm 2.

Lemma 1. In Algorithm 1, the estimated trussness
Ot .e/ of e is always higher than t .e/.

Proof . Assuming e D .u; v/ and t .e/ D t , at least
t � 2 triangles contain e, and the trussness of each
edge in these triangles is no less than t according to the
definition of k-truss. Assume e0 is an edge that forms a
triangle with e, t .e0/ > t , and Ot .e/ < t at time t1. This
assumption indicates that the endpoint u or v updates
Ot .e0/, which causes Ot .e0/ < t at time t2. By analogy, the
endpoints of e0 update some estimated trussness of the
edges that form the triangles with e0 at t3. The inference
leads to an infinite sequence of t1 > t2 > t3 > � � � > ti .
However, this sequence has a loop that yields ti D t1,
which is a contradiction. �

Lemma 2. Algorithm 1 ensures the convergence of
the estimated trussness Ot .e/ to t .e/ for 8e 2 E.
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Proof . In any round during the entire process, Ot .e/
will only decrease and will be no less than t .e/ by
Lemma 1. Therefore, we only need to prove that Ot .e/
will eventually be equal to t .e/ for any edge e. We set
Ot .e/ D sup.e/C2 in the initialization phase and provide
proof by induction on the values of t .e/.
� t .e/ D 2. In this case, sup.e/ D 0, that is, e is

not in any triangles. Ot .e/ D t .e/ in the beginning of the
distributed system.
� t .e/ D 3. Assume that Ot .e/ > 4 always holds.

Therefore, each edge in at least two triangles has
trussness no less than 4. Therefore, a subgraph that
contains these edges is avaliable, and the support of each
edge is larger than 2. The subgraph is a 4-truss, which is
a contradiction.
� Induction step: suppose there is an edge e such that

t .e/ D k > 4 and Ot .e/ > kC1 forever constantly. Then,
l > k�2 triangles contain e and for each e0 2 lnfeg such
that t .e0/ > k. According to Lemma 1, Ot .e0/ > k C 1
by Ot .e/ > k C 1.

If l D k�2, then Ot .e/ will eventually decrease to t .e/
according to Property 1.

If l > k � 1, then e is in at least k � 1 triangles
and e0 2 l n feg such that Ot .e0/ > k C 1. Therefore,
t .e/ D k C 1 according to the definition of k-truss,
which is a contradiction. �

Theorem 1. The number of rounds of Algorithm 1
is bound by 2jEj C

P
e2E

.sup.e/ � t .e//.

Proof . As long as this distributed system is running,
at least one edge will perform the update operation of
estimated trussness. In the worst case, only one edge
of the estimated trussness is updated in each round,
and this edge only changes by 1. For an edge e, the
quantity by which its estimated trussness decreases from
its initial value to its final value is .sup.e/C 2 � t .e//.
This quantity represents the update error of e. Thus,
the execution time is bound by the sum of update
errors of all edges, which is

P
e2E

.sup.e/C 2 � t .e// D

2jEj C
P

e2E

.sup.e/ � t .e//. �

From the above lemmas and theorem, we derive the
following Theorems regearding the time and information
complexities of the distributed truss decomposition
algorithm.

Theorem 2. Given a graph G, the time complexity
of Algorithm 1 to compute the trussness of edges is
O.m � tmin/, where m is the number of edges in G and
tmin is the minimum trussness of the graph.

Proof . As the system is running, at least one edge
whose estimated trussness will be updated in each
round exists. This condition indicates that at least one
minimum trussness must be determined in each round.
After the trussness of all edges has been determined,
the system requires one round of initialization and one
round of deterministic termination. Hence, the number
of rounds of the algorithm is no larger thanm� tminC 2,
and the time complexity is O.m � tmin/. �

Theorem 3. Given a graph G, the message
complexity of Algorithm 1 to compute the trussness
of edges is O.

P
e2E

sup.e//.

