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Autonomous Vehicles Testing Considering Utility-Based Operable Tasks

Jingwei Ge, Jiawei Zhang, Yi Zhang�, Danya Yao, Zuo Zhang, and Rui Zhou

Abstract: Virtual simulation testing of Autonomous Vehicles (AVs) is gradually being accepted as a mandatory way

to test the feasibility of driving strategies for AVs. Mainstream methods focus on improving testing efficiency by

extracting critical scenarios from naturalistic driving datasets. However, the criticalities defined in their testing tasks

are based on fixed assumptions, the obtained scenarios cannot pose a challenge to AVs with different strategies. To

fill this gap, we propose an intelligent testing method based on operable testing tasks. We found that the driving

behavior of Surrounding Vehicles (SVs) has a critical impact on AV, which can be used to adjust the testing task

difficulty to find more challenging scenarios. To model different driving behaviors, we utilize behavioral utility functions

with binary driving strategies. Further, we construct a vehicle interaction model, based on which we theoretically

analyze the impact of changing the driving behaviors on the testing task difficulty. Finally, by adjusting SV’s strategies,

we can generate more corner cases when testing different AVs in a finite number of simulations.
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1 Introduction

Recently, due to advances in cognitive planning
and learning-based algorithms, the development of
artificial intelligence systems has grown rapidly[1, 2].
Autonomous Vehicle (AV), as a representative AI system,
is believed to achieve mass production at this stage.
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The prevailing view is that AVs should learn human
strategies to continuously improve their intelligence.
Obviously, a learned driving strategy, which is used to
perform driving tasks in AVs, must be well tested before
it can be deployed to AVs[3]. To achieve this, researchers
have mainly focused on how to design the safety-related
testing tasks that AVs need to complete[4–7]. These
tasks are combined with critical scenarios that may be
impossible for existing AVs.

A question that cannot be escaped is: “how to design
testing tasks and sample critical scenarios?”

To find an answer, Zhao et al.[8] proposed a testing
method of inspiring, i.e., accelerated evaluation based on
naturalistic driving datasets. The method significantly
improves testing efficiency by finding the distribution
of scenario model parameters that fit the hypothesis[9].
Based on their study, Feng et al.[10] and Yan et al.[11]

further improved the testing efficiency by 10 000 times.
Despite the significant improvement in testing

efficiency, current approaches still suffer from two
shortcomings. First, the testing scenarios sampled by
the fixed vehicle model cannot be guaranteed to be
challenging for all AVs. Second, we cannot adjust the
testing scenarios for different AVs. It means that in every
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test, we need to sacrifice huge computing power and time
to search for challenging scenarios.

To this end, Feng et al.[12] improved the accelerated
evaluation by proposing an adversarial-based approach.
They search for challenging scenarios by changing
the behavior of the vehicles through Reinforcement
Learning (RL) methods. Though using learning-based
algorithms like RL can dramatically reduce empirical
error in searching for a critical scenario[13, 14], we need to
continue asking: “how to ensure that the testing results
provide a strong reference for the development of AV?”

It should be noted that these solutions still fail to solve
the lack of operability of the scenarios[15]. Additionally,
it is also difficult to explain the specific reasons for the
failure of the AV. We cannot make reasonable predictions
and interpretations about the specific capabilities of AVs,
the boundaries of their capabilities, and the scenarios,
under which AVs will come across a challenge.

Such problems prompt the need for setting
interpretable and operable testing tasks. It can help
researchers explain why AVs fail when performing
testing tasks and provide a strong basis for subsequent
updates to the driving strategy of AVs[16]. To solve
this, we notice that many factors in the real environment
can easily lead to the inability of AVs to complete the
task, such as sudden changes in weather, imperfect
road facilities, unpredictable Surrounding Vehicle (SV)
behaviors, etc. It is almost impossible to construct
challenging scenarios that affect the safety of AVs by
traversing all these potential factors, which is a well-
known NP-hard problem[17]. However, researchers have
made many useful attempts on finding some critical
factors. Wang et al.[18] pointed out that the interaction

between SVs and AVs can bring driving risks to AVs.
Later, Zhao et al.[19] explored the difference between
vehicles with different driving strategies in the natural
environment when interacting with others.

On these bases, in this paper, we propose an approach
for testing AVs by manipulating testing tasks to find
more challenging scenarios. We focus on the changes
brought by the driving strategies and behaviors of SVs
on the AV. These changes also result in different task
difficulties. For brevity and clarity, we define the number
of challenging events in a testing scenario as the task
difficulty. Besides, the challenging events encountered
by the AV are reflected by the behavior of the AV. To
model the driving behavior of SVs, we give behavioral
utility with binary strategies. Though there are many
approaches to modeling vehicle behaviors[20, 21], the
behavioral utility function has two advantages for AV
testing. First, given the high complexity of behavior,
the utility function can model different behaviors by
emphasizing the results of the vehicle’s choices under
different conditions. Second, the behavioral utility
function has better algorithmic transparency compared
to black-box algorithms such as neural networks. The
designing tasks can be interpretable and we can better
explain the evaluation results.

Based on the behavioral utility model, we construct
a vehicle interaction utility model to theoretically
demonstrate that different strategies of SVs can affect AV
behavior and thus the difficulty of the testing scenario for
AV. In addition, we use a typical lane change scenario
as an initial scenario for the simulation. The overall
framework of our method is shown in Fig. 1.

To better describe our approach, the paper is organized
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as follows: Section 2 gives the related work on
behavioral utility function and intelligence testing for
AV; in Section 3, the testing tasks are explained, as
well as the construction of the vehicle behavioral
utility function with binary driving strategies; Section 4
models vehicle interaction model; Section 5 validates the
proposed method; and Section 6 concludes this paper.

2 Related Work

2.1 Behavioral utility function

The utility function, which compares different choices,
was first applied in economics to measure consumer
welfare or satisfaction[22, 23]. The application of the
utility function in intelligent transportation systems is
equally widespread. In macroscopic traffic simulation,
for example, we employ them for traffic volume
allocation analysis, while in microscopic traffic
simulation they are used for driver behavior analysis,
etc.[24, 25]

The successful construction of behavioral utility
functions to analyze driving behavior dates back to
2003, when Toledo et al.[26] constructed integrated lane-
changing behavior based on utility function. Altendorf
and Flemisch[27] further investigated the behavioral
utility function and argued that the advantage of the
behavioral utility function over other behavioral models
is that it highlights the driver’s choice to distinguish
between different types of driver behavior. They also
gave a basic behavioral utility function that considers
only the vehicle state information, including position
and speed, that is readily available to the ego vehicle and
other vehicles around it. Besides, Li et al.[2] pointed out
that in addition to the vehicle state information, refined
traffic information, such as the average speed of different
lanes, the time interval between surrounding vehicles,
etc., is also beneficial for a driver to make the correct
behavior when changing lanes in reality.

Based on this, we used the behavioral utility function
in Ref. [28] to construct the behavior of SVs in
autonomous vehicle testing, emphasizing the decisive
influence of behavioral utility on whether SVs choose
to make a lane change at a certain time, as a test of the
intelligence of the AV when AV faces heterogeneous
SVs. However, the shortcoming is that considering the
behavioral utility of a single SV is not enough to simulate
the dynamic interaction between vehicles.

2.2 Autonomous vehicle testing

To sample critical testing scenarios, researchers have

worst-case scenario generation methods. For example,
Ma and Peng[29] generated scenarios that are most
likely to cause AV rollover or emergent braking by
introducing game theory; Kou[30] obtained the most
challenging scenario by introducing rolling time-domain
optimization methods to test the safety performance of
AV. However, extreme scenarios are likely to be rare in
nature, which are not equivalent to natural scenarios.

The natural testing scenario generation method was
proposed in Refs. [7] and [31], which is based on
large Naturalistic Driving Data (NDD). However, the
disadvantage of the method is that it cannot solve the
serious inefficiency existing in on-road testing. For
this reason, Zhao et al.[8, 9] and Zhao[32] proposed an
accelerated evaluation method. Accelerated evaluation
is to select some parametric scenario model as a
priori information and learn the distribution of model
parameters in the dataset. Scenarios with low sampling
frequency can be better obtained by Importance
Sampling (IS).

However, the accelerated evaluation relies too much
on the priori information. Feng et al.[10] improved the
accelerated evaluation by proposing an adversarial-based
RL method to help search for critical testing scenarios.
The method constructs a natural adversarial driving
environment, which improves the testing efficiency by
10 000 times while guaranteeing the same accident rate
as in a natural dataset. However, the problem of poor
interpretability of RL still cannot be avoided which is
not conducive to the evaluation of AV.

