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Generating Markov Logic Networks Rulebase Based on
Probabilistic Latent Semantics Analysis

Shan Cui, Tao Zhu, Xiao Zhang, Liming Chen, Lingfeng Mao, and Huansheng Ning�

Abstract: Human Activity Recognition (HAR) has become a subject of concern and plays an important role in daily

life. HAR uses sensor devices to collect user behavior data, obtain human activity information and identify them.

Markov Logic Networks (MLN) are widely used in HAR as an effective combination of knowledge and data. MLN

can solve the problems of complexity and uncertainty, and has good knowledge expression ability. However, MLN

structure learning is relatively weak and requires a lot of computing and storage resources. Essentially, the MLN

structure is derived from sensor data in the current scene. Assuming that the sensor data can be effectively sliced

and the sliced data can be converted into semantic rules, MLN structure can be obtained. To this end, we propose a

rulebase building scheme based on probabilistic latent semantic analysis to provide a semantic rulebase for MLN

learning. Such a rulebase can reduce the time required for MLN structure learning. We apply the rulebase building

scheme to single-person indoor activity recognition and prove that the scheme can effectively reduce the MLN

learning time. In addition, we evaluate the parameters of the rulebase building scheme to check its stability.

Key words: Markov Logic Network (MLN); structure learning; rulebase construction; probabilistic latent semantics

1 Introduction

As a typical algorithm combining data and drive, Markov
Logic Network (MLN) is also used by many people in
Human Activity Recognition (HAR) to deal with some
uncertain or complex problems for activity recognition
models. However, MLN structure learning requires a
large amount of memory and computational resources. It
also has a slightly lower efficiency than some advanced
neural network models. Besides, MLN rarely uses
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real-time data streams to construct activity recognition
models[1]. Effective construction of a real-time MLN
structure is, therefore, an urgent problem to be solved[2].
The MLN structure is composed of a set of first-order
logical rules[3]. If we build the first-order logical rulebase
required by MLN in the current scenario, we can save
the time required for learning the ruleset for MLN and
improve the MLN learning efficiency.

Essentially, many environmental sensors are deployed
in the indoor environment, and the sensors present
activities performed by people in a continuous flow. In
the current scenario, the MLN structure is derived from
the environment sensor data. It is a first-order logic
representation of all acquired indoor activities. Each
activity comprises a series of sequential actions captured
using sensors deployed in the room, so that a piece
of data over a period represents an activity. This way,
we can obtain an MLN structure by assuming we can
effectively slice sensor data and translate the fragments
into semantic rules. However, there is no clear boundary
between activities; there is even some overlapping.
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Therefore, we need to segment the continuous sensor
data stream into information fragments.

Accurate representation of a unique activity based
on dense environment sensors is a critical issue for
segmenting sensor data. We therefore propose a semantic
rulebase building scheme based on probabilistic latent
semantic analysis (see Fig. 1). Probabilistic latent
semantic analysis can convert text collections into text-
word co-occurrence data. Intuitively, words with similar
semantics and texts with similar semantics will be
clustered into the same soft category, and such a soft
category represents the topic. The semantic rulebase
building scheme is to construct a ruleset that conforms
to the current indoor characteristics based on the sensor
dataset. The semanticized text of the sensor dataset
contains multiple activity classes, and each activity class
is composed of various activity atoms. Active atoms can
be observed from text collections, while active categories
are latent and cannot be found in the text. Therefore, we
adopt probabilistic latent semantic analysis to build a
semantic rulebase. This scheme solves three critical
problems of sensor data segmentation and semantic
rulebase building:
� Cutting the data stream into active segments

according to sensor deployment location and activity
characteristics;
� Converting semantics based on sensor features, and

improving semantic segments using latent probabilistic
semantic algorithms;
� Using prior knowledge to establish the mapping

between semantic fragments and activity categories and
constructing the semantic rulebase.

Crucially, the semantic rulebase is not only widely
applicable to the MLN structure learning in different
activity scenarios, but can also be used in other
probabilistic semantic algorithms.

The rest of this paper is organized as follows:
Section 2 briefly reviews data segmentation techniques
and algorithms for activity identification. Section 3
proposes a semantic rulebase building scheme based
on probabilistic latent semantic analysis. Section 4
presents activity recognition as an example and verifies
the feasibility and stability of the semantic rulebase
scheme. Section 5 summarizes the whole paper.

2 Related Work

2.1 MLN structure learning

In 2009, Domingos and Lowd[3] proposed a probabilistic
semantic algorithm, MLN, a data-knowledge-driven
approach. MLN learning mainly includes parameter
learning and structure learning. Under the premise of
the network structure, MLN needs to further learn and
optimize the model parameters; this process is called
parameter learning. MLN structure learning refers to
learning the optimal or suboptimal network structure
from the database. Specifically, MLN structure is the
set of the knowledge network’s first-order logic rules
Fi . And structure learning refers to the generation of
ruleset F for any world x given some constants. For
any possible world x, a probability distribution of the
structure can be expressed as

P.X D x/ D
1

Z
exp.

X
i

wini .x// D
1

Z

Y
i

�i .xi /
ni .x/

(1)

Fig. 1 Semantic rulebase building scheme based on probabilistic latent semantic analysis.
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where ni .x/ is the number of true groundings of Fi
in x; xi is the state (truth value) of the predicate
appearing in Fi ; Z is the partition function, Z DP
x2X

Q
k �k.xfkg/; and �k.xk/ D ewk , the calculation

of P.X D x/ is based on the current vector weighted
set w.

MLN is widely used in activity recognition because it
can deal with uncertain information and clearly express
the model’s knowledge[3]. Chahuara et al.[4] used sensor
data to extract user attributes, such as residents’ voice,
location, and mood, to set sliding windows according
to user attributes. They then used MLN to create a
rule classification model for probabilistic reasoning. In
2013, Chakraborty et al.[5] established a set of logical
models of domain-specific knowledge through MLN
knowledge representability. Gayathri et al.[6] proposed
an MLN-based layering method that depends on action-
based factors, such as object, location, time, and duration.
Activity identification is based on the priority of factors
associated with each layer. Next, Gayathri et al.[7]

combined probabilistic reasoning with representation
domain ontology to enhance ontology-based activity
recognition using MLN probabilistic reasoning. They
argued that the data obtained from sensors are inherently
uncertain and that the uncertainty of the mapping
ontology will not produce good accuracy within an
augmented reality environment. Honda et al.[8] took
the sensor value as input and used MLN to express
the association rules between sensors and activities
as soft logic expressions. MLN estimation activities
and user feedback were then used to achieve better
recognition accuracy. Cui et al.[9] proposed an MLN
activity recognition model based on continuous learning
to improve the learning ability of MLN in 2022.

2.2 Data segmentation

A lot of research has been done on data segmentation
(user’s state and environment at a certain point in time)
to map active labels to sensor data[1]. Data segmentation
refers to splitting the logically unified data into smaller
and independently managed physical units for storage
to facilitate reconstruction, reorganization, and recovery.
There are many segmentation methods, roughly divided
into horizontal segmentation and vertical segmentation.
Horizontal splitting entails splitting tuples of global
relationships into subsets called data fragments. In data
fragmentation, data may be aggregated due to some
common properties (e.g., geography and affiliation).
Typically, data fragments in a relationship are disjoint.

Vertical splitting divides global connections into data
fragments based on attribute groups (longitudinal). Data
in data fragments may need aggregation due to the
ease of use or common access. In general, vertical
data fragments in a relationship overlap only in some
fundamental values, while other attributes are disjoint[10].
Sensor data cutting is horizontal cutting in activity
recognition. Many activity recognition studies mostly
use a sliding window to cut data.

In the sliding window concept, the time window is
used to perform the segmentation of sensor data flow[1].
The segmentation methods can be roughly divided into
static sliding[11] and dynamic sliding[12] time windows.
Chua et al.[13] proposed a knowledge-driven model based
on hidden Markov to segment sensor data streams. They
use variable window lengths to move through a series of
observations. The main disadvantage of this approach
is that it requires a preexisting data set to determine
the optimal size of the time window for splitting the
data and constructing activity rules. Riboni et al.[14]

proposed a fixed time window of one minute for splitting
the data stream and selecting several sets of sensor
data streams per minute. The model activity rules are
based on the current dataset and have poor universality.
Additionally, the use of a fixed-size time window may
result in significant computational overhead.

In addition to considering the static or dynamic nature
of the time window, researchers also need to analyze
the probability of time windows overlapping. In case of
overlapping time windows, sensor data can be shared by
two or more time windows. In the absence of overlapping
time windows, sensor data of each time window is
exclusive to itself[15]. Tapia et al.[16] set different values
for the time windows during initialization. Once a
time window is active, its length cannot be dynamically
modified. Fixed sliding does not divide between sensors,
resulting in overlapping time windows. Hong et al.[17]

used the concept of time continuity in sensor data and
location context for data segmentation. This method
works well when continuous activity takes place in
different locations. Okeyo et al.[12] proposed a tree
hierarchical activity model in which leaf activity is
the most specific description. The time window is
dynamically adjusted until the capture leaf activity
satisfies the activity description. Segmentation fails if
the window cannot determine the duration of the activity.

To use the processed data for HAR, researchers
use the current mainstream methods for learning
activity rules, building activity models, and completing
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activity identification. Yang et al.[18] used the divide-
and-conquer strategy to divide dynamic and static
activities and adopted a neural network as the classifier
of activity recognition. They proposed an effective
feature subset selection method to ensure the ability
to learn and recognize complex activities. Anguita
et al.[19] proposed a multiclass activity recognition
model based on a Support Vector Machine (SVM).
Compared to traditional SVM, this model develops
a more sustainable activity construction model while
maintaining similar accuracy. Qi et al.[20] proposed
a recurrent neural network model based on semantics.
The model can extract different spatiotemporal features
and capture relationships between populations. Wang
et al.[21] proposed a sensor-based incremental learning
approach, which is a fuzzy clustering algorithm based
on a probabilistic neural network. The algorithm
balances incremental learning ability and recognition
accuracy. Xie et al.[22] proposed a spectrum-sensing
deep learning algorithm based on a convolutional neural
network. Compared with model-based spectrum sensing
algorithms, their proposed deep learning method is data-
driven, combining both current and historical data.

3 Rulebase Building Scheme

This section proposes a semantic rulebase building
scheme based on probabilistic latent semantic analysis,
including dataset segmentation, semantization, and
rule modification, creating matches between activity

categories with rulesets.

3.1 Dataset segmentation

Sensor dataset S D ft1; t2; : : : ; tlg is collected by
environmental sensors deployed indoors, and the
sensor set is s D fs1; s2; : : : ; smg. S is a discrete
nonquantitative index, which only records the sensor
trigger state. We need to transform the sensor dataset into
discrete quantitative indicators for easy data processing.
The house in which the data was collected was made
into a two-dimensional graph with its boundary as the
coordinate axis. The sensor si has the corresponding
position coordinate .xi ; yi /. We take the actual data
collection scenario as an example. Figure 2 shows
the deployment of the residential environment, and
Fig. 3 shows the sensor deployment of the residential
environment.

As shown in Fig. 3, we not only record the sensor
position, but also divide the indoor activity area, set
as C D fC1; C2; : : : ; Ckg. The categories of human
activities in a given area are limited. Therefore, we
can construct an identifiable and universal activity
categories set A D fA1; A2; : : : ; Ang based on the
sensors deployed indoors. Collected activity data show
that most human activity is concentrated within a single
area, such that once a person moves from one activity
area to another, the type of activity often changes.
Therefore, we use sensor distance to capture user
movement. Suppose that there are any two sensors, si

Fig. 2 Deployment of the residential environment.
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Fig. 3 Sensor deployment of the residential environment.

and sj in the room; we use their straight-line distance
d.si ; sj / to describe the mobile range of the user,

d.si ; sj / D

q
.xi � xj /2 C .yi � yj /2:

Sensor positions are close to each other for sensors in
the same area, while sensors in two different areas have
positions that are far apart. To describe the change of
user activity category more specifically, we select the
two nearest sensor distances in different areas of the
room as the critical value dmin,

dmin.Ai ; Aj / D minsi2Ci ;sj2Cj d.si ; sj /:

If the distance difference between the two sensors
exceeds dmin, it is believed that the activity areas
have been changed, and the activity category has
changed. Based on dmin, we can conduct a rough
segmentation of sensor data, and get fS1; S2; : : : ; Skg,
where Si D fsj g.1 6 j 6 m/. Sensors are used for
recording people’s momentary movements. Some
sensors are repeatedly triggered through engagement
in certain activities. In this way, some redundant data
in the sensor dataset is not conducive to the subsequent
semantic processing. Therefore, we only retain its initial
occurrence data for any sensor sj of Si . If sj appears
again, we need to remove it directly from Si . Thus, Si
only preserves the types of sensors triggered in certain
active areas, arranged in chronological order. And we
obtain a refined sensor dataset S 0 D fS 01; S

0
2; : : : ; S

0
k0
g

.k0 6 k/, where S 0i D fsj g.1 6 j 6 m/.
Because human activities are limited and repetitive,

some of the same elements exist in the dataset S 0. If

S 0i and S 0j are the same and S 0i is realized earlier than
S 0j . In this way, we can select different Si in S 0 and get
the dataset S 00 D fS 001 ; S

00
2 ; : : : ; S

00
k00
g .k00 6 k0; S 00i D

fsj g.1 6 j 6 m//. It is assumed that the activities
in S 00 are different and independent. To find the same
element in S 0, we change the coordinate value of sensor
si to the straight-line distance di from the sensor to the
origin .0; 0/;

di D

q
x2i C y

2
i :

Each type of activity has a different number of sensors.
We choose c, which has the largest number of sensors
in S 00i , as the benchmark, and the other vectors need
to fill 0 to c bits automatically. In this way, we can
find different fS 00i g by calculating the minimized squared
error e of S 00,

e D

k0X
iD1

k0X
jDiC1

kSi � Sj k
2
2:

To some extent, e characterizes the similarity of the
activities in fS 01; S

0
2; : : : ; S

0
k0
g. The smaller the e value,

the higher the degree similarity. e D 0 indicates that the
two activity categories are the same. According to e, we
can find the independent active data fS 001 ; S

00
2 ; : : : ; S

00
k00
g

in fS 01; S
0
2; : : : ; S

0
k0
g.

It is important to note that drawing two-dimensional
axes on the boundaries of the house does not destroy
the original placement of sensors. We define the value
of sensors as the distance between the origin .0; 0/ and
the sensor si .x; y/. If any point in the house is .0; 0/,
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some sensors will be equidistant from .0; 0/. We take the
boundary of the house as the coordinate axis; there will
be no sensors in relation to the coordinate axis symmetry,
reducing the total number of sensors that are equidistant
from .0; 0/.

According to Algorithm 1, data segmentation occurs
through the following three steps:

(1) Use a two-dimensional coordinate system to
transform the sensor dataset into a discrete pointset.

(2) Determine the data segmentation value according
to the active area and the straight-line distance of the
sensor.

Algorithm 1 Sensor distance segmentation algorithm
Input: Dataset S D ft1; t2; : : : ; tlg and set of sensors s D
fs1; s2; : : : ; smg

Output: S 0 D fS 0
1
; S 0
2
; : : : ; S 0

k0
g and S 00 D fS 00

1
; S 00
2
; : : : ; S 00

k00
g

1: for i D 1 to m do
2: Convert sensor trigger state to the corresponding position

coordinate .xi ; yi /;
3: Calculate the sensor distances of the two in different areas:

d.si ; sj / D
p
.xi � xj /2 C .yi � yj /2 .si 2 Ci ; sj 2

Cj /;
4: Select two nearest sensor distance in different areas as the

critical value:
dmin.Ai ; Aj / D minsi2Ci ;sj2Cj d.si ; sj /;

5: end for
6: for i D 1 to l , do
7: d.ti ; tiC1/ D

p
.xi � xiC1/2 C .yi � yiC1/2;

8: end for
9: if d.ti ; tiC1/ > dmin then

10: i D i C 1;
11: j D j C 1;
12: Sj =fThe next position of the previous cut is retained to

tiC1g;
13: else

Sj=fThe next position of the previous cut is retained to
ti g;

14: end if
15: return fS1; S2; : : : ; Skg;
16: for i D 1 to k do
17: Retain its initial occurrence data for any sensor sj of Si ;
18: end for
19: return S 0 D fS 0

1
; S 0
2
; : : : ; S 0

k0
g .k 6 k0/;

20: for i D 1 to k0 and j D 1 to k0 do
21: Change the sensor si D .xi ; yi / to the straight-line

distance di from .xi ; yi / to the origin (0, 0);

22: di D

q
x2
i
C y2

i
;

23: Select the number of sensors in Si with the largest number
c of sensors in S 0 as the benchmark, and the other vectors
need to fill 0 to c bits automatically;

24: e D
Pk0

iD1

Pk0

jDiC1 kSi � Sj k
2
2

;
25: end for
26: return S 00 D fS 00

1
; S 00
2
; : : : ; S 00

k00
g.

(3) Obtain mutually independent datasets by using the
minimum square deviation.

3.2 Semantization and rule modification

A series of human movements are recorded by
sensors deployed indoors hence forming part of the
data information. Dataset S 00 is not associated with
activity category construction. We need to establish the
mapping relationship between sensor information and
activity category with the help of expert knowledge.
Therefore, we need the semantic dataset. Semantization
and rule modification consist of knowledge list
creation, crossregional activity analysis, and potential
probabilistic semantic analysis.

3.2.1 Knowledge list creation
The set of activity categories A D fA1; A2; : : : ; Ang is
an identifiable and highly versatile set for the sensor
based on indoor deployment. We use expert knowledge
to create a simple knowledge list K about A. Simplicity
in this context means that there are at most three active
atoms in A and that A only contains the key actions
associated with the activity. For example,

R D fsink; pot; oatmeal; bowl; gasstoveg

would be the Cooking rule for a real user scenario, and
R.Cooking/ D fpot; gasstoveg

would be the knowledge of Cooking in knowledge list
K. The knowledge list K consists of activity category
set A and ruleset F corresponding to the activity. We
define K as
A DfA1; A2; : : : ; AngI

R DfR1; R2; : : : ; RmgI

Fi DfActive atomset Rj IActivi ty category Aig;

where category Ai is the index of the ruleset R.

3.2.2 Crossregional activity analysis
Previously, we assumed that the user’s activity area
is related to its activity category and only analyzed
activities in a single region. There was no analysis of
crossregional activities. We need to use a knowledge
list K for data integration and semantic analysis of
crossregion activities. Therefore, we need to mark the
activity category Ai with special annotation based on
sensors, and splice S 00 D fS 001 ; S

00
2 ; : : : ; S

00
k00
g to get

S 000 D fS 0001 ; S
000
2 ; : : : ; S

000
k000
g.

The splicing of S 00 occurs over the following three
steps:

(1) Mark area label S 00i in S 00 according to the position
of sensors;
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(2) Find crossregional activity At inK, and determine
the active area Ci and Cj of At ;

(3) Find the elements of S 00i and S 00j in S 00, and splice
them.
3.2.3 Potential probabilistic semantic analysis
Next, we transform independent sensor data S 00 and S 000

into semantic information with the help of prior expert
knowledge. Therefore, we need to deploy the sensor
set s D fs1; s2; : : : ; smg, perform semantic annotation
to generate w D fw1; w2; : : : ; wmg, where wi is the
semantization of sensor si and represents active action
atoms. In this way, S 00 D fS 001 ; S

00
2 ; : : : ; S

00
k00
g and

S 000DfS 0001 ; S
000
2 ; : : : ; S

000
k000
g will be converted to the text

set D D fD1;D2; : : : ;Dk00g and D0 D fD01;D
0
2; : : : ;

D0
k000
g, respectively, and Di and D0i is a set of wi .

To ensure the integrity of text sets D and D0, there is
redundant data in S 00 and S 000 selected by us. Therefore,
we need to delete or modify D and D0 to construct a
ruleset conforming to the current indoor. Text setsD and
D0 are composed of rulesets of different activity classes;
each activity contains several active atoms. Activity
atomswi can be observed from the text set, while activity
categories are latent and cannot be found in the text.
Therefore, we use probabilistic latent semantic analysis
for D and D0 to delete or modify.

The text Di consists of the active atoms in the ruleset
fRig, so we only need to determine the active atomset of
a certain activity class Ai . That is, we need to calculate
p.fwigjAi /. Our ultimate goal is to calculate how many
activities there are in the text and which active atoms are
contained in the activities. Therefore, we use the EM
algorithm to calculate p.AkjDi / and p.wi jAi / in the
text setsD andD0, and iterate over Steps E andM until
they converge (see Algorithm 2).

Step E: Solve Q.�; � .i// and its maximum likelihood
estimation.

p.Ai jwi ;Dj / D
p.wi jAk/p.AkjDj /PK
kD1 p.wi jAk/p.AkjDj /

;

Q.�; � .i// D EAŒlogp.w;Aj�/jw; � .i/� D

EA logp.w;Aj�/p.Ajw; � .i//:
Step M: Solve the maximization ofQ.�; � .i// and get

� .i/C1.

p.wi jAi / D

PN
jD1 n.wi ;Dj /p.zkjwi ;Dj /PM

mD1

PN
jD1 n.wm;Dj /p.zkjwm;Dj /

;

p.AkjDi / D

PN
jD1 n.wi ;Dj /p.zkjwi ;Dj /

n.Dj /
;

� .iC1/ D arg max
�
Q.�; � .i//:

Algorithm 2 Semantization and rule modification algorithm
Input: Initial values of p.wi jAi / and p.Ak jDi /
Output: p.wi jAi / and p.Ak jDi /

1: for i; i 0 D 1 to m, j; j 0 D 1 to k do
2: p.Ai jwi ;Dj / D

p.wi jAk/p.Ak jDj /PK
kD1p.wi jAk/p.Ak jDj /

;

3: Q.�; � .i// D EAŒlogp.w;Aj�/jw; � .i/� D
EA logp.w;Aj�/p.Ajw; � .i//;

4: end for
5: for i D 1 to m do
6: p.wi jAi / D

PN
jD1 n.wi ;Dj /p.zk jwi ;Dj /PM

mD1

PN
jD1 n.wm;Dj /p.zk jwm;Dj /

;

7: p.Ak jDi / D
PN
jD1 n.wi ;Dj /p.zk jwi ;Dj /

n.Dj /
;

8: � .iC1/ D arg max� Q.�; � .i//;
9: end for

3.3 Matching activity categories with rulesets

The sensor information we collected was never mapped
to activity categories in the first and second steps. Since
activity category Ai comprises potential atoms, fAig
can be used to modify the rules but cannot build contact
between fAig and fwig. Therefore, we need to build a
ruleset R0 D fR01; R

0
2; : : : ; R

0
ng with high generality and

establish the mapping of fAig and fwig with prior expert
knowledge. With the help of a ruleset F , we can build
mapping through atomic,

f W R.Di / D ffwigIAig;

which links activity for atoms and categories. The
mapping construction needs to match the action atoms
in the text set fDg and F one by one. If the action atoms
in Di are successfully paired with Fj , Di contains all
the action atoms in Fj .

To build a rulebase, we need to do the following:
(1) If an activity category Ai corresponds to only

one text Dj , the activity category is added directly to
rulebase R;

(2) If the text Di does not find its matching R and
fails to find the corresponding activity category of Di ,
we need to use expert knowledge to determine whether
it corresponds to the existing activity categories. If it
corresponds to an existing activity category, we remove
Di . If this activity category is not defined in F , we need
to manually add Di to build new rules R and F .

(3) If there are multiple rules for the same activity
category, we select text Di with the largest number of
action atoms and modify it. We need to eliminate the
excess active atoms and keep Ri in the rulebase R. The
rest of the text set is deleted.

(4) If textDi has multiple activity categories, we need
to determine whether Di needs to be further cut. If
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multiple activities sequentially generate Di and there
is no crossover of activities, Di needs to be cut further.
If Di occurs across multiple activities, we need to split
Di so that one activity category corresponds to one rule.
Besides, we need to decide whether to update the rules
contained in Di (see Algorithm 3).

Let’s take Eating and Cooking as an example,
R0.Eating/ D fdishes; tableg;

R0.Cooking/ D fpot; gasstoveg:

Let the corresponding text Di we collected according to
the specific scene be in the following:

D1 Dfcabinet; dishes; tableware; tableg;

D2 Dfsink; pot; oatmeal; bowl; gas stoveg;

Algorithm 3 Activity category matching algorithm
Input: R0 D fR0

1
; R0
2
; : : : ; R0ng, A D fA1; A2; : : : ; Ang, and

D D fD1;D2; : : : ;Dk00g

Output: R0 D fR0
1
; R0
2
; : : : ; R0

n0
g.n 6 n0/ and

R D fR1; R2; : : : ; Rt g.t 6 k00/

1: for i D 1 to k00 and j D 1 to n do
2: Match R0 and D one by one;
3: f .Di / D ffwi gIAj g;
4: end for
5: if Di corresponds to only one activity category Aj then
6: return Ri D ffDi gIAj g;
7: end if
8: if Di does not find its matching R0 then
9: Determine whether Di corresponds to existing activity

category;
10: ifDi corresponds to an existing activity category Aj then
11: Remove Di ;
12: else

Add Di to build new rules R and R0;
13: end if
14: end if
15: if exiting multiple rules for the same activity category then
16: Select Di with the largest number of action atoms;
17: Modify Di to D0

i
;

18: Delete the rest of the text set that has the same activity
category;

19: Return Ri D ffD0i gIAj g;
20: end if
21: if Di has multiple activity categories then
22: Whether Di needs to be further cut;
23: if Di does not occur across multiple activities, then
24: Cut Di ;
25: else
26: Split Di that one activity category corresponds to one

rule;
27: Decide whether to update the rules contained in Di ;
28: end if
29: end if

D3 Dfpot; tap; oatmeal; gas stoveg;

D4 Dfdishes; sink; tap; dish soap; cabinetg;

D5 Dfsink; pot; oatmeal; bowl; gas stove;

dishes; sink; tap; dishsoap; cabinetg;

D6 Dfsink; dishes; pot; oatmeal; bowl;

tap; dishsoap; gasstove; cabinetg:
We match text set D with rulebase R one by one to

see whether textDi contains all action atoms of a certain
rule R0i . D1 contains all the atoms in R0.Eating/, so
R1 D fD1IEatingg. D2 and D3 contain atoms of
R0.Cooking/. Since D2 has more atoms than D3, we
exclude D3 and keep D2, so R2 D fD2ICookingg.
Both D5 and D6 contain all atoms of R0.Eating/ and
R0.Cooking/. We just split D5 and D6 in terms of
R1 and R2. D5 has no active crossover, while D6 has
an active crossover. We need to split D5 and D6 into
independent text sets according to R1 and R2. The split
rules are compared with R1 and R2 to see whether R1
and R2 are further updated. D4 does not find a matching
R0, it is analyzed to determine whether it is a new
rule. It is found that D4 is a new rule and we need to
manually add the activity category forD4 and addR3 D
fdishes; sink; tap; dish soap; cabinetI Washing dishesg
to R and R0. Our final rulebase R is as follows:
R1 Dfcabinet; dishes; tableware; tableIEatingg;

R2 Dfsink; pot; oatmeal; bowl; gasstoveICookingg;

R3 Dfdishes; sink; tap; dishsoap; cabinetI

Washingdishesg:

4 Experimental Analysis

In this section, we applied the rulebase building scheme
to single-person indoor activity identification, evaluated
the practicality and stability of the constructed rulebase,
and verified whether the semantic rule library improved
the learning efficiency of MLN.

4.1 Dataset description

We selected two datasets as data sources for experimental
analysis, both of which recorded the activity information
of a single person in the room. In order to evaluate the
rationality of the semantic rulebase building scheme, we
selected the dataset of the WSU CASAS smart home
project as dataset 1[23], which contains more than 8000
items. The data record five user activity types: making
phone calls, eating, washing hands, washing dishes, and
cooking. Dataset 2 is the sensor data we collected by
ourselves and contains 6000 data items. Figure 2 shows
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the indoor living environment from which we collected
the data, and Fig. 3 records the indoor sensor deployment
position. We collected six user activity types during
the data collection period, including washing, eating,
watching TV, cooking, sleeping, and reading.

4.2 Experimental setup

The indoor residential environment and sensor
deployment diagram of datasets 1 and 2 were drawn on a
certain scale, and the position of the sensor deployment
diagram was used to construct a two-dimensional
coordinate system. Then, we converted the sensor
position into coordinates and divided the active area. By
this way, we get the sensor coordinate dataset for datasets
1 and 2. Referring to the sensor point set, we calculated
the distance between the sensors and the user’s active
area and analyzed the whole indoor sensor deployment
position. To protect the integrity of sensor data as
much as possible, we have to evaluate all distances
calculated to select the segmentation comprehensively;
the distances are dmin1 and dmin2 of datasets 1 and 2,
respectively. Using dmin1 and dmin2 to cut the sensor
coordinate dataset, we get S1 and S2 of datasets 1 and
2, respectively. It is necessary to ensure that S1 and S2
contain all sensor datasets.

For better semantic annotation, we only need the
sensor of the element set Si in Sdataset1 and Sdataset2
to appear only once. Since our ultimate goal is to build
a semantic rulebase for the current indoor environment,
sensors represent actions at a certain moment. Actions
are the constituent atoms of a rule and only need to
appear once to express the semantic integrity of the rule.
In this way, we get datasets S 0

dataset1
and S 0

dataset2
.

The indoor activities are limited, and users generally do
some repetitive activities, such as eating, washing, and
cooking. So there will be the same S 0i in S 0. We filter
out the same S 0i in S 0 by the least squared difference, so
that the elements in S 0 are independent of each other.
Finally, we get the sensor dataset S 00.

Next, we semantically segment datasets S 00
dataset1

and
S 00
dataset2

, annotating deployed sensors as active actions.
In this way, we convert all elements in S 00 into sets of
actions and get D. When slicing raw sensor data, we
do not consider the crossregional activity. To realize the
construction of the semantic rulebase for crossregional
activities, we introduce the knowledge list K and use
K to merge the elements with crossregional activities
in S 00 to obtain D0. We do not map activity rules and
categories in the whole process, so we regard activity

categories as latent elements. Therefore, we use latent
probabilistic semantics to construct and revise rules for
D and D0.

To establish the mapping relationship between rulesets
and activity categories, we introduce prior knowledge
K. The list of prior knowledge K covers all possible
activities in datasets 1 and 2. The content of K contains
the iconic actions and activity categories of the activities,
not all the actions. With the iconic actions active in K,
we match the rule elements in D and D0 with the rules
in K. In this way, we establish a one-to-one matching
of rules and activity classes in D and D0 and build
a rulebase R. If we find that new rules appear, we
automatically add the new rules to the knowledge list K
and the rulebase R.

4.3 Experimental evaluation and results

4.3.1 Analysis of effectiveness
To improve the learning efficiency of MLN, we propose
a rulebase building scheme based on probabilistic latent
semantic analysis. In this part, we need to evaluate
the effectiveness of the semantic rulebase scheme.
Therefore, we select the MLN conventional learning
algorithm for comparison, as shown in Table 1. During
the experiment, we design three steps using datasets
1 and 2, and the data and knowledge are incremental
from the first step to the third step. By analyzing the
experimental results, we have the following results:

First, we find that the rulebase building scheme can
accept larger datasets because the increase of data has
little effect on the learning time of the rulebase building
scheme (Table 1).

MLN structure learning is to update each atom of any
rule iteratively, which is single-threaded learning. And it
needs to update and store the learned knowledge in the
learning process, which consumes a lot of computing and
storage resources. The rulebase building scheme cuts the
data stream to obtain the MLN structure, only to analyze
the data stream itself (based on the sensor’s inherent
properties, such as location and time). MLN weight
learning does not need to consume a lot of resources
and time since it is just optimizing and calculating the
weights of rules.

Second, we analyze the accuracy of the rulebase
building scheme from three perspectives of precision,
recall, and F1-score. We found the accuracy of this
scheme to be slightly higher than that of MLN learning
(see Fig. 4).

Ideally, MLN structure learning does not end until
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Table 1 Comparison of semantic rulebase building scheme and MLN learning.

Dataset Rule
Semantic rulebase building scheme MLN learning

Time for semantic
rulebase construction

Time for MLN
weight learning

Accuracy
(%)

Time for MLN
structure learning

Accuracy
(%)

Dataset 1

R.Cal lphone/

R.Washhand/

R.Cookoatmeal/

0.12 s 32 min, 14.18 s 89.27 3 d, 51 min, 36.10 s 64.13

R.Cal lphone/

R.Washhand/

R.Cookoatmeal/

R.Eating/

0.12 s 37 min, 34.67 s 88.47 10 d, 2 h, 40 min, 48.10 s 65.76

R.Cal lphone/

R.Washhand/

R.Cookoatmeal/

R.Eating/

R.Washdishes/

0.56 s 8 h, 17 min, 4.80 s 88.23 17 d, 5 h, 10 min, 12.10 s 62.09

Dataset 2

R.Washing/

R.WatchT V /

R.Reading/

R.Cooking/

1.25 s 3 h, 0.10 s 91.31 5 d, 1 h, 46 min, 48.10 s 73.13

R.Washing/

R.WatchT V /

R.Reading/

R.Cooking/

R.Eating/

2.01 s 4 h, 28 min, 10.20 s 91.27 13 d, 8 h, 7 min, 12.10 s 74.13

R.Washing/

R.WatchT V /

R.Reading/

R.Cooking/

R.Eating/

R.Sleeping/

6.22 s 1 d, 6 min, 36.10 s 89.63 19 d, 11 h, 7 min, 48.10 s 74.83

Fig. 4 Accuracy analysis of rulebase building scheme, D1
and D2 denote datasets 1 and 2, respectively.

the rule parameters converge. However, its parameter
convergence requires a lot of time and computational
resources. Therefore, we need to set the parameters of
structure learning convergence to reduce the learning
time, affecting the accuracy rate of MLN structure
learning. The accuracy of a rulebase building scheme
is affected by the ruleset. The ruleset is obtained by
data segmentation and modified by latent probabilistic
semantic analysis. There are two parameters, dmin and
e, in data segmentation. To ensure data integrity, we set
dmin to a fixed value, so there is no data loss. It is worth
noting that in case the data integrity requirement in the

cutting process is low, the value of d can be increased
based on a fixed value. e is the standard for further
data cutting and correction, which can be regarded
as the convergence value of the ruleset. To improve
the accuracy of ruleset construction, we evaluate it to
optimize the scheme. Therefore, the scheme can select
the optimal rule set convergence value in the execution
process, and the result is shown in Fig. 5.

Fig. 5 Accuracy assessment of parameter e.
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Third, under the condition of ensuring accuracy, the
learning time of the rulebase building scheme is much
less than the MLN learning time (see Table 1). The
construction time of the semantic rulebase is composed
of three parts: data cutting, semantic modification,
and activity category mapping. The rulebase building
scheme increases workload in the learning process when
compared with systematic learning methods, such as
MLN structure learning. However, the building scheme
can be used for multiple activity scenarios by modifying
the parameters and activity categories required by the
user. Furthermore, Table 1 shows that semantic rulebase
building takes much less time than MLN learning. So
we find that the semantic rulebase building scheme is
more effective and more practical than MLN learning.

4.3.2 Analysis of stability
To better evaluate the stability of the rulebase building
scheme based on potential probabilistic semantic
analysis, we compare EM in the probabilistic latent
semantic algorithm with other typical clustering
comparison algorithms. We select four rules of dataset 2
as experimental data. The correct performance of dataset
2 is the best, and it could eliminate data interference
to the greatest extent and evaluate the stability of the
building scheme from the algorithm itself. We select the
current representative K-means, affinity propagation, and
mean shift for evaluation and comparison. The baseline
comparison in the experiment is shown in Fig. 6.

K-means: we randomly selectK objects as the initial
clustering center. Then the distance between each object
and the seed cluster center is calculated, and each object
is assigned to the cluster center closest to it. Cluster
centers and the objects assigned to them represent a
cluster. Once all objects have been assigned, the cluster
center for each cluster is recalculated based on objects
existing in the cluster. This process is repeated until a
certain termination condition was met.

Fig. 6 Stability evaluation of rulebase building scheme.

Affinity propagation: we regard all samples as the
network’s nodes and then calculate the cluster center
for each sample based on the messages passing through
each edge in the network. In the clustering process,
there are two kinds of messages transmitted between
nodes: responsibility and availability. The algorithm
continuously updates the attractiveness and attribution
of each point through an iterative process until high-
quality exemplars (equivalent to centroids) are generated,
and the remaining data points are assigned to the
corresponding clusters.

Mean shift: It is a density-based nonparametric
clustering algorithm. Assuming that the different
clusters’ datasets conform to different probability density
distributions, the fastest direction in which the density
of any sample point increases is found, and the area with
high sample density is considered to correspond to the
maximum value of the distribution. These sample points
eventually converge at local density maxima. Points
that converge to the same local maxima are considered
members of the same cluster class.

5 Conclusion

This paper proposes a semantic rulebase building
scheme based on probabilistic latent semantic analysis,
which effectively improves the efficiency of MLN
learning. First, we use sensor location and activity
characteristics to segment the data stream, so as
to remove redundant data and achieve independence
between data stream segments. Second, we semantically
interpret the deployed sensors and further revise the
semantic fragments through probabilistic latent semantic
analysis to maximize the mining of rules in the semantic
fragments. Finally, we use prior knowledge to construct
a one-to-one mapping of rules and activity categories
to construct a semantic rulebase. Based on datasets 1
and 2, we compared the rulebase building scheme with
traditional MLN learning. We also tested the clustering
algorithm and parameters in the scheme to verify the
effectiveness of the rulebase building scheme. In the
future, we will further refine the segmentation algorithm
for sensor data so that the rules can be created more
accurately.
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