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Approximating (mB;mP)-Monotone BP Maximization and Extensions

Ruiqi Yang, Suixiang Gao, Lu Han, Gaidi Li�, and Zhongrui Zhao

Abstract: The paper proposes the optimization problem of maximizing the sum of suBmodular and suPermodular

(BP) functions with partial monotonicity under a streaming fashion. In this model, elements are randomly released

from the stream and the utility is encoded by the sum of partial monotone suBmodular and suPermodular functions.

The goal is to determine whether a subset from the stream of size bounded by parameter k subject to the summarized

utility is as large as possible. In this work, a threshold-based streaming algorithm is presented for the BP maximization

that attains a ..1� �/=.2� �/�O."//-approximation with O.1="4 log3.1="/ log..2� �/k=.1� �/2// memory complexity,

where � denotes the parameter of supermodularity ratio. We further consider a more general model with fair

constraints and present a greedy-based algorithm that obtains the same approximation. We finally investigate this

fair model under the streaming fashion and provide a ..1 � �/4=.2 � 2� C �2/2 �O."//-approximation algorithm.

Key words: submodular maximization; streaming model; threshold technique; approximation algorithm

1 Introduction

Numerous optimization tasks in theoretical computer
science, machine learning, and combinatorial optimization
can be designated to find a subset satisfying some
constraint with a submodular utility function. A set
function B: 2N ! RC on a finite ground set N is
submodular if it holds B.S/ C B.T / > B.S [ T / C

B.S \ T /. An equivalent form of submodular is defined
from the diminishing marginal returns perspective, that
is, B: 2N ! RC is submodular if for any pair S �
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T � N and e … T , it holds that B.S [ feg/ � B.S/ >
B.T [ feg/ � B.T /.

Additionally, a set function is monotone if B.S/ 6
B.T /. The monotonicity property of set functions plays
an important role in submodular optimization. Indeed
almost every problem encoded with a submodular
function has been queried in both monotone and
non-monotone settings. Naturally, the submodular
optimization with monotone objectives usually enjoys
enhanced performance guarantees compared with the
case of general objectives. That means that there exist
gaps in approximation ratios between the monotonic and
non-monotonic submodular optimization problems. For
non-negative set functions[2], there is also a parameter
of monotonicity ratio that measures how much of the
function is monotonic.

In the current work, we investigate a general
constrained maximization problem encoded by the
sum of suBmodular and suPermodular functions,
which is defined as “suBmodular-suPmodular (BP)
maximization”[3]. We restate it as follows:

arg max
S�N;S2I

B.S/C P.S/ (1)

where submodular term B: 2N ! RC and supermodular
term P : 2N ! RC are non-negative and monotone,
respectively, and I :D fS � N; jS j 6 kg denotes a k-
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cardinality constraint. Indeed, the BP maximization is
fairly difficult, and it has been shown that no constant
approximation algorithm exists in polynomial time. By
introducing a supermodular curvature, Bai and Bilmes[3]

investigated a greedy-based parameterized algorithm for
the discussed BP maximization problem.

Recently, applications with huge problem instances
have led to studies on submodular optimization under
streaming scenarios. In this streaming fashion, elements
are not stored in advance, and it is assumed that
the elements are read one by one. Threshold-based
algorithms are rapidly developed to handle with the
problems under streaming[4–9], intuitively selecting
elements with marginal gain by at least a proper
lower bound. In addition, extended local search-based
streaming algorithms have also been proposed[10, 11].

In the current work, we consider the BP maximization
under the above streaming model and provide a
threshold-based streaming algorithm with theoretical
performance guarantees. Then, we introduce the BP
maximization with fairness constraints and present a
greedy-based algorithm. The results can be found in our
conference version[1]. Compared with our conference
version, we study a general .mB ; mP /-monotone BP
maximization under streaming in this journal version
and provide an extended threshold-based streaming
algorithm with theoretical performance guarantees.
Moreover, we investigate the fair .mB ; mP /-monotone
BP maximization under the streaming model and
propose a local-search based streaming algorithm for
the new model. The results are concluded as follows:
� We develop a semi-streaming algorithm that yields

a subset S obeying
B.S/C P.S/

mB � B.O/CmP � P.O/
>
1 � �

2 � �
with O.k/ memory complexity (formally summarized
as Theorem 1) and then implement it to a full
streaming algorithm, which obtains a subset S satisfying

