
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 09/14 pp916–928
DOI: 10 .26599 /TST.2022 .9010052
Volume 28, Number 5, October 2023


C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Exact and Approximation Algorithms for the Multi-Depot Capacitated
Arc Routing Problems

Wei Yu�, Yujie Liao, and Yichen Yang

Abstract: In this work, we investigate a generalization of the classical capacitated arc routing problem, called the

Multi-depot Capacitated Arc Routing Problem (MCARP). We give exact and approximation algorithms for different

variants of the MCARP. First, we obtain the first constant-ratio approximation algorithms for the MCARP and

its nonfixed destination version. Second, for the multi-depot rural postman problem, i.e., a special case of the

MCARP where the vehicles have infinite capacity, we develop a .2 � 1
2kC1

/-approximation algorithm (k denotes

the number of depots). Third, we show the polynomial solvability of the equal-demand MCARP on a line and

devise a 2-approximation algorithm for the multi-depot capacitated vehicle routing problem on a line. Lastly, we

conduct extensive numerical experiments on the algorithms for the multi-depot rural postman problem to show their

effectiveness.

Key words: approximation algorithm; multi-depot; vehicle routing problem; arc routing problem; rural postman

problem

1 Introduction

The Capacitated Arc Routing Problem (CARP) is
defined as follows. Let G D .V;E/ be an undirected
(multi)graph, where V is the vertex set and E is the edge
set. There is a nonnegative cost function c W E ! RC

and a nonnegative integer demand function d W E ! ZC.
Initially, a fleet of identical vehicles with capacity Q is
located at a special vertex o 2 V , known as the depots.
The objective is to determine a set of routes (or closed
walks), which start from and end at the depot, for the
vehicles to serve the edges with positive demands so that
each vehicle serves a total demand of at most Q and
the total cost of the routes is as small as possible. In
the CARP, if the demands are defined for the vertices
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instead of the edges, we obtain the Capacitated Vehicle
Routing Problem (CVRP).

Golden and Wong[1] showed that the CVRP is actually
a special case of the CARP, since one can split each
vertex in the CVRP into two vertices joined by a zero-
cost edge whose demand equals the original vertex
demand. The CARP has found applications in many
practical problems, which include electric power line
inspection[2], school bus routing[3], garbage collection[4]

and distribution service[5].
The Multi-depot Capacitated Arc Routing Problem

(MCARP) is a natural generalization of the CARP in
which multiple depots are available and the routes of
the vehicles may start from and end at any depots.
Similarly, we can define the Multi-depot Capacitated
Vehicle Routing Problem (MCVRP). The investigation
of the MCARP/MCVRP has been motivated not only
by their theoretical interest, but also by their emerging
applications in various practical domains. For the
CARP/CVRP defined on a large service area, the total
cost of the routes may be very expensive due to the
single-depot constraint. In this setting, a potential
solution is to introduce multiple depots to meet the
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service requirements[6]. These depots usually represent
warehouses, supply points, relay boxes, and dumping
places. For example, online shopping companies
often distribute their service or goods at multiple
depots (i.e., distribution centers) to improve customer
satisfaction in urban areas[7]. Typical applications of
the MCARP/MCVRP include mail delivery[8], police
patrolling[9], and explosive waste recycling[10].

The CARP and the CVRP are clearly NP-hard,
because they are extensions of the classical rural postman
problem and the metric traveling salesman problem,
respectively, where the vehicles have infinite capacity.
This implies that the more general MCARP/MCVRP
is also NP-hard. As a result, the current research on
the MCARP/MCVRP has focused on branch-and-cut
approach (e.g., see Refs. [11, 12]) and meta-heuristics
(e.g., see Refs. [7, 8, 13]). Whereas, in this paper
we mainly deal with approximation algorithms for
the MCARP/MCVRP. Currently, few approximability
results on the multi-depot extension of the CARP/CVRP
are available in the literature. Especially, as far as we
know there exists no approximation algorithm for the
MCARP.

Haimovich and Kan[14] first studied approximation
algorithms for the equal-demand CVRP, i.e., a restricted
case of the CVRP where each vertex has unit
demand. They proposed the well-known iterated tour
partition heuristic ITP.˛/, where ˛ is the best available
approximation ratio for the metric TSP (the results in
Refs. [15, 16] imply that ˛ 6 3=2), and showed
that ITP.˛/ has an approximation ratio of 1 C .1 �

1=Q/˛ on condition that the number n D jV j of
vertices is divided by the capacity Q. Later, Haimovich
et al.[17] and Altinkemer and Gavish[18] achieved the
same ratio without the condition that n is divided
by Q�. For the general CVRP where there is no
restriction on the demands of the vertices, Altinkemer
and Gavish[19] devised an approximation algorithm,
known as UITP.˛/, with ratio 2 C .1 � 2=Q/˛ by
generalizing ITP.˛/. Haimovich et al.[17] simplified the
proof of the approximation ratio of UITP.˛/. ITP.˛/
and UITP.˛/ had been the best available approximation
algorithms for the CVRP for over 35 years. Recently,
Blauth et al.[20] succeeded in developing an improved
approximation algorithm for the CVRP with ratio ˛ C
2.1 � �/, where � > 0 is a small constant greater than
1=3000. They also improved the ratio for the equal-

� In fact, the versions of ITP.˛/ in Refs. [17, 18] slightly differ from that in
Ref. [14]. However, we still call them ITP.˛/.

demand CVRP to ˛ C 1 � � for some small constant
� > 1=3000. Friggstad et al.[21] then further improved
the approximation ratio for the CVRP to ˛C ln 2C 1 �
˛ C 1:694.

For the results on the CVRP defined on special graphs,
Labbé et al.[22] obtained an approximation algorithm
for the CVRP on trees with ratio 2, and Wu and Lu[23]

proposed a 5=3-approximation algorithm for the CVRP
on a line. Note that even the CVRP on a half-line (i.e.,
the depot vertex is one of the two end vertices of the line
graph) is NP-hard[24]. Actually, the CVRP on a half-line
has an inapproximability lower bound of 3/2[23].

Concerning the CARP with triangle inequality,
Jansen[25] extended the above heuristics ITP.˛/ and
UITP.˛/ to derive approximation algorithms whose
ratios are 1 C .1 � 1=Q/˛0 for the equal-demand
case and 2 C .1 � 2=Q/˛0 for the general case. Here
˛0 denotes the best-known approximation ratio for
the rural postman problem (we have ˛0 6 3=2 due
to Refs. [2, 26]). Wøhlk[27] developed an alternative
approximation algorithm with the same ratio for the
CARP with triangle inequality. Interestingly, van Bevern
et al.[26] showed that any 
 -approximation algorithm for
the CARP with triangle inequality can be transformed
into a 
 -approximation algorithm for the general CARP
(without triangle inequality).

Li and Simchi-Levi[28] presented approximation
algorithms for the multi-depot CVRP, whose ratios
are 1 C .2 � 1=Q/˛ for the equal-demand case and
2C.2�2=Q/˛ for the general case. They also introduced
the nonfixed destination MCVRP, which is a variant of
the MCVRP allowing the vehicles to start from one
depot but terminate at a different depot, and designed a
.1C.1�1=Q/˛/-approximation algorithm for the equal-
demand case and a (2 C .1 � 2=Q/˛)-approximation
algorithm for the general case.

In this paper, we address exact and approximation
algorithms for the MCARP and obtain the following
results. First, we give the first constant-factor
approximation algorithms for the MCARP as well as the
nonfixed destination variant. Second, for a special case
of the MCARP where the vehicle capacity is unbounded,
called the Multi-depot Rural Postman Problem (MRPP),
we propose a .2 � 1

2kC1
/-approximation algorithm with

k representing the number of depots. Third, we study the
MCARP/MCVRP defined on a line graph. Although the
line graph represents a simple topology, it does appear
in some applications, including highways and rivers.
Moreover, an algorithm designed for a problem on a line
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can be used as a subroutine to solve the same problem
defined on a relatively complicated network (e.g., a
tree), as shown by Bhattacharya and Hu[29]. For the
equal-demand MCARP on a line, we give a polynomial
time exact algorithm, and for the MCVRP on a line we
devise a 2-approximation algorithm. Finally, we conduct
extensive numerical experiments on the algorithms for
the MRPP to show their effectiveness.

The remainder of this paper is organized as follows.
We start with the formal description of the problems and
some notations in Section 2. We analyze approximation
algorithms for the nonfixed destination MCARP in
Section 3. In Section 4, we deal with the (fixed
destination) MCARP. We give the approximation
algorithms for the MRPP in Section 5. In Section 6,
we present exact and approximation algorithms for the
MCARP/MCVRP defined on a line graph. Lastly, we
conduct numerical experiments on the algorithms for the
MRPP in Section 7.

2 Preliminary

The problems studied in this paper are defined formally
as follows:

Definition 1 In the MCARP, we are given an
undirected graphG D .V;E/with vertex set V and edge
set E. There is a nonnegative cost (or length) function
c W E ! RC and a nonnegative integer demand function
d W E ! ZC. Let D � V be the depot set. Initially,
a fleet of identical vehicles with capacity Q is located
at each depot in D. The objective is to determine a set
of routes (or closed walks), each of which starts from
and ends at the same depot, for the vehicles to serve the
edges with positive demands so that each vehicle serves
a total demand of at most Q and the total cost of the
routes is minimized.

Definition 2 The Nonfixed Destination MCARP is a
variant of the MCARP where the route of each vehicle
is allowed to start from some depot and end at another
depot.

Definition 3 The MCVRP is a variant of the MCARP
where the demand function is defined on the vertex set V
instead of the edge set and all the vertices have positive
demands.

Throughout this paper, algorithms on different
versions of the MCARP/MCVRP are analyzed. For the
MCARP, the optimal value is given by Z�. The optimal
value of the nonfixed destination MCARP is denoted by
Z�n . The objective value of the solution generated by

some algorithm A is denoted with ZA.
Suppose that G D .V;E/ is an underlying graph, we

use c.e/ > 0 to represent the cost (or length) of edge
e 2 E. An edge e with end vertices v;w 2 V is also
denoted by fv;wg and its cost is also represented by
c.v; w/. We use a nonnegative integer d.v/ (d.e/) to
indicate the demand of vertex v (edge e). An edge e with
d.e/ > 0 is referred to as a required edge. R denotes
the set of all required edges. Q represents the vehicle
capacity. P.v;w/ is the shortest path between v and
w and its length is represented by cs.v; w/. If H is a
subgraph of G, we use V.H/ and E.H/ to represent
the vertex set and edge (multi)set of H , respectively.
We define the cost of H as c.H/ D

P
e2E.H/ c.e/.

The total cost of the required edges in H is denoted by
cR.H/. As a result, the total cost of the non-required
edges in H is c.H/ � cR.H/.

3 Nonfixed Destination MCARP

In this section, we generalize the algorithm for the
nonfixed destination MCVRP in Ref. [28] to obtain
an approximation algorithm NMCARP.
/ for the
nonfixed destination MCARP, where 
 is the best-known
approximation ratio for the CARP. Our algorithm has a
very simple description by applying the algorithm for
the CARP (without triangle inequality) in Ref. [26].

Assume that G D .V;E/ is the original graph for the
nonfixed destination MCARP with depot set D � V .
The algorithm NMCARP.
/ is a two-stage procedure
that invokes a 
 -approximation algorithm for the CARP.
In the first stage, the algorithm contracts the depot set D
of G into a single depot d to derive a new graph G0, and
invokes any 
-approximation algorithm for the CARP
defined on G0 to obtain a solution consisting of some
routes starting from and terminating at d . In the second
stage, the algorithm uncontracts d back to the original
set D of depots to generate a feasible solution of the
original nonfixed destination MCARP. The procedure is
described formally in Algorithm 1.

In Algorithm 1, note that in Step 2, the routes
C 01; C

0
2; : : : ; C

0
t are generated by an algorithm for the

CARP defined on G0 and hence satisfy the capacity
constraint. The definition of the demands of G0 and
the construction of P1; P2; : : : ; Pt in Step 3 imply that
P1; P2; : : : ; Pt also satisfy the capacity constraint.

Next we analyze the approximation ratio of Algorithm
NMCARP.
/.

Lemma 1 ZNMCARP.
/ 6 
Z�n .
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Algorithm 1 NMCARP(


 )
Step 1: Construct a new graph G0 D .V 0; E0/ from G D .V;E/

with V 0 D fdg [ .V nD/, where d represents the single depot,
and each edge fv;wg 2 E corresponds to an edge fv0; w0g 2
E0 with the same cost and demand, such that8̂̂̂<̂

ˆ̂:
v0 D v;w0 D w; if v;w 2 V nDI
v0 D v;w0 D d; if v 2 V nD;w 2 DI
v0 D d;w0 D w; if v 2 D;w 2 V nDI
v0 D w0 D d; if v;w 2 D:

Note that the last case implies that fv0; w0g is a self-loop in G0.
Step 2: Run any 
-approximation algorithm for the CARP

defined on G0 to produce a solution composed of t routes
C 0

1
; C 0

2
; : : : ; C 0t starting from and terminating at the depot d .

Without loss of generality, we suppose that each C 0
i

includes d
exactly twice�:

Step 3: For each i D 1; 2; : : : ; t , we replace each edge fv0; w0g of
C 0

i
with the original edge fv;wg inG corresponding to fv0; w0g

to produce a route Pi in G whose both end vertices are depots
in D (although they may be different).

Step 4: Output the routes P1; P2; : : : ; Pt .

Note:� Otherwise, one can break C 0
i

into several routes including
d exactly twice.

Proof Suppose that Z�.G0/ is the optimal value
of the CARP defined on G0 in Step 2 of Algorithm 1.
Any feasible solution, say P , to the nonfixed destination
MCARP can be transformed into a feasible solution, say
C, to the CARP defined on G0 by contracting the depots
in D into d . By the definition of G0, the cost of C is no
more than that of P , which implies that Z�.G0/ 6 Z�n .
Also due to the definition of G0, the total cost of the
routes C 01; C

0
2; : : : ; C

0
t cannot exceed 
Z�.G0/. Note

that in Step 3 the total cost of the routes P1; P2; : : : ; Pt
is equal to the total cost of the routes C 01; C

0
2; : : : ; C

0
t .

Consequently, we have

ZNMCARP.
/ D

tX
iD1

c.Pi / 6 
Z
�.G0/ 6 
Z�n :

�
The results in Refs. [2, 25, 26] indicate that for the

CARP there is a .2 C .1 � 2=Q/˛0/-approximation
algorithm, which we call UITP.˛0/, and for the
equal-demand case there exists a (1 C .1 � 1=Q/˛0)-
approximation algorithm, which we refer to as ITP.˛0/.
As before, ˛0 denotes the best available approximation
ratio for the rural postman problem. The algorithm
UITP.˛0/ works as follows. First it generates an ˛0-
approximate rural postman tour (a rural postman tour is
a closed walk traversing all the required edges at least
once) and then partitions this tour properly into edge
disjoint sub-walks. Eventually, for each sub-walk the

algorithm connects the depot with each of the two end
vertices of this sub-walk by the shortest path between
them.

By applying Lemma 1 we have the following result.
Theorem 1 For the nonfixed destination MCARP,

there exists a .2 C .1 � 2=Q/˛0/-approximation
algorithm. If the demands are equal, there is a .1 C
.1 � 1=Q/˛0/-approximation algorithm.

Remark 1 It can be seen that our algorithm has
a very simple description, thanks to the adