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Streaming Algorithms for Non-Submodular Maximization
on the Integer Lattice

Jingjing Tan, Yue Sun, Yicheng Xu, and Juan Zou�

Abstract: Many practical problems emphasize the importance of not only knowing whether an element is selected

but also deciding to what extent it is selected, which imposes a challenge on submodule optimization. In this study,

we consider the monotone, nondecreasing, and non-submodular maximization on the integer lattice with a cardinality

constraint. We first design a two-pass streaming algorithm by refining the estimation interval of the optimal value. For

each element, the algorithm not only decides whether to save the element but also gives the number of reservations.

Then, we introduce the binary search as a subroutine to reduce the time complexity. Next, we obtain a one-pass

streaming algorithm by dynamically updating the estimation interval of optimal value. Finally, we improve the memory

complexity of this algorithm.

Key words: integer lattice; non-submodular; streaming algorithm; cardinality constraint

1 Introduction

Submodular functions defined on a set are those that
take a subset of a set as input and return a real
value as output. For a set submodular function, its
submodular property is equivalent to the diminishing
returns property; that is, if the same item is added
to a large set and a small set, the marginal gain of
the latter is greater than that of the former. Many
problems in computer science, artificial intelligence,
deep learning, and other areas can be characterized
by monotone set submodular functions, such as data
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summarization[1], influence maximization[2], maximum
entropy sampling[3], active learning[4], and online
advertising[5]. With the extensive application in practical
applications, the submodular optimization problem has
attracted the attention of scholars making it one of the
hot research issues in combinatorial optimization and
computer science[6–9]. The extensive applications of
submodular function in practical problems have also
promoted the development of submodular theory[10, 11].
Numerous studies on submodular functions have paid
close attention to the case of set functions[12–16]. It
is known that we can use a simple greedy algorithm
to approximately maximize a submodular set function
in polynomial time with approximation guarantees.
The extensive applications of submodular function in
practical problems have also promoted the development
of submodular theory. Numerous studies on submodular
functions have paid close attention to the case of set
functions. It is known that we can use a simple greedy
algorithm to approximately maximize a submodular
set function in polynomial time with approximation
guarantees. Nemhauser et al.[17] first proposed a
greedy algorithm for the problem of maximizing a
submodular function with the cardinality constraint. The
approximation is .1 � 1=e/. For this problem, Feige[18]
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reported that the tightest approximation is .1 �

1=e/ under the condition P D NP . The knapsack
constraint introduced to this problem with the first
.1 � 1=e/-approximation algorithm is proposed by
Sviridenko[19]. Then, Calinescu et al.[20] obtained
the same approximation ratio of .1 � 1=e/ for the
same problem with a matroid constraint by using the
continuous greedy approach.

The non-submodular optimization problem has
also attracted a great deal of research interest due
to its application to practical problems, such as
viral marketing and machine learning[21–29]. Bian
et al.[30] designed a standard greedy algorithm for
solving the problem of non-submodular maximization
with cardinality constraint by characterizing the non-
submodular functions with the help of parameter weak
submodular rate, thus proving that this algorithm has a
tight approximation ratio. Bogunovic et al.[31] introduced
the DR ratio 
f to study the robust maximization
of a set function. Kuhnle et al.[32] extended the
DR ratio and weak DR ratio to lattice functions
and proved that 
f 6 
wf . They considerd the non-
submodular maximization on the integer lattice with
cardinality constraint, and proposed two threshold
greedy algorithms that generalize a prior work on this
topic. More excellent surveys on the non-submodule
optimization research can be seen in Refs. [33–38].
Moreover the rapid development of computer science
technology and Internet has ushered in the era of big data
and led to the processing of massive data. Due to the
limited computer storage capacity and the high speed of
data arrival, it is very important to deal with the data in a
streaming manner. A well designed streaming algorithm
can solve the problem of massive data effectively.