B.S/C P.S/

mB � B.O/CmP � P.O/
>

1 � �

2 � �
� O."/ with

O
�
1

"4
log3

�
1

"

�
log

.2 � �/k

.1 � �/2

�
memory complexity

for the .mB ; mP /-monotone BP maximization under the
one-pass streaming scenario (formally summarized as
Theorem 2).
� Then, we provide a greedy-based algorithm that

obtains a set S obeying
B.S/C P.S/

mB � B.O/CmP � P.O/
>

1 � �

2 � �
� O."/ for the more general fair .mB ; mP /-

monotone BP maximization problem (formally
summarized as Theorem 3).

� We provide a streaming algorithm that obtains a set

S obeying
B.S/CP.S/

mB �B.O/CmP �P.O/
>

.1��/4

.2�2�C�2/2
�

O."/ for the fair .mB ; mP /-monotone BP maximization
problem under streaming (formally summarized as
Theorem 4).

Paper organization. Section 2 reviews some
existing related works on BP maximization and
streaming algorithms for submodular maximization
problems. Section 3 presents some basic concepts
of the curvature and monotonicity ratios for the
set functions and formally describes the .mB ; mP /-
monotone BP maximization problem. Section 4
discusses the .mB ; mP /-monotone BP maximization
problem under the streaming model and analyzes
algorithms that work for semi (see Section 4.1)
and full (see Section 4.2) streaming settings in
respectively. Section 5 studies a more general .mB ; mP /-
monotone BP maximization problem with fairness
constraints. In particular, Section 5.1 presents a greedy-
based algorithm, while Section 5.2 provides a streaming
algorithm for the discussed problem. Finally, Section 6
finally gives a conclusion for our work.

2 Related Work

Numerous studies on BP maximization have been
conducted. In this section, we present a quick
overview of the literature. The offline problem
maxS2N;S2I B.S/ C P.S/ for k-cardinality and p-
matroid constraints has been well-studied, starting
with greedy algorithms based on curvatures[3]. Recent
studies have obtained new bounds on the approximation
ratios via distorted greedy methods[12, 13]. Submodular
maximizations with various constraints are popular
phenomenon with algorithms developed for submodular
functions defined on integer lattices[14–16]. In addition,
an extended BP maximization of the sum of a DR
submodular plugging a supermodular function on a
lattice has been proposed in a previous work[17].

Streaming algorithms for submodular optimization
problems with efficient and low-memory requirements
have been extensively studied. In the streaming scenario,
the inputs of elements are sorted in an arbitrary sequence,
and the algorithm is only allowed to visit the stream one
by one with respect to this sorted order. The aim of the
streaming setting is to find a solution with a fairly high
quality while using a limited memory that is usually
independent of the input size. Often, the algorithm
makes one (single) pass if it is allowed to visit the stream
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once. Indeed, single-streaming algorithms have been
proposed for the submodular problem with a variety of
constraints, such as knapsack[18, 19], matroid[20, 21], and a
more general independence system[22–24]. In other cases,
the algorithms are allowed to visit the input multiple
times, which are summarized as multi-pass streaming
algorithms. Boosting multi-pass streaming algorithms
are widely popular approaches, with algorithms
developed for submodular maximization[25, 26], and
beyond. Online model is related to our streaming
model in which elements are read online and the
algorithm is required to maintain a feasible solution
without considering the space requirement. Some studies
have investigated online submodular maximization[27–29].
Recently, BP maximization under the online model has
also been studied[30].

3 Preliminary

We begin with this section by investigating the notations
to be used throughout this paper. Let N be an element
ground whose size may not be accessed in advance. For
any G: 2N ! RC, we denote by G.ejS/ D G.S [

feg/ �G.S/ the marginal contribution of adding e to S
according to G. We are motivated by the monotonicity
ratio that measures the loss of adding elements to a set
and restate it as below.