Li et al.[3] proposed that testing the intelligence of
AV could be accomplished by constructing suitable
testing tasks. They considered the tasks as the connection
between two current methods, i.e., scenario-based testing
and function-based testing. However, it is still worth
thinking about how to set up operable testing tasks that
sample more challenging scenarios while satisfying the
need for interpretability.

3 Problem Formulation

3.1 Testing tasks

Testing tasks are defined as activities that AV needs
to complete within a limited time frame in a testing
scenario. According to the definition, those activities
should be testable as an indispensable link between the
testing environment and AV and is a prerequisite for the
evaluation[15]. The PAC testing theory[17] also points out
that by sampling several tasks, a complete evaluation of
the AVs can be made.
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Thus, we can split up testing tasks to fit different
testing requirements. Before testing, we need to set
the testing requirements, which can be a single type of
intelligence, such as intelligence safety, task execution
efficiency, comfort level, and other capabilities. Then,
the set of testing tasks can be represented as several
task compositions, i.e., 	 D f	1; 	2; : : : ; 	ng, while
each task can be divided into several subtasks in a
limited time frame with a defined space, i.e.,  i D
f i1;  i2; : : : ; 	ing, as is shown in Fig. 2. The testing
requirement differs from testing modules. Take safety
testing of AV as an example, there are mainly two
modules to test the intelligence of AV considering safety,
i.e., safety functionality testing and safety performance
testing. In safety functionality testing, the testing task
can be decomposed into testing different modules of AV,
such as the sensing module, decision module, control
module, etc. Different subtasks are designed for different
functionality modules. In safety performance testing, the
testing task can be divided into subtasks used to examine
safety-related performance, such as recognizing traffic
lights, deciding whether to change lanes, and following
the car ahead. In this paper, we focus on the safety
performance testing of AVs.

3.2 Behavioral utility based on driving strategies

To generate utility-based operable tasks, we set
semantic driving strategies and utilize these strategies
to describe various SV’s driving behaviors. Further,
we focus on characterizing the heterogeneous output
of the behavioral utility function by adjusting the
hyperparameters in utility functions.

To be specific, the behavioral utility function takes
the external environment and its own parameter design
as inputs and outputs the utility value of the vehicle’s

Set of tasks
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driving safety
…
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down at position X1

and time t1
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safe distance at 

position X 2 and time t2
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Fig. 2 Assignment of the testing tasks.

behavior at that moment. We assume that the inputs to
the utility function to be a set of independent factors:
x1; x2; : : : ; xn. As for any participant V .i/ , we define
Ui as its behavior utility. We consider the behavioral
utility as a weighted sum of these independent factors,
then the basic formula of the utility function can be
written as

Ui D

nX
kD1

˛k;ixk (1)

where ˛k;i is the weight component.
The parameters of the function can be obtained by

training through learning-based methods or set by expert
experience. The different parameters reflect the rich
behavioral characteristics of the vehicles. Due to the
space limitation of this paper, we will explain the design
of our behavioral utility function in detail in a subsequent
paper.

The driving strategies of human drivers can generally
be classified as aggressive or conservative based on the
observations[19]. We consider that the SV behavior is
governed by binary strategies, i.e., aggressive strategy
and conservative strategy, to demonstrate the “internal
realism” of the vehicle. The aggressive driving strategy
is referred to as a competitive driving strategy. Under
this strategy, traffic participants usually focus more on
improving their driving gains and consider others as
rational traffic participants[19]. The conservative driving
strategy is referred to as the defensive driving strategy.
The core task of conservative strategy is to “prevent
all potential danger against uncertaintie”. Thus, we
can define the combination of operable binary driving
strategies as

strategy_set D faggressive; conservariveg (2)
Driving behavior based on different driving strategies

can be controlled by modulating the output through
a family of hyperparameters, which is H D fh1;

h2; : : : ; hmg ; m 2 ZC. For example, we consider the
utility functions of lane-change behavior. Referring to
the Ref. [26], the decision on whether to change lanes
and the distance after changing lanes are important
characterization quantities for measuring vehicle safety,
which also reflect different strategies. From this, we
set h˛ to be the probability of choosing different lanes
after receiving input from the current environment. By
controlling h˛, we can construct different lane-change
behavior based on the above two strategies.