1.1 Problem

We begin by defining the problem definition of
the monotone nondecreasing Non-submodular
Maximization with a Cardinality Constraint (NMCC).
Let Œk� be the set of all the positive integers from 1
to k for any k 2 NC. We suppose that the items in
set G D fe1; e2; : : : ; eng arrive one by one. In the
streaming algorithm, we must make a decision for
the coming item immediately before the next item
arrives. At the same time, we should consider not
only the running time to measure the performance
of the algorithms, but also the complexity of storage
and the number of passes for reading the data. Let
s 2 NG with the component of coordinate ei 2 G be

s.ei /. Let �ei denote the standard unit vector; that is,
all the components have a value of 0, except for the
i-th component, which has a value of 1. Denote s.S/
as the sum of s.ei /, where ei 2 S . For any s 2 NG ,
suppC.s/ D fe 2 Gjs.e/ > 0g is the supporting set
of s. Let fsg be the multi-set in which the number of
occurrences of e is s.e/ and jfsgj WD s.G/; c is a box
in fN [ f1ggG ; Dc D fs 2 NG W s 6 cg. f . / is a
non-submodular function defined on Dc; and f .0/ D 0.
The problem can be described as follows:

max
s6c;s.G/6k

f .s/ (1)

where s.G/ 6 k is the cardinality constraint and
s.G/ D

X
e2G

s.e/:

1.2 Preliminary

Here, we introduce some definitions and basic facts on
the submodular functions in this subsection.

For each element e 2 G, we denote .s ^ t/.e/ as the
minimum value of s.e/ and t.e/, and .s _ t/.e/ is the
maximum value of s.e/ and t.e/. For any fsg and ftg,
we denote fsg n ftg as the coordinate wise maximum of
.s.e/— t.e// and 0. The monotone nondecreasing of
f W NG ! RC and f .s/ 6 f .t/ holds for any s 6 t.
A nonnegative and normalized function f means that
f .s/ > 0 for any s 2 NG and f .0/ D 0. The following
two definitions illustrate the mathematical descriptions
of the DR-submodular and lattice submodular.

Definition 1 f is called DR-submodular if it holds
for any s; t 2 NG with s 6 t and e 2 G, such that

f .tC �e/ � f .t/ 6 f .sC �e/C f .s/:
Definition 2 f is called a lattice submodular if it

holds for all s; t 2 NG that
f .s _ t/C f .s ^ t/ 6 f .s/C f .t/:

Let Fc be the set of nonnegative monotone DR-
submodular functions. For f 2 Fc, and vectors s; t 2
NG , let f .tjs/ be the marginal increment of a vector s
with t, that is,

f .tjs/ D f .sC t/ � f .s/:
Definition 3[32] The DR ratio of a function f in Fc

is the maximum scalar 
f .f /, such that for any s; t 2 Dc

with s 6 t and e 2 G,

f .f /f .�ejt/ 6 f .�ejs/;

where tC �e 2 Dc.
Definition 4[32] The weak DR ratio of a function f

in Fc is the maximum scalar 
w
f
.f /, such that for any

s; t 2 Dc with s 6 t,
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wf .f /.f .t/ � f .s// 6
X

e2ftgnfsg

f .�ejs/:

Remark 1 From the definition of DR ratio 
f .f /
and weak DR ratio 
w

f
.f /, we can easily have 
f .f / 2

Œ0; 1�, 
w
f
.f / 2 Œ0; 1�, and 
f .f / 6 
w

f
.f / for any

f 2 Fc.
Remark 2 If 
f .f / and 
w

f
.f / are equal to 1, the

function f is a DR-submodular function on the lattice,
which means that DR ratio and weak DR ratio generalize
the concept of DR-submodular. This non-submodular
function captures many practical problems, such as the
optimal budget allocation problem in the advertisement.

In this paper, we denote by F

f ;


w
f

c for the set of all
the functions f 2 Fc, in which the DR ratio of f is

f and the weak DR ratio of f is 
w

f
. We denote the

optimal solution vector and optimal value as s� and OPT,
respectively. We consider the streaming algorithms for
NMCC on the integer lattice.

The remainder of this paper is organized as follows.
In Section 2, we first design three streaming algorithms
for NMCC, after which we analyze the performance of
the three algorithms. In Section 3, we summarize our
work.

2 Main Result

In this section, we design a streaming algorithm with
two-pass and two online streaming algorithms with
one-pass for the NMCC. We extend the problem studied
in Ref. [37] to the integer lattice.

2.1 Two-pass streaming algorithm

In the streaming model, we cannot decide immediately
whether the value of the arriving element exceeds
the maximum marginal value over each iteration. A
natural idea is to compare the marginal gain produced
by the arriving element with OPT in a certain way.
To determine whether or not the arriving item e

is selected, a specified threshold of


f
v=2



f �f .s/

k�s.G/ is
used. We combine the exponential growth method
for estimating the OPT with binary search to give
the minf.1�"/


f
=2


f ; ( 1 - 1 / 
w

f
2


f /g-approximation

algorithm for NMCC. The detailed description refers to
Algorithms 1 and 2 below.