Definition 1[2] Given any non-negative set function
G: 2N ! RC, the monotonicity ratio of this function is
defined as the scalar mG 2 Œ0; 1�, such that,

mG D min
S�T�N

G.T /

G.S/
(2)

We assume G.T /=G.S/ D 1 whenever G.S/ D 0.
Additionally, the value of mG is exactly equal to 1 if the
set function G is monotone. A non-negative set function
is defined as m-monotone if its monotonicity ratio is at
least m. We introduce an extended total curvature of
the mB -monotone submodular function by combining
the total curvature of the non-decreasing submodular
function[31] and the abovementioned monotonicity ratio.

Definition 2 Given any non-negative mf -monotone
submodular function B: 2N ! RC, the total curvature
of this function is defined as

�B D 1 � min
e2N

B.ejN n feg/

B.e/
(3)

Similarly, function P : 2N ! RC is defined as
supermodular if for any pair S � T � N and element
e … T , it holds the inequality P.ejS/ 6 P.ejT /. A
supermodular function P is called as mP -monotone if
it is captured by the monotonicity ratio m. We similarly

obtain an mP -monotone supermodular curvature as
follows.

Definition 3 Given any non-negativemP -monotone
supermodular function P : 2N ! RC, the total
curvature of this function is defined as

�P D 1 � min
e2N

P.e/

P.ejN n feg/
(4)

(mB;mP/-Monotone BP maximization problem. In
this model, given anmB -monotone submodular function
and an mP -monotone supermodular function, the goal
is to select a subset of size at most k, such that the
summarized utility B.S/ C P.S/ is maximized. We
formally state the problem as follows:

arg max
S�V;S2I

fB.S/C P.S/g (5)

where function B is non-negative mB -monotone and
submodular, and function P is non-negative mP -
monotone and supermodular.

4 (mB, mP)-Monotone BP Maximization
under Streaming

In this section, we present a threshold-based algorithm
for the .mB ; mP /-Monotone BP maximization problem
under the streaming setting. Recall that in this model,
the element ground set N cannot be initially saved,
and the elements are released one by one in a stream.
Additionally, we are given two non-negative mB -
monotone submodular and mP -monotone supermodular
functions. The goal is to find a high-quality solution
S of size at most k that maximizes B.S/ C P.S/,
while consuming less memory than what is necessary
for storing the entire stream. Let � D �P for clarity in
the following sections. The properties of the algorithm
we provide are listed as the following theorem.

Theorem 1 Assume we have access to the optimum

threshold value � D
1

k
�
1 � �

2 � �
.mBB.O/CmPP.O//

where O denotes an optimal solution to the .mB ; mP /-
monotone BP maximization problem, then Algorithm 1
gets a solution set S obeying

B.S/C P.S/

mB � B.O/CmP � P.O/
>
1 � �

2 � �
:

4.1 Threshold-based algorithm

The formal algorithm we utilize to show Theorem 1 is
listed as Algorithm 1. This algorithm starts with an
empty set S D ∅. For any arriving element e D et from
the stream, we instantiate a common threshold value as

� D
1

k
�
1 � �

2 � �
.mB � B.O/CmP � P.O//:
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Algorithm 1 Threshold-based algorithm
Input: Stream N D fe1; e2; : : : ; eng, integer k, mB -monotone

submodular function B , and mP -monotone supermodular
function P

1: Set � D
1

k
�
1 � �

2 � �
.mB � B.O/CmP � P.O// and S  ∅

2: while every element arriving e from stream N do
3: if jS j < k and B.ujS/C P.u/ > � then
4: S  S C e

5: end if
6: end while
7: return S

If the size of the current solution is less than k and
the extended marginal contribution B.ejS/ C P.e/ of
element e with respect to S is larger than � , then we add
the element e to S . The algorithm returns the solution
S after the stream is entirely visited, or the cardinality
constraint is encountered.

We start the analysis of the threshold-based algorithm
with the two cases of jS j D k and jS j < k, respectively.
Our first step toward proving Theorem 1 starts with the
lemma below, which gives a lower bound of B.S/ C
P.S/ by the optimum threshold.