Proof . In the worst case, one of the endpoints of an
edge e receives at most jsup.e/C 2 � t .e/j messages
from the neighboring nodes. In whatever graph, the
minimum value of trussness of edges is 2. Therefore,
the number of messages of the algorithm is bound
by

P
e2E

.sup.e/ C sup.e0// D 2
P

e2E

.sup.e//, and the

message complexity is O.
P

e2E

sup.e//. �

5 Distributed Truss Maintenance

We consider the truss maintenance problem in dynamic
graphs in this section. In dynamic graphs, insertion and
deletion of edges lead to changes in the graph structure
and trussness values of the edges. The problem to be
addressed in this section lies in the maintenance of the
trussness values of edges in dynamic graphs. We first
consider the insertion and deletion of one edge and the
case of multiple edge insertion and deletion.

As described in the previous section, the basic idea
of the distributed truss decomposition algorithm is to
decrease the estimated trussness of each edge from
sup.e/C 2 to t .e/. Similarly, in a dynamic graph, if we
initially provide a suitable value of estimated trussness to
the newly inserted edges and the edges whose trussness
may be affected, then computing the trussness of all
edges will be efficient for nodes.

A new graph G0 will be generated after the insertion
or deletion of edges from G. The trussness of e 2 G0

(except inserted edges) may change due to two reasons:
(1) the formation or breakage of new triangles containing
e; (2) the increase or decrease of trussness of edges that
form triangles with e.

According to the aforementioned reasons, the main
idea of distributed truss maintenance is to recalculate the
trussness of those edges that may change, thus saving
a considerable amount of computational resources. We
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will first introduce how trussness will be updated after
one edge is inserted or deleted. We will then discuss the
insertion and deletion of multiple edges. The deletion
and insertion of nodes can be regarded as the deletion
and insertion of edges in iteration. Thus, we will omit
the analysis process.

5.1 One edge dynamic

We first introduce the properties related to the trussness
update of the insertion/deletion of an edge. The
distributed algorithms for truss maintenance are then
presented.

At most, one triangle is formed for destroyed after the
insertion/deletion of an edge. The support of an edge is
the number of triangles contained in that edge, and the
trussness of an edge is related to the minimum support
of the surrounding edges. The insertion or deletion of an
edge may cause an increase or decrease in the trussness
of other edges by at most 1, which has been proven in
Ref. [15]. A new graph G0 is formally generated after
inserting e0 in G. The increase in the trussness of edge
e in G0 may be performed in two ways: (1) e, e0, and
another edge form a new triangle, which increases the
support of e; (2) the trussness of some edges of the
triangle in which e is located increases by one. After
deleting e0 in G, the trussness of edge e in the newly
generated graph G0 may decrease in two ways: (1) e and
e0 belong to the same triangle in G, and the deletion of
e0 reduces the support of e; (2) the trussness of some
edges in the triangle where e is located decreases by one.

For the trussness of the inserted edge e0 D .u; v/, we
set the bounds for e0 based on the trussness of the edges
before the insertion of e0. Assume tLB.e0/ is the lower
bound of t .e0/ and tUB.e0/ is the upper bound of t .e/.
According to the definition of k-truss,
tLB.e0/ D arg max

k>2
fjfwjtwmin > kgj > .k � 2/g (3)

where w 2 NG.u/ \ NG.v/. The trussness of edges
forming triangles with e0 will increase by at most 1.
Therefore, we can deduce that

tUB.e0/ � tLB.e0/ 6 1 (4)

The above can be formally summarized as the
following property[37].

Property. If inserting edge e0 D .u; v/ to G D
.V;E/, then e1; e2 2 E may increase trussness by
1, where t .e1/ D k < tUB.e0/ and e2 is k-triangle
connected with e1. If deleting edge e0 fromG D .V;E/,
then e1; e2 2 E n e0 may decrease trussness by 1, where
t .e1/ D k 6 t .e0/ and e2 is k-triangle connected with

e1.
An example of inserting edges is shown in Fig. 2,

which demonstrates the formation of new triangles after
edge insertion. The trussness of part of the edges may
increase due to the new triangles.

After an edge e0 D .u; v/ is inserted, the two
endpoints u and v initially update their adjMap and send
the updated adjMap to their neighbors. Then, the two
nodes both calculate the upper bound of e0 (i.e., tUB.e0/).
An edge e will be marked if e forms a triangle with e0

and t .e/ < tUB.e0/, and these edges will also be marked
if they are k-triangle connected with e. All marked
edges are potential edges whose trussness may increase
by 1. Therefore, we increase the trussness estimates in
the trussMap of these potential edges by 1, and perform
the same process as Algorithm 1 for the system until the
convergence of the trussness estimates of all edges to the
final stable values.

We classify the endpoints of edges that may update
trussness into two categories. (1) The nodes are the
endpoints of the inserted edges, denoted by promoter
node set; (2) the nodes are the endpoints of those
edges that are k-triangle connected to the inserted edges,
denoted by spread node set. Each node in the promoter
node set is a promoter node, and each node in the spread
node set is a spread node.

The promoter nodes are responsible for computing the
upper bound trussness of inserting edges and recording
edges that may be affected. Meanwhile, the spread
nodes are responsible for sending messages to the nodes
where the requirements are met. We first describe the
distributed algorithm for inserting an edge, and then
briefly discuss the algorithm for deleting one edge.
Figure 4 shows an example of promoter nodes and spread
nodes. After inserting edge .2; 6/ in the graph, nodes 2
and 6 become promoter nodes, and the initial trussness
of the newly inserted edge .2; 6/ is 3. Neighboring nodes
connected to nodes 2 and 6 by trussness not larger than
3 become spread nodes.

Distributed truss maintenance with one-edgetrussMap of
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insertion. In our algorithm, each node maintains two
auxiliary sets: updated edge set (UES) is a set that stores
the neighboring edges of the node, and the trussness of
these neighboring edges may change; updated node set
(UNS) is a set of nodes that stores the nodes adjacent to
this node and the trussMap of these nodes may change.

For the promoter node, the edges stored in its UES
are all the edges whose trussness is lower than the upper
bound of the inserted edge’s trussness; its UNS stores
another endpoint of those edges in its UES. The edges
stored in UES are those whose trussness may increase
by 1. We reinitialize the trussness estimates of these
edges to their current trussness plus 1. All nodes in
the system perform the same process as in Algorithm 1
after the reinitialization is completed. The initialization
pseudocodes of the promoter and spread nodes are shown
in Algorithms 3 and 4, respectively.

For a promoter node u, the procedure is divided into
two parts, prepare phase (lines 1–11 in Algorithm 3)
and propose phase (lines 12–16 in Algorithm 3). Due
to the insertion of a new edge e0, the adjMap of u is
first updated, and then compute the upper bound of e0

(lines 2–5 in Algorithm 3). Each edge that forms a
triangle with e0 is then traversed: if the edge satisfies the
condition for possible updates, then the edge is added
to UES , and another endpoint of the edge is added to
UNS (lines 6–11 in Algorithm 3). In the Propose phase,
the trussness of each edge in UES plus one, and each
node in UNS spreads the Change signal (lines 12–16 in
Algorithm 3).

For a spread node p, the procedure is still divided into

Algorithm 3 Re-initialize stage: promoter node u
Input: adjMap, trussMap, e0 D .u; v/

Output: adjMap, trussMap
1: procedure PREPARE

2: adjMapŒu�:add.v/;
3: trussMapŒ.u; v/� tUB.e0/;
4: send adjMapŒu� to v 2 N.u/;
5: receive adjMapŒv� for v 2 N.u/;
6: UES  ∅;
7: UNS  ∅;
8: for all w 2 N.u/ \N.v/ do
9: if trussMapŒ.u; w/� < tUB.e0/ then

10: UES:add..u;w//;
11: UNS:add.w/;
12: procedure PROPOSE

13: for all e 2 UES do
14: trussMapŒe� trussMapŒe�C 1;
15: for all w 2 UNS do
16: Send Change to v 2 N.u/;

Algorithm 4 Re-initialize stage: spread node p
Input: adjMap, trussMap
Output: trussMap

1: procedure PREPARE

2: receive adjMap;
3: receive Change from o;
4: Nk  trussMapŒ.p; o/�;
5: for all w 2 N.p/ \N.o/ do
6: if minftrussMapŒ.p; w/�; trussMapŒ.o; w/�g D Nk

then
7: UNS:add.w/;
8: if trussMapŒ.p; w/� D Nk then
9: UES:add..p;w//;

10: if trussMapŒ.o; w/� D Nk then
11: UES:add..o; w//;
12: procedure PROPOSE

13: for all e 2 UES do
14: trussMapŒe� trussMapŒe�C 1;
15: for all w 2 UNS do
16: Send Change to v 2 N.p/;

two parts. In prepare phase, the edge whose trussness
may change (lines 3 and 4 in Algorithm 4) is first
determined. Each edge that forms a triangle with the
potential edge and has the same trussness as the potential
edge is then added to the UES (lines 5–11 in Algorithm
4). The propose phase of the spread node is the same
as the promoter node, and the difference lies in the
additional trussness of edges by 1 that no longer changes.

Analysis. The reinitialization stage ends when no
node receives UES. The time complexity of the re-
initialization stage depends on the diameter of the
induced subgraph generated by UNS. The induced graph
generated by UNS is denoted as H , which is a k-truss.
The diameter of a connected k-truss with n nodes is
not greater than Œ2n�2

k
�[8]. As shown in Ref. [9], for

a graph G.V;E/ and a node set Q � V , we have
distG.G;Q/ 6 diam.G/ 6 2distG.G;Q/, where
distG.u; v/ is the length of the shortest path between
u and v in G and diam.G/ D maxu;v2GfdistG.u; v/g

is the diameter of graph G. The time complexity of
reinitialization stage is O.diam.H//. Algorithm 1 will
be terminated for two rounds of the execution phase in
most cases (one round ensures that all nodes will not
update trussMap) after resetting the estimated trussness
of edges.

Distributed truss maintenance with one-edge
deletion. The algorithm for a single edge deletion is
simpler than the insertion case. After an edge is deleted,
the two endpoints of this edge first update their adjMap
and remove the nonexistent items from the trussMap due
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to the change in the graph structure. The execution phase
of Algorithm 1 is then performed, and the estimated
trussness of edges will converge to the real trussness.
In this case, only nodes in UNS will participate in the
calculation, and only a few rounds will be needed in
most cases.

We do not need to label nodes in UNS simliar to the
insertion scenario due to the absence of potential edges
to determine. Hence, the distributed truss maintenance
algorithm for edge deletion is efficient and fast.

5.2 Dynamics of multiple edges

In this section, we study the truss maintenance after
the insertion/deletion of multiple edges. The main
challenges of maintaining trussness in the case of
multiple edges dynamics remain as follows: determining
which edges change in trussness and by how much.
Algorithms for the case of a single edge dynamic can be
used iteratively when multiple edges are inserted/deleted.
However, we can further optimize the algorithms
when inserting/removing multiple edges for efficient
computation.

Insertion of multiple edges. Algorithm 5 shows the
procedure of truss maintenance after the insertion of
multiple edges. Suppose the set of inserted edges is �E.
For each edge e0 2 �E, Algorithms 3 and 4 are first
executed after e0 is inserted (lines 1–5). After all edges
in �E are inserted, the execution phase of Algorithm 1
is executed until termination (line 6).

Deletion of multiple edges. Algorithm 5 shows the
procedure of truss maintenance after the deletion of
multiple edges. Suppose the set of deleted edges is
�E � E. The adjMap and trussMap of all nodes are
directly updated after deleting all the edges in �E.
That is, each node deletes the nonexistent neighbors,
and then sends the adjacency list to the remaining
neighbors. Afterward, each node deletes the item whose
key does not exist in the trussMap and then sends the
trussMap of incident edges to the neighbors. Finally,
nodes perform the execution phase of Algorithm 1 until
termination. In the case of deleting numerous edges, the

Algorithm 5 Re-initialize stage of multiple edges dynamic
Input: adjMap, trussMap, �E

1: for e0 2 �E do
2: for all u 2 e0 do
3: Algorithm 3;
4: for all spread nodes do
5: Algorithm 4;
6: execution phase of Algorithm 1;

endpoints of each deleted edge can recalculate the value
of sup.e/ C 2 of the incident edges. An endpoint u
updates trussMapŒe� D minfsup.e/C 2; trussMapŒe�g
if e is an incident edge of u. Given a large number
of deleted edges and broken triangles, the value of
sup.e/ C 2 for e 2 Gn�E may even be smaller than
t .e/. Storing the smaller values in trussMap enables the
rapid termination of the algorithm.