Lemma 1 Suppose si is the output of the i-th
iteration in Algorithm 2, then we have

f .si / >


f
vsi .G/
2


f k

(2)

Algorithm 1 Binary search
Input: f . / W NG ! RC, stream of data G, e 2 G, s; c 2 NG ,

k 2 N, and � 2 RC.
Output: ˛ 2 RC:

1: ˛t  minfc.e/ � s.e/; k � s.G/g;
2: ˛s  1I

3: if f.˛t�e js/
˛t

> � then
4: return ˛t
5: end if
6: if f .�ejs/ < � then
7: return 0
8: end if
9: while ˛t > ˛s C 1 do

10: � D b˛tC˛s
2
c;

11: if f .��ejs/ > � then
12: ˛s D �,
13: else
14: ˛t D �I

15: end if
16: end while
17: return ˛t .

Algorithm 2 Streaming algorithm
Input: f 2 Fc, G, cardinality constraints k, " 2 .0; 1/:
Output: Vector s 2 NG .

1: m max
e2G

f .�e/I

2: V" D f.1C "/
q jq 2 N; m

1C"
6 .1C "/q 6 km


f
gI

3: for v 2 V", do
4: set sv  0I
5: for i D 1; 2; : : : ; n do
6: if sv.G/ < k; then

7: ˛  BinarySearch
�
f; sv; c; ei ; k;


f v=2

f �f.sv/

k�sv.G/

�
;

8: sv  sv C ˛�eI
9: return sv

10: end if
11: end for
12: end for
13: return s D arg max

v2V n"

f .sv/:

Proof From Algorithm 2, we know the initial vector
s0 D 0, so Formula (2) holds naturally. Then, we assume
that Formula (2) holds for the i -th iteration; we only need
to prove that it holds for the .i C 1/-th iteration. If we
let ˛iC1 be the output returned from Algorithm 1, then
we have

f .si C ˛iC1�eiC1/ D f .˛iC1�eiC1 jsi /C f .si / >

˛iC1.


f
v

2


f
� f .si //

k � si .G/
C f .si / >

˛iC1 � 
f v

2


f .k � si .G//

C
k � si .G/ � ˛iC1

k � si .G/
f .si /:

Together with the introduced hypothesis, we conclude
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that
f .si C ˛iC1�eiC1/ >

˛iC1
f v

2
f .k � si .G//
C
k � si .G/ � ˛iC1

k � si .G/
�

f vsi .G/
2
f k

D


f v.k � si .G//.si .G/C ˛iC1/
2
f k.k � si .G//

D


f v

2
f k
.si .G/C ˛iC1/ D


f v

2
f k
siC1.G/;

which completes the proof. �
In the following Lemma 2, we consider the marginal

increment of �e with e 2 fs�g n fQsg.
Lemma 2 Suppose Qs is the final output of Algorithm

2 and Qs.G/ < k, then we have

f .�ejQs/ <
v

2
f k
;

where e 2 fs�g n fQsg.
Proof Assume that Algorithm 2 produces a vector

s0e right before the element e’s arrival. ˛e is the output
of the BinarySearch subroutine satisfying the following
two inequations:

f .˛e�ejs0e/
˛e

>

f v=2


f � f .s0e/
k � se.G/

(3)

and
f ..˛e C 1/�ejs0e/

˛e C 1
<

f v=2


f � f .s0e/
k � se.G/

(4)

Let se D s0e C ˛e�e 6 Qs. Therefore,
f .�ejQs/ 6

1


f
f .�ejse/ D

1


f
f .�ejs0e C ˛e�e/ D

1


f
Œf .s0e C .˛e C 1/�e/ � f .s

0
e C ˛e�e/� D

1


f
Œf .s0e C .˛e C 1/�e/ � f .s

0
e/C f .s

0
e/ �

f .s0e C ˛e�e/� D
1


f
Œf ..˛e C 1/�ejs0e/ � f .˛e�ejs

0
e/� <

1


f

�
.˛e C 1/


f v=2

f � f .s0e/

k � se.G/
�

˛e

f v � 2


f f .s0e/
2
f .k � se.G//

�
<

1


f


f v � 2

f f .s0e/

2
f .k � se.G//
6

1


f


f v � 
f v � se.G/
2
f .k � se.G//

D
v

2
f k
(5)

This completes the proof. �
Based on the Lemmas 1 and 2, we can analyze the

performance of Algorithm 2. In the analysis, Lemma 1
is used for the case s.G/ D k, and Lemma 2 is used for
the case s.G/ < k.