Lemma 1 If jS j D k, then we have
B.S/C P.S/ > k�:

Proof In this case, without loss of generality,
assume S D fe1; e2; : : : ; ekg were ordered by to their
visited order and set S i D fe1; e2; : : : ; eig as the first
i added elements of S . Additionally, we set S0 D ∅.
Thus we have the following inequality:

B.S/C P.S/ D

kX
iD1

fB.ei jS
i�1/C P.ei jS

i�1/g >

kX
iD1

fB.ei jS
i�1/C P.ei /g > k�;

where the first inequality directly follows by the
supermodularity of P . �

Then, we study the second case of jS j < k and also
obtain a lower bound on the value of B.S/C P.S/ by
the optimum.

Lemma 2 If jS j < k, then we have

B.S/C P.S/ > mB � B.O/CmP � P.O/ �
k�

1 � �
:

Proof Consider any e D et 2 O n S . We have
B.et jSt /CP.et / < � because of jS j < k, and e is only
visited, where St denotes the state of S at the time of
visiting et . Then, summing up the above inequalities for

all e 2 O n S , we yield
mB � B.O/ � B.S/CmP � P.O/ 6

B.OjS/CmP � P.O/ 6

P.S/C
X
e2OnS

�
B.ejS/C P.ej.S [O/feg/

�
6

P.S/C
X
e2OnS

�
B.ejS/C

P.e/

1 � �

�
6

P.S/C
k�

1 � �
:

Rearranging the above inequality implies that

B.S/C P.S/ > mB � B.O/CmP � P.O/ �
k�

1 � �
:

Thus, the proof is finished. �
Combining the two cases discussed above, we

derive the lower bound of B.S/ C P.S/, as stated in
Theorem 1.

Proof of Theorem 1 Based on the previous lemmas
we drive the following inequality as follows:

B.S/C P.S/ >

min
�
k�;mB � B.O/CmP � P.O/ �

k�

1 � �

�
:

To obtain the best lower of the above inequality we set

k� D mB � B.O/CmP � P.O/ �
k�

1 � �
;

and obtain

� D
1

k
�
1 � �

2 � �
.mB � B.O/CmP � P.O//: �

4.2 Full threshold-based algorithm

The previous threshold-based algorithm requires
knowledge of the curvature �, as well as monotonicity
ratios mB and mP . However, it is very rare that the
precise values of the above parameters are known in
practice. UnlessB andP are non-decreasing monotones,
then mB D mP D 1. If g is modular then � D 0,
and if P is fully curved, then � D 1. Often, the
parameters mB ; mP , and � are data dependent and only
a crude common lower bound L 6 minf�;mB ; mP g is
known. Thus, we develop a meta algorithm that guesses
the values of mB ; mP , and �, as well as .�;mB ; mP /-
sweep, listed as Algorithm 2. We now discuss the
process of handling the last challenge of estimating
the value of � . Indeed, we provide a full threshold-
based algorithm, listed as Algorithm 3, and then obtain
our main result by combining with the .�;mB ; mP /-

sweep. Denote H.�/ D 1 � �

2 � �
for clarity. We conclude

that
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Algorithm 2 .���, mB, mP)-sweep
Input: Utilities B and P , Algorithm A, lower bound L, " 2

.0; 1/

1: Set Si;j;r  ∅ for any i; j; r , T  d1
"

ln. 1
maxf";Lg /e

2: for i D 0 W T do
3: �  .1 � ı/i

4: for j D 0 W T do
5: mB  .1 � ı/j

6: for r D 0 W T do
7: mP  .1 � ı/r

8: Si;j;r  A.�;mB ; mP /
9: end for

10: end for
11: end for
12: return S  arg maxi;j;rfB.Si;j;r /C P.Si;j;r /g

Algorithm 3 Full threshold-based algorithm
Input: Stream N D fe1; e2; : : : ; eng, integer k, mB -monotone

submodular function B , and mP -monotone supermodular
function P

1: Set M0  0

2: while every element arriving e from stream N do
3: Mt  maxfMt�1;H.�/ � .mB � B.e/CmP � P.e//g
4: Ot  

n
.1C "/i j.1C "/i 2

h
Mt

.1C"/K ;
Mt

.1��/H.�/

io
5: Delete the threshold values and set S� with � < Mt

.1C"/K
6: for � 2 Ot do
7: if � is a new instantiated threshold then
8: S�  ∅
9: end if