3.3 Testing metrics and evaluation

The two main types of testing metrics are Boolean type
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and numerical type[3]. In intelligent safety testing, we
choose the Boolean type for determining whether the
vehicle successfully completes each assigned task within
the appropriate spatial-temporal range. In this paper,
we set the threshold value of Time To Collision (TTC)
to determine the value of the Boolean quantity. TTC,
as the most commonly used safety performance metric,
can effectively reflect the safety level of the AV in the
spatial-temporal range. If the TTC exceeds the threshold,
there will be a hazardous event and the Boolean quantity
B D 0, otherwise, B D 1.

According to the above, the testing task difficulty
varies from vehicle to vehicle, which requires us to
continuously adapt the operable tasks based on the
evaluation results to find more targeted corner cases.
The Appendix theoretically demonstrates adapting the
behavior of the SVs can find more corner cases.

Based on the safety performance metric considered
in this paper, i.e., collisions, we define the challenging
event (e.g., a collision) asA. Then, we set the probability
of a challenging event occurring in the testing scenario
OT as

P
�
A j OT

�
Scenet ; 	; V; C;M;E

�
t2T

�
(3)

where Scenet is the testing scene at time t , V means
vehicle under testing, C D fCig ; i D 2; 3; : : : ; m, is
the set of preset constants that reflect SVs’ driving
strategies, M means the testing metric, E shows the
testing evaluation to the AV used to adjust the tasks[28],
and T is the duration of the scenario.

4 Vehicle Interaction Behavioral Utility
Modeling

We construct a vehicle interaction behavioral utility to
show the interactions between the AV and the SVs,
which is also used for analyzing the task difficulty.

To describe an interaction that is more reflective of
the drivers’ psychology, we depict the correlation of
driving strategies between vehicles. We assume that
AV cannot foresee danger coming from SVs until SVs
make dangerous movements. This assumption matches
the reality where drivers usually find it difficult to
distinguish the driving strategies of other drivers until
they make movements that reflect their strategies. We
also do not consider that the collaboration between
vehicles, i.e., traffic participants are not influenced by
others or roadside, they make decisions and plane routes
independently, based on their perceptual information.

To facilitate the analysis, we set the AV under test as

V .1/, and SVs as V .2/,V .3/; : : : ; V .m/. Assuming that
these influences xk constitute a Gaussian distribution. In
addition, these influences are measurable on a standard
scale, i.e., they have zero mean and unit variance. Then
the prior distribution of the behavioral utility of the
vehicle V .i/ is

p .Ui / / �

0B@ UiqPn
kD1 ˛k;ixk

1CA (4)

Then the behavioral utility of all traffic participants in
the test scenario can be formed as

p .U1; U2; : : : ; Un/ D N .U; 0;˙/ (5)

where U D ŒU1; U2; : : : ; Un�T and

˙ D

266664
1 �1;2 � � � �1;N

�2;1 � � � � � � � � �

:::
:::

: : :
:::

�N;1 � � � �N;N�1 1

377775
with �.k;l/ to be the connection between the utility of
V .k/ and the utility of V .1/.

It is usually valid to assume that it is an
undifferentiated group formed by all traffic participants,
i.e., each participant has the same preferences when
selecting factor xi , so that �k;l D �;8k; i .

It reveals that the AV knows that there are some
different strategies of SVs and the approximate overlap,
but does not further know which vehicles are consistent
with itself.

When a vehicle uses only its own information to
determine each step of the decision, it’s usually unperfect
that such information is with some noise v.k;i/,

Oxk;i D xk C vk;i (6)

where xk is the measured value, and Oxk;i is the real
value.

Alternatively, the estimated behavioral utility of the
vehicle v.i/ can be rewritten as

OUi D

nX
kD1

˛k;i Oxk D Uk C

nX
kD1

˛k;ivk;i (7)

Without losing any generality, we consider that
E
�
vk;i

�
D 0; var

�
vk;i

�
D "2 (8)

where " is the ambient noise level associated with the
utility. Then we can get the conditional probability
density distribution of V.i/’s behavioral utility,

p
�
OUi j Ui

�
D �

 
OUi � Ui

"

!
(9)

Referring to the above equations, we can have
cov.Uk; Ul/ D cov. OUk; Ul/ D �C ık;l.1 � �/ (10)
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cov.Uk; Ul/ D cov. OUk; OUl/ D �C ık;l.1C "2 � �/
(11)

where ık;l is the Kronecker delta function.
Clearly, if we traverse and combine all the SVs’

behaviors, it is possible to cover all possible challenging
events to obtain different testing tasks. However, as
mentioned above, it is an NP-hard problem and to
the best of our knowledge cannot be solved by now.
Consequently, we give an alternative solution based
on sampling SVs’ behavior with semantic driving
strategies, where we consider changing the ratio of SVs
with different strategies by using vehicle interaction
behavioral utility.

To theoretically achieve this, the probability of
the occurrence of a challenging event is set to be
P
�
A j Sceneorigin; 	; OU1; C;M;E

�
based on Eq. (1),

where OU1 is the random variable that reflects the
observed utility of AV.

Then the probability of AV’s behavior can be
expressed as P

�
U1 j Sceneorigin; 	; OU1; C;M;E

�
. It

shows the probability of AV’s behavior from the initial
scene Sceneorigin when completing the preset testing
tasks 	 . It is essential to consider the driving behavior of
the AV for two reasons: (1) it shows AV’s performance
when AV carries out testing tasks; and (2) it also reflects
the difficulty of the performed tasks in the scenario.

By utilizing the interaction behavioral utility model,
it is easy to deduce the probability of AV’s behavior
if the behavior is only determined by the information
estimated by AV itself,

p
�
U1 j OU1

�
/ � .U1/ �

 
OU1 � U1

"

!
(12)

However, if we consider the impact of one SV on
AV, which means we adjust the testing task difficulty
by changing the driving strategy of one SV like V .2/,
Formula (3) can be rewritten as (see Appendix)

P
�
A j C2; bU 1� DX
P
�
U1 j C2; bU 1�P �A j U1; C2; bU 1� (13)

where the probability of AV’s behavior is

p
�
U1 j bU 1; C2� /

� .U1/ �

 bU 1 � U1
"

!
˚

 
C2U1�p
1C "2 � �

!
(14)

Similarly, if we adjust the testing task by changing
the driving strategy of two SVs, the probability of a
challenging event occurring in the testing scenario is

P
�
A j C2; C3; bU 1� DX
P
�
U1 j C2; C3; bU 1�P �A j U1; C2; C3; bU 1�

(15)
where the probability of AV’s behavior in Eq. (15) is

p
�
U1 j C2; C3; OU1

�
/

� .U1/ �

 bU 1 � U1
"

!
�

Z bU�
2!1

�1

Z C1
0

N

 " bU 2bU 3
#
; �

"
U1

U1

#
;"

1C "2 � � �2

� � �2 1C "2

#!
dbU 3dbU 2 (16)

where bU �2!1 is the strategy option bounclary of bU 2.

5 Simulation

We design a typical lane-changing scenario without
considering support from the roadside unit or other
equipment (shown in Fig. 3) to validate our approach.
The scenario consists of a one-way two-lane road, one
AV, and three SVs where each lane is 4 m wide and
vehicles are all 4 m long and 2 m wide. The distance
between the starting position of the AV and the reference
line is set as R, while the distance to the nearest lane
line is set as R0 (see Table 1).

In Fig. 3, the relationship description adopts the polar
coordinate method with the measured vehicle as the
axis and sets the distance between the four vehicles as
.R1;D1/, .R2;D2/, and .R3;D3/, where Ri denotes
the absolute distance between the vehicle centers, and
Di denotes the angular deviation between the driving
direction of V .iC1/ and the driving direction of the AV.

We conduct experiments with the simulator presented
in Refs. [33] and [34]. A pure tracking algorithm is used
as the lateral control of the vehicle, referenced in Ref.
[35], with the longitudinal model referenced in Ref. [36],
which is used to generate continuous trajectories, also
as an extension of the collision avoidance model. We
assume that the AV at the back maintains a suitable and

Fig. 3 Initial scene in the lane-changing scenario.
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Table 1 Details on the participants in the initial scene.
Parameter Value Parameter Value

R 22 m R0 2 m
R1 13.6 m D1 174.6ı

R2 13.6 m D2 5.4ı

R3 13.6 m D3 0ı

v1 5 m/s a1 0m/s2

v2 5 m/s a2 0m/s2

v3 5 m/s a1 0m/s2

v4 5 m/s a2 0m/s2

adjustable distance from the SV in front.
The AV calculates the distance L.t/ in the following:

L.t/ D xlead .t/ � xfollow .t/C
v2lead .t/ � v

2
follow .t/

2amax
(17)

where xlead.t/ and vlead.t/ indicate the location and
speed of the vehicle in front, respectively, xfollow.t/ and
vfollow.t/ are the location and speed of the following
vehicle, respectively, and amax is the max acceleration of
the vehicle. The speed of the AV can be calculated as
follows:
vfollow.t C T / D(

max f0; vfollow .t/ � amaxT g ; L.t/ < GI

min fvmax; vfollow .t/C amaxT g ; L.t/ > G
(18)

where vmax is the max speed (14 m/s in this paper) and
T is the time interval (0.1 s in this paper). The desired
distance G is set to judge the final distance. If L.t/
is less than G, the vehicle behind will slow down. If
L.t/ is greater than G, the vehicle will accelerate until
it travels at maximum speed.

Besides, TTC is the testing metric for the simulation
to determine that the AV encounters a challenging event
when TTC is below the preset threshold �TTC. We define
the relative distance and relative speed between V .1/and
V .m/ as Rm.t; x/ and PRm.t; x/ at time t and position
x, respectively, the mathematical expression of TTC at
time t is written as

TTCm.t; x/ D �
Rm.t; x/

PRm.t; x/
(19)

Then we can describe the safety tasks for AV in the
simulation. The safety task is to safely driving and each
subtask is to make sure that TTC is above the threshold
at time Ti and position Xi ,

BTi ;Xi
D

(
1; TTCm.Ti ; Xi / < �TTCI

0; otherwise
(20)

In this paper, we set that the utility of lane-changing
behavior is reflected in the probability of changing the
lane at a certain scene. For vehicles with different

strategies, they obtain different probabilities from the
utility function.

The probabilities of whether lane-changing behavior
occurs rely on different driving strategies. The semi-
qualitative and semi-quantitative utility function with
hyperparameters h˛ is given. By adjusting the h˛ we
can generate lane-changing behaviors with different
strategies.

To compare the behaviors under different strategies
more clearly, we also set a normal strategy. Normal
strategy statistically reflects the driving style when we
ignore the difference in driving strategies. As shown in
Fig. 4, vehicles with aggressive strategies have a greater
probability of changing lanes than vehicles with normal
strategies, and vehicles with conservative strategies
are the opposite when vehicles share the same utility.
Despite the prevalence of aggressive and conservative
drivers in everyday life, we still lack relative data sets
that characterize these two types of drivers separately.
Therefore, data on utility functions are mainly derived
from our laboratory’s previous experience in conducting
research on AV[37].

We adapt the driving strategies of SVs in two testing
scenarios, i.e., Scenarios 1 and 2 to obtain more difficult
tasks. In Scenario 1, we only change the driving strategy
of V .2/, while in Scenario 2, we also change the strategy
of V .3/. Besides, we provide the benchmark scenario
where we maintain a normal driving strategy for all SVs.
In this case, we set �TTC D 2 s. We represent the results
of 200 replicate experiments in box plots, as shown in
Fig. 5.

We emphasize that changing the strategy and behavior
of different numbers of SVs can have different effects on
the task difficulty, whereas previous work[28] emphasized
changing the strategy of only one SV.

The results show that, by adapting the driving

Fig. 4 Simulation on the behavioral utility for lane change.
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Fig. 5 Boxplots for the simulation: the frequency of
challenging events in each scenario when TTC is less than
2 s (IQR is Iter-Quartile Range).

strategies of the SVs, we can obtain more challenging
events, i.e., we generate higher difficulty levels for the
AV under test. Furthermore, we prove that adapting
to different numbers of SVs results in different
task difficulties. Compared to the benchmark both
Scenarios 1 and 2 are more challenging.

6 Conclusion

In this paper, we propose an intelligence testing method
for AV. The method considers operable testing tasks
with different difficulties. The testing task difficulty is
tuned by the driving behavior of SVs. To express these
behaviors, we utilize the behavioral utility functions
and set a binary driving strategy, i.e., aggressive and
conservative strategy to demonstrate the “inner reality”
of SVs. Based on behavioral utility functions, we
construct the vehicle interaction utility model and then
theoretically demonstrate that changing the driving
behavior of SVs results in changes on testing task
difficulty. Finally, we simulate and validate the feasibility
of our method. Compared to the benchmark, our method
can obtain more challenging events for the AV under test,
i.e., we can find more critical scenarios by generating
difficult testing tasks.

Due to space limitations, this paper only focuses
on testing a single performance of AVs, i.e., safety,
and takes collision as the challenging event. However,
the complete intelligence evaluation of AVs requires
more comprehensive consideration of multi-dimensional
metrics, including comfort, efficiency, etc. In the future
work, first, we will give a comprehensive evaluation
framework including various testing metrics and testing
tasks for AVs; and second, we will also continue to
build data sets for different driving strategies and further

explore more realistic vehicle driving behaviors based
on the binary strategy.

Appendix

In Appendix, we give the proof of Eqs. (13)–(16) to
theoretically demonstrate that we can generate testing
scenarios with different task difficulties by adapting the
driving strategies of the SVs.

We can obtain Eq. (1) through the total probability
theorem as follows:

P
�
A j Sceneorigin; 	; C; OU1;M;E

�
DX�

P
�
U1 j Sceneorigin; 	; C; bU 1;M;E� �

P
�
A j U1;Sceneorigin; 	; C; bU 1;M;E�� .A1/

Since we highlight the importance of SVs’ behavior on
the difficulty of the testing tasks, we assume that the initial
tasks 	 , metrics M , and initial scene are all preset to
simplify the equations below.

For example, we set the semantical requirements as
testing the ability of AV to recognize traffic conditions
and turn safely at intersections with 4 SVs, all of which
use conservative strategies. Therefore, guided by the test
requirements, we can regulate the location, attributes, and
strategies of the SVs in the initial scene, and design
specific tasks and testing metrics.

To this end, Eq. (13) can be simplified as

P
�
A j C; bU 1� DX
P
�
U1 j C; bU 1�P �A j U1; C; bU 1� (A2)

When we adopt the behavioral utility of one vehicle like
V .2/, Eq. (14) can be written as

P
�
A jC2; bU 1�DXP

�
U1 jC2; bU 1�P�A jU1; C2; bU 1�

(A3)
From this, considering AV’s behavior is in conjunction
with the observation of its own utility and the utility of
SVs. According to Bayes’ Rule, P

�
U1 j C2; bU 1� can be

rewritten as
P
�
U1 j C2; bU 1� / P �U1 j bU 1�P �C2 j U1; bU 1�

(A4)

Obviously, the V .2/’s behavior observed by itself is
influenced by its driving strategy, since we consider all
strategies are binary, it satisfies that C2bU 2 > 0 or C2bU 2 <
0. Since C2 is independent of bU 1, we have

P .C2 j U1/ D P
�
C2bU 2 > 0 j U1� (A5)

According to the vehicle interaction behavioral utility
model above,bU 2 j U1 � N

�
�U1; 1C "

2
� �

�
(A6)
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Then under the AV’s behavior utility U1, we have

P
�
C2 j U1; bU 1� / ˚  C2U1�p

1C "2 � �

!
(A7)

So the probability density function of the behavior made
by the AV is

p
�
U1 j bU 1; C2� /
� .U1/ �

 bU 1 � U1
"

!
˚

 
C2U1�p
1C "2 � �

!
(A8)

Similarly, if we adopt two SVs, the probability of a
challenging event occurring in the testing scenario is

P
�
A j C2; C3; bU 1� DX
P
�
U1 j C2; C3; bU 1�P �A j U1; C2; C3; bU 1� (A9)

According to the above assumption, V .1/ shares the same
� with V .2/ and V .3/, from the perspective of the AV, if it
considers the behavioral utility of two SVs, the probability
of its behavior can be rewritten as
p
�
U1 j C2; C3; bU 1�/p �U1 j cU1�p �C2; C3 j U1; bU 1�

(A10)
where

p
�
C2; C3 j U1; bU 1� DZ bU�

2!1

�1

Z C1
0

N

 " bU 2bU 3
#
; �

"
U1

U1

#
;"

1C "2 � � �2

� � �2 1C "2

#!
dbU 3dbU 2 (A11)
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