Theorem 1 For any " 2 .0; 1/ and given function
f 2 Fc, Algorithm 2 is a two-pass algorithm, the
approximation is minf.1 � "/
f =2
f ; .1 � 1=
wf 2


f /g,

the memory complexity is O.k
"

log k
"
/, and the query

times per element is O. logk
"

log logk
"
/.

Proof Suppose s� D
P

e2fs�g
�e. From the definition

of the DR ratio, we obtain

OPT D f .s�/ D f
� X
e2fs�g

�e

�
6

1


f

X
e2fs�g

f .�e/ 6
k �m


f
:

Moreover,

m D max
e2G

f .�e/ 6 f .s�/ (6)

Combined Formulas (5) and (6), we have

m 6 OPT 6
k �m


f
:

Let Ni D blog1C"OPT c, thus there exists v D .1C"/Ni ,
such that v 6 OPT and

v >
OPT

1C "
> max

�
.1 � "/OPT;

m

1C "

�
(7)

From Formulas (6) and (7), we obtain

v 2 Œ.1 � "/OPT;OPT �:

Next, for v 2 V", we denote sv as the output of
Algorithm 2, and consider the following two cases:

(1) sv.G/ D k
According to Lemma 1, we have

f .sv/ >

f vsv.G/
2
f k

D
.1 � "/
f

2
f
OPT (8)

(2) sv.G/ < k
From Lemma 2 and the weak DR ratio, we have

f .s� [ sv/ � f .sv/ 6
1


w
f

X
e2suupCfs��svg

f ..s� � sv/.e/�ejsv/ 6

1


w
f

X
e2fs�gnfsvg

f .�ejsv/ <

1


w
f

X
e2fs�gnfsvg

v

2
f k
6

v


w
f
2
f
6
OPT


w
f
2
f

:
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As f .s� [ sv/ � f .sv/ > OPT � f .sv/, we obtain

f .sv/ > .1 �
1


w
f
2
f

/OPT (9)

Combining Formulas (8) and (9), we obtain

f .sv/ > min
�
.1 � "/
f

2
f
; 1 �

1


w
f
2
f

�
OPT:

From Algorithm 2, we know that Qs D arg max
v2V"

f .sv/.

Thus, we can conclude that

f .Qs/ > f .sv/ > min
�
.1 � "/
f

2
f
; 1 �

1


w
f
2
f

�
OPT

The proof is completed. �

2.2 One-pass streaming algorithm

For the streaming algorithm, the number of rounds
to read data is an important index to measure the
performance of such an algorithm. Naturally, we want to
obtain a one-pass streaming algorithm by dynamically
updating the maximum value of the standard unit vector
according to the arriving elements and replacing the
estimation value range of the OPT at the same time. We
design the one-pass streaming algorithm for the NMCC,
which is stated in Algorithm 3. Here, 
f is unknown at
the beginning. However, as f .�e/ > 0, we also know

f > 0. Thus, there is an expression " 2 .0; 1/ that
satisfies 
f > ".

Theorem 2 For any given " 2 .0; 1/ and function
f 2 Fc, Algorithm 3 is a one-pass algorithm, the

Algorithm 3 Streaming algorithm with one pass
Input: f 2 Fc, stream of data G, cardinality constraints k,

" 2 .0; 1/:

Output: Vector s 2 NG .
1: V" D f.1C "/

q jq 2 NgI
2: for v 2 V", do
3: Set sv  0I
4: m 0I

5: for i D 1; 2; : : : ; n do
6: m max

e2G
fm; f .�e/gI

7: V i" D f.1C "/
q jq 2 N; m

1C"
6 .1C "/q 6 2km


f "
gI

8: Delete all sv , where v … V i" I
9: for v 2 V i" do

10: if sv.G/ < k; then

11: ˛  BinarySearch
�
f; sv; c; ei ; k;


f v=2

f �f.sv/

k�sv.G/

�
;

12: sv  sv C ˛�eI
13: end if
14: end for
15: end for
16: end for
17: return s D arg max

v2V n"

f .sv/:

approximation is minf.1 � "/
f =2
f ; .1 � 1=
wf 2

f /g,

the memory complexity is O.k
"

log k
"2
/, and the query

times per element is O. logk
"

log k
"2
/.

Proof Similar to the proof of Theorem 1, we can
obtain a v 2 V i" , such that .1 � "/OPT 6 v 6 OPT .
Let sv be the output solution with respect to v. Therefore,
f .sv/ > minf.1 � "/
f =2
f ; .1 � 1=
wf 2


f /g �OPT:

As the return vector of Algorithm 3 satisfies
sv D arg max

v2V n"

f .sv/;

we can conclude that
f .s/ > f .sv/ >

minf.1 � "/
f =2
f ; .1 � 1=
wf 2

f /g �OPT:

�

2.3 Improved one-pass streaming algorithm

Asides from the number of rounds to reading the data,
the memory complexity is also an important index to
measure the performance of a streaming algorithm. In
Algorithm 3, the memory complexity relies on the
amount of v 2 V i" and the cardinality constraint k. Then,
we take measures to reduce the lower amount of v in
order to reduce memory complexity. The improved one-
pass streaming algorithm is presented as following.

Theorem 3 For any given " 2 .0; 1/ and function
f 2 Fc, Algorithm 4 is a one-pass minf.1 �

Algorithm 4 Streaming algorithm with one-pass
Input: f 2 Fc, stream of data G, cardinality constraints k,

" 2 .0; 1/:

Output: Vector s 2 NG .
1: V" D f.1C "/

q jq 2 NgI
2: for v 2 V", do
3: Set sv  0I
4: �  0; m 0; ˇ  0I
5: for i D 1; 2; : : : ; n do
6: m maxfm; f .�ei /gI
7: �  maxfm;ˇgI
8: V i" D f.1C "/

q jq 2 N; �
1C"

6 .1C "/q 6 2km

f "
gI

9: Delete all sv , where v … V i" I
10: for v 2 V i" do
11: if sv.G/ < k; then

12: ˛  BinarySearch
�
f; sv; c; ei ; k;


f v=2

f �f.sv/

k�sv.G/

�
;

13: sv  sv C ˛�eI
14: end if
15: end for
16: ˇ  max

v2V i"

fˇ; f .sv/g;

17: end for
18: end for
19: return s D arg max

v2V n"

f .sv/:
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"/
f =2

f ; .1 � 1=
w

f
2
f /g-approximation algorithm

for NMCC, with O. k
"2
/ memory complexity and

O.
logk
"

log k
"
/ query times per item.

Proof We can obtain the approximation by using
the same method as Theorem 2. Thus, we omit the
explanation here, and skip to the analysis of the memory
complexity of Algorithm 4. On the one hand, after the
.i � 1/-th iteration we obtain

mi D max
lD1;2;���i

f .�ei /;

and
ˇi D max

lD1;2;:::i
max
vl2V l"

f .sl v
l

/:

Therefore, we have
�i D maxfmi ; ˇi�1g;

and

V i" D

�
.1C "/qj

�i

1C "
6 .1C "/q 6

2kmi


f "

�
:

On the other hand, after the i -th iteration we have
ˇi D maxfˇi�1; max

vi2V i"

f .si v
i

/g:

It is easy to check that ˇi�1 6 ˇi . Thus, there is no
need to save the vector si v

i
with vi 6 ˇi . We need

only to consider the vector si v
i

corresponding to these

vip 2 V
i

" D

�
.1C "/t j ˇi

1C"
6 .1C "/t 6 2kmi


f "

�
. The

number of vip in V
i

" is d1
"

log 2k
"2
e.

From Lemma 1, we obtain

si v
i
p .G/ 6

2
f k


f vip
f .si v

i
p / 6

2
f kˇi


f .1C "/pˇi
6

2
f k


f .1C "/p
:

Then, for each iteration, the memory complexity is
expressed as follows:
d 1" log 2k

"2
eX

pD0

2
f k


f .1C "/p
6
2k

"

d1" log 2k
"2
eX

pD0

1

.1C"/p
DO

�
k

"2

�
:

For any e 2 G, the number of v is at most O.1
"

log k
"2
/.

Meanwhile, for each e 2 G and per v, the query time
is O.log k/. Thus, for each item, the update time is
O.

logk
"

log k
"2
/. �

3 Conclusion

In this paper, we first design a two-pass streaming

algorithm for NMCC with f 2 F

f ;


w
f

c . We combine
the exponential growth method for estimating the OPT
with binary search to bring down the pass of Algorithm
1. Moreover, we improve the memory complexity.

Meanwhile, we also analyze the performance of the
algorithm by introducing the DR ratio and weak DR ratio,
including the approximation ratio, memory complexity,
and the query times of each item.
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