10: if jS� j < k and B.ejS� /C P.e/ > � then
11: S�  S� C e

12: end if
13: end for
14: end while
15: return S D arg max� fB.S� /C P.S� /g

maxu2N

�
fH.�/ � .mB � B.e/CmP � P.e//

�
6

H.�/ � .mB � B.O/CmP � P.O// 6
K

1 �K
�maxu2N

�
fH.�/�.mB � B.e/CmP �P.e//

�
;

where the first inequality held by e is a candidate to be
O for any e 2 N , and the second inequality is held by
the submodularity of B and the supermodular curvature
of P . Consequently, given any pair mB and mP , if one
has acquired to this maximum singleton value M D

maxu2V H.�/ � .mBB.e/ C mPP.e//, then we could
guess the threshold value � by a geometric series with

the form of .1 C "/i among the range of
� M
.1C "/k

;

M
1 � �

�
. It follows that there must exist a threshold Q�

satisfying

k Q� 6 H.�/ � .mB � B.O/CmP � P.O// 6 .1C "/k Q�;
and the amount of guesses is bounded by

log1C"
.1C"/�k �maxe2N fH.�/�.mB �B.e/CmP �P.e//g
.1��/�maxe2N H.�/�.mB �B.e/CmP �P.e//

;

which is bounded by O
�
1

"
log

k

1 � �

�
. Indeed, the

value maxe2V H.�/ � .mBB.e/CmPP.e// also cannot
be accessed to us in advance. LetMt D maxe2N 0H.�/�
.mBB.e/CmPP.e// be the maximum singleton value
at the current moment, where N 0 denotes the element
set until current time t . We can denote the value of

1

.1C "/k
maxe2N 0H.�/ � .mB � B.e/C mP � P.e// as

the lower bound for threshold � . Moreover, utilizing the
single element value seen so far, a proposition is stated
below for the guessing process.

Proposition 1 Assume we have access to a

threshold � >
1

H.�/
� maxe2N 0H.�/ � .mB � B.e/ C

mP � P.e//, then the elements of N 0 must not be added
to S with respect to � .

We conclude that it is sufficient to explicitly maintain
a copy of Algorithm 1 for values of � that fall within

the range
� Mt

.1C "/ � k
;

Mt

.1 � �/H.�/

�
: The memory

complexity is stated as

log1C"

1
.1��/H.�/ �maxe2N 0fH.�/�.mB �B.e/CmP �P.e//g

1
.1C"/�k

�maxe2N 0fH.�/�.mB �B.e/CmP �P.e//g
;

which is at most O
�
1

"
log

k

.1 � �/H.�/

�
. We now

conclude the main results using the theorem below.
Theorem 2 Assume that some " 2 .0; 1/,

.�;mB ; mP /-sweep requires at most O
�
1

"3
log3

�
1

"

��
calls to Algorithm 3 and returns a set S obeying

B.S/C P.S/

mB � B.O/CmP � P.O/
>
1 � �

2 � �
�O."/:

Moreover, the memory complexity can be bounded by

O
�
1

"4
log3

�
1

"

�
log

.2 � �/k

.1 � �/2

�
.

Proof As the approximation guarantee mainly
follows the proof of Theorem 1, we omit it here. Recall
that the total amount of guesses in Algorithm 2 is at most

O
�
1

"3
log3

1

"

�
. Additionally, we need a maximum of

O
�
1

"
log

k

.1 � �/H.�/

�
memory to guess the desired

threshold value for any given �, mB , and mP . Thus,
the total memory complexity can be upper bounded by

O
�
1

"4
log3

�
1

"

�
log

.2 � �/k

.1 � �/2

�
. �
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5 (mB, mP)-Monotone BP Maximization in
Fairness

In this section, we introduce a fair .mB ; mP /-monotone
BP maximization problem and provide an extended
distorted fair greedy for this problem. Recall that in
our model, we assume there is a finite element partition
of N , i.e., N D ]qiD1Pi . For any part i 2 f1; 2; : : : ; qg,
there exist upper and lower bounds denoted by ui and `i ,
respectively. Let I D fS � V : jS j 6 k and for any i ,
jS \ Pi j 2 Œ`i ; ui �g. The goal is to find a subset S � V
with S 2 I , such that B.S/C P.S/ is maximized.

5.1 Fair .mB, mP/-monotone BP maximization

We conclude that there may be certain violations of
the fairness constraints when the global k-cardinality
is reached. This is because the elegant greedy justly
selects elements during the iterations with maximum
marginal values by enumerating over the ground set. A
novelty concept of an extendable set has been introduced
in a previous work[32], which we restated it as below.
A set S is extendable if it is a subset S � S 0 of some
feasible solution set S 0 2 I . We now restate the useful
property as follows.

Proposition 2 A set S is extendable if and only if
for any Pi , it holds that
� jS \ Pi j 6 ui and
�
P
i maxfjS \ Pi j; `ig 6 k.

The formal algorithm, listed as Algorithm 4, starts
with S D ∅ and then selects at each iteration element
with the maximum distorted marginal value from an
extendable set U . We denote by U D fe 2 N :
S [ feg is extendableg the extendable set and denote
by B.ejS/ C ˛ � P.e/ the distorted marginal value of
adding e to S .

A mapping constructed from the returned solution set
to the optimum is presented as follows.

Lemma 3 There exists a mapping between S D

Algorithm 4 Distorted-fair-greedy
Input: Ground set N D fe1; e2; : : : ; eng, integer k, mB -

monotone submodular function B , and mP -monotone
supermodular function P

1: Set S  ∅
2: while jS j < k do
3: U  fe 2 N : S [ feg is extendibleg
4: S  S C arg maxe2U fB.ejS/C ˛ � P.e/g
5: end while
6: return S

fe1; e2; : : : ; ekg andO D fo1; o2; : : : ; okg satisfying the
following conditions:
� for any i , both ei and oi are partitioned into the

same group;
� or P Œei � ¤ P Œoi �, where P Œe� denotes the part of

e belonging to, then jS \ P Œei �j > jO \ P Œei �j and
jS \ P Œoi �j < jO \ P Œei �j.

Proof One can recursively construct the mapping
as follows, matching ei and oi together as long as they
belong to the same part. Once the remaining elements
belong to different parts, they are then matched randomly.

�
Following the mapping process described above, it

can be concluded that S n feig [ foig is feasible for any
i . Next, we obtain the main results, as shown below.

Theorem 3 Given some " 2 .0; 1/ and let ˛ D
2

2 � �
. Then, .�;mB ; mP /-sweep requires a maximum

of O
�
1

"
log

�
1

"

��
calls to Algorithm 4 and returns a

set S obeying
B.S/C P.S/

mB � B.O/CmP � P.O/
>
1 � �

2 � �
�O."/:

Proof Assume we obtain the true supermodularity
curvature � in advance. Then, we have the following
inequalities:

B.S/C ˛ � P.S/ >

kX
iD1

fB.ui jSi�1/C ˛ � P.ui /g >

kX
iD1

fB.oi jSi�1/C ˛ � P.oi /g >

kX
iD1

fB.oijSk[Oi�1/C˛.1��/P.oi jSk[Oi�1/g>

fmB �B.O/�B.S/C˛.1��/.mP �P.O/�P.S//g:

The first inequality follows by the supermodularity, the
second follows the extensibility of Si�1 [ foig, the third
combines the definitions of submodularity and �, and
the last one obtains by the monotonicity ratios. Setting

˛ D
2

2 � �
, we obtain

B.S/C P.S/

mB � B.O/CmP � P.O/
>
1 � �

2 � �
:

Moreover, we only guess a nearly approximate value of
� in at most O.1

"
log

�
1
"

�
/ calls. Thus, the theorem is

considered a desirable tool for this process. �
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5.2 Fair .mB, mP/-monotone BP maximization
under streaming

In this section we present our algorithm for the fair
.mB ; mP /-monotone BP maximization in the streaming
setting and then prove its approximation guarantee below.
Our algorithm mainly follows a previously reported
framework[32] and is formally described as Algorithm 5.

We also are motivated by the extendable subsets of
the stream constructing a matroid system. Note that
the remaining constraints would give rise to a partition
matroid by removing the lower-bound constraints. We
assume that there are efficient streaming algorithms
for the .mB ; mP /-monotone BP maximization under
a matroid constraint, which we could use in a black-
box style. We denote by A the streaming algorithm
for the above .mB ; mP /-monotone BP maximization
problem. We conclude that the solution produced by
Algorithm A should violate the lower-bound constraints.
Otherwise, we simply return the solution as the output,
after which we augment the solution to a feasible one
by using “backup” elements obtained during the stream
processing. We similarly obtain a claim for the fair
.mB ; mP /-monotone BP maximization.

Lemma 4 We denote by A the streaming algorithm
for the .mB ; mP /-monotone BP maximization under a
matroid constraint. Then we find a streaming algorithm
for fair .mB ; mP /-monotone BP maximization with the
same approximation ratio and memory usage as A.

Applying the above lemma to Algorithm 6, we obtain
the following result.

Theorem 4 Given some " 2 .0; 1/ and let ˛ D
1C 1

.1��/2
. Then, .�;mB ; mP /-Sweep requires at most

O.1
"

log
�
1
"

�
/ calls to Algorithm 5 and returns a set S

obeying

Algorithm 5 Distorted-fair-stream
Input: Stream N D fe1; e2; : : : ; eng, integer k, mB -monotone

submodular function B , and mP -monotone supermodular
function P

1: Set SA  ∅ and Bi D ∅ for all i 2 f1; 2; : : : ; qg
2: for every element arriving e belonging to part Pi do
3: Fed e to Algorithm A
4: if jBi j < `i then
5: Bi  Bi C e

6: end if
7: end for
8: SA  solution of Algorithm A
9: S  SA augmented with elements in sets Bi

10: return S

Algorithm 6 Local search under stream
Input: Stream N D fe1; e2; : : : ; eng, mB -monotone

submodular function B , mP -monotone supermodular
function P , independence oracle for matroid system .N; I /,
and ˛ D 1C 1

.1��/2

1: Set S0  ∅, t  1

2: for every element arriving e D et from the stream N do
3: if St�1 C et 2 I then
4: St  St�1 C et
5: else
6: Set Ct as the single cycle in St�1 C et
7: Set e0t 2 arg mine0t2Ct�et H.e

0
t : St�1/

8: end if
9: if H.et jSt�1/ > ˛H.e0t W St�1/ then

10: Set St  St�1 C et � e
0
t

11: else
12: Set St  St�1
13: end if
14: end for
15: return Sn

B.S/C P.S/

mB �B.O/CmP �P.O/
>

.1 � �/4

.2�2�C�2/2
�O."/:

We begin with a local search based streaming
algorithm for .mB ; mP /-monotone BP maximization
under a matroid constraint, which appears as
Algorithm 6. Next, we present some necessary
terminologies as follows. LetH.S/ D B.S/CP.S/ for
any S � N . Notably, N is ordered in an arbitrary order
in our streaming setting. We also introduce �.H; S; e/ D
H.ejS 0/ as the incremental value of encountering e
with respect to S where S 0 D fs 2 S : s < eg

denotes the state of S before e. It follows that H.S/ DP
s2S �.H; S; e/ and .1 � �/�.H; T; e/ 6 �.H; S; e/

for any pair S � T � N . Additionally, it holds
.1��/�.HT ; S; e/ 6 �.H; S[T; e/ for any S; T � N .
We denote by A the set of all elements that have ever
appeared in the solution of Algorithm 6, i.e., A D
[ntD0St . For any e D et 2 N , we denote by S�t
and SCt the states of S before and after et is processed,
respectively. Obviously, S�t D SCt if the element et
is not accepted by the algorithm. We further denote
ıt D H.S

C
t /�H.S

�
t / as the contribution of processing

element et and then ıt D 0 for any et 2 N n A and
H.S/ D

P
et2N

ıt . Then, we obtain a lower bound for
the above contribution by the following lemma.