Analysis. The analysis of previous sections indicate
that the time complexity of single edge insertion is
O.diam.H//. Thus the time complexity for multiple
edges insertion isO.diam.G/�j�Ej/, where diam.G/
is the diameter of G.

6 Experiment

In this section, we conduct our algorithms on the real-
world and synthetic graphs to evaluate the performance.
We first introduce the datasets and then evaluate the
efficiency of truss decomposition and maintenance.

All the programs are compiled with Java 8 and run on
a Linux machine with an Intel Xeon 3.4 GHz CPU and
120 GB RAM. All experiments are run ten times and the
average values are reported.

6.1 Datasets

Four static graphs, four temporal graphs, and four
synthetic graphs have been adopted. The static and
temporal graphs can be downloaded from Stanford
Network Analysis Project (SNAP)�.

For the static graphs, ca-HepPh (CH) is a collaboration
network of Arxiv High Energy Physics; com-DBLP (CD)
is a DBLP collaboration network and com-YouTube
(CY) is YouTube online social network, and both are
ground-truth communities; roadNet-CA (RC) is a road
network of California.

Temporal graphs are networks where edges have
timestamps. An edge .u; v; t/ means that node u

connects to node v at time t . email-Eu-core (EU)
is a network of E-mails between users at a research
institution; math-overflow (MO) and Ask-Ubuntu (AU)
are networks of comments, questions, and answers on
Math Overflow and Ask Ubuntu; superuser (SU) is a
temporal network of interactions on the stack exchange
web site Superuser�. The statistics of the datasets are
shown in Table 2.

Synthetic graphs are generated by the SNAP system by

� http://pan.baidu.com/s/1mgBTFOO
� https://superuser.com
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Table 2 Statistics of datasets. jjjVjjj is the number of nodes, jjjEjjj
is the number of edges, jjj���jjj is the number of triangles of the
graph, and degavg is the average degree.

Name jV j jEj j�j degavg

Static
graphs

CH 1.2�104 1.18�105 3.358�106 19.73
CD 3.17�105 1.049�106 2.224�106 6.62
CY 1.134�106 2.987�106 3.056�106 5.26
RA 1.965�106 2.766�106 1.20�105 2.81

Temporal
graphs

EU 9�102 3.32�105 1.05�105 32.58
MO 2.4�104 5.06�105 1.403�106 15.13
AU 1.59�105 9.64�105 6.80�105 5.72
SU 1.94�105 1.443�106 1.543�106 7.36

Synthetic
graphs

ER 1.31�105 3.35�105 1.7�104 5.11
WS 1.31�105 3.93�105 4.9�104 6.00
BA 1.31�105 7.86�105 7�103 11.99
HK 1.31�105 7.86�105 3.57�105 11.99

applying different models. All synthetic graphs have the
same node size. Erdos-Renyi (ER)[39], Watts-Strogatz
(WS)[40], Barabasi-Albert (BA)[41], and Holme and Kim
(HK)[42] are four models for random graph generation.

6.2 Truss decomposition

We selected GPTruss[25] as the baseline to demonstrate
the performance of the proposed distributed truss
decomposition algorithm, namely DisTruss, in
comparative experiments. GPTruss converts the original
graph to a line graph (i.e., nodes to edges and edges to
nodes) and then computes it as a distributed system with
the nodes as independent computational units.

Figure 5 shows the execution time of the two

Fig. 5 Proposed method is compared with other methods in
truss decomposition.

algorithms on all graphs. The results show that most
graphs require only a few rounds to complete the
distributed truss decomposition, and only a few dense
and large-scale graphs require dozens of rounds, such as
CY in static graphs and all temporal graphs. In all graphs
of the experiment, the truss decomposition of DisTruss
is more efficient compared with GPTruss. In particular,
DisTruss is significantly more efficient than GPTruss in
some graphs with a large number of edges (i.e., dense
graphs). This condition is due to GPTruss, which needs
to convert the graph into a line graph, thus generating
additional nodes and complicating its computation. In
sparse graphs, GPTruss and DisTruss require almost the
same number of rounds because the number of nodes in
a sparse graph is similar to the number of edges.

6.3 Truss maintenance

We introduce detailed experiments on distributed truss
maintenance to evaluate the efficiency of the proposed
distributed truss maintenance algorithms. We randomly
chose 10i edges as the changed edges for insertion
and deletion, where i D 0; 1; 2; 3; 4; 5 in each graph.
We first evaluate the time complexity of the proposed
algorithms in all datasets for insertion and deletion of
edges. The message complexity of the algorithms on
all datasets is then evaluated. Finally, we demonstrate
the number of nodes that participates in the computation
process in the dynamic setting.

Time efficiency. Figures 6 and 7 shows the execution
time of proposed algorithms in each graph after the
insertion and deletion of edges. In all graphs, the
number of rounds increases as the number of inserted
edges rises. The running time is almost the same as
the decomposition algorithm when the inserting edges
occupy the majority of the original graph. Thus, when the
number of inserting edges is too large, truss maintenance
has lost its superiority over the decomposition algorithm.
However, the maintenance algorithm is still efficient
when the number of inserted edges is smaller than the
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Fig. 7 Number of rounds after deleting edges in datasets.

half edges of the original graphs. For dense graphs, such
as ca-HepPh and email-Eu-core, the average degree of
their nodes is substantially high. Therefore, the number
of active nodes is significantly larger than other graphs
after the insertion of edges. Thus, they require the
computation of additional rounds after the topology of
graphs is changed. Unlike the insertion of edges, the
graph becomes sparse during the removal of numerous
edges. Thus, only a few rounds are needed to complete
the computation.

Message efficiency. Figures 8 and 9 show the
number of messages of the proposed truss maintenance
algorithms in all datasets after the insertion and deletion
of edges,respectively. The number of messages reflects
the range of nodes affected by the inserted edges.
Additional messages are required when the range
of affected nodes is large. Furthermore, additional

messages must be exchanged under dense graphs. In
static graphs, the CH is the densest graph according
to the average degree in Table 2. The size of CH is
substantially small considering nodes and edges, thus,
a large average density leads to a remarkably large
number of triangles. The number of edges with the
same trussness is also large, which leads to the update
of additional messages to maintain the trussness when
dynamic edge changes in the same size occur. This
condition also shows that the number of messages
required for the trussness update is substantial if the
trussness change is large or the set of edges to be
propagated is wide.

Resource efficiency. Figure 10 shows the activated
nodes of the proposed truss maintenance algorithms
under different numbers of changed edges. The number
of nodes involved in the calculation generally increases
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Fig. 10 Percentage of activated nodes after inserting edges in datasets.

as the number of inserted edges rises. Compared with
the node size of the entire graph, the dynamic graph
case has only a small percentage of active nodes.
Therefore, the dynamic maintenance algorithms save
more computational resources compared with the static
decomposition algorithm. In very dense graphs, such
as EU, with an average of 32, the proposed algorithm
involves a large number of nodes in the computation.

7 Conclusion

We studied a fundamental graph analysis problem, that
is, the computation of k-trusses. Previous approaches
focus on static graphs or sequential computational
models, but the proposed algorithms can handle
multiple dynamically changing edges simultaneously.
We propose distributed truss decomposition and
maintenance algorithms by designing a synchronized
node-centric distributed model. In particular, the
proposed algorithms require only the local structure
information of the graph and can be efficiently
implemented in a distributed environment. Extensive
experiments demonstrate the excellent properties of
the proposed distributed algorithms, and this new
understanding should help improve the decomposition
and maintenance of the truss under the impact of other
computing platforms. Therefore, future work therefore
may consider larger amounts of batch processing while
evaluating their efficiency on remarkably large-scale
graphs.
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