Lemma 5 For any et 2 A, we have
ıt > .1 � �/�.H; S

�
t ; e

0
t /:

Proof Given that e D et 2 A is replaced by e0t
via Algorithm 6 and ˛ D 1 C .1 � �/2, then it holds
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that H.et jS�t / > ˛�.H; S
�
t ; e

0
t /. Let Z D S�t � e

0
t D

SCt C et . Thus,
ıt D H.Z C et / �H.Z C e

0
t / >

.1 � �/H.et jS
�
t / �H.e

0
t jZ/ >

.1 � �/H.et jS
�
t / �

�.H; S�t ; e
0
t /

1 � �
>

.1 � �/�.H; S�t ; e
0
t /:

Then the lemma follows. �
For any d D dt 2 AnS , we denote by eQt D e.dt / the

element that d has been swapped for aid dt 2 SCQt n S
�
Qt

.
Moreover, let �.dt / D �.H; S�Qt ; dt /. Then, the summed
marginal values of �.�/ in A n S can be bounded below.

Lemma 6 X
dt2AnS

�.dt / 6
H.S/

1 � �
:

Proof We have the following inequality:X
dt2AnS

�.dt / D
X
u2U

�.H; S�
Qt
; dt / 6

X
u2U

�.H; S�
Qt
; dt / 6

ıQt
1 � �

D
H.S/

1 � �
:

Then, the lemma follows. �
Lemma 7 We now bound the value of H.A/ based

on the above lemma. We have the following inequality:

H.A/ 6

�
1C

1

.1 � �/2

�
H.S/:

Proof Note that
H.A/ �H.S/ D

X
d2AnS

�.HS ; A; d/ 6

X
dt2AnS

�.dt /

1 � �
6

H.S/

.1 � �/2
;

where the last inequality is obtained by Lemma 6. �
For any feasible T 2 I , there exists an exchange

lemma between T and A n S . We summarize this as the
following lemma.

Lemma 8 There is an injection � W T ! S [ ∅
that satisfies the following conditions:
� Each s 2 S appears in �.t/ at most a single time

choice of t 2 T ;
� For any t 2 T , it holds

�.H; S�t ; e
0
t / 6 �.H; S; �.et //;

where �.et / 2 S .
Then by setting T D O , where O denotes an optimal

solution for this .mB ; mP /-monotone BP maximization
under a matroid constraint. We now bound B.S/C

P.S/.
Proof of Theorem 4 Consider any et 2 O n A,

and assume �: O ! A is the mapping produced by

Lemma 8. Then we getX
et2OnA

�.H; S�t ; e
0
t / 6X

et2OnA

�.H; S; �.et // 6X
s2S

�.H; S; �.et // 6 H.S/:

In addition, we have
mBB.O/CmPP.O/ 6 H.O [ A/ 6

H.A/C
1

1 � �

X
et2OnA

H.et jA/ 6

H.A/C
1

.1 � �/2

X
et2OnA

H.et jS
�
t / 6

H.A/C
1C .1 � �/2

.1 � �/4

X
et2OnA

�.H; S�t ; e
0
t / 6

.2 � 2� C �2/2

.1 � �/4
H.S/:

Thus the proof is completed. �

6 Conclusion

In this work we first provided a threshold-based
streaming algorithm with a performance guarantee
for the .mB ; mP /-monotone BP maximization under
streaming. Then, we studied a general .mB ; mP /-
monotone BP maximization with fairness constraints
and presented a fair greedy-based algorithm. Finally,
we considered the fair .mB ; mP /-monotone BP
maximization under streaming and provided a local
search based streaming algorithm with computable
guarantees. In our future work, we will pay attention to
the settings of .mB ; mP /-monotone BP maximization
with more complex constraints in practice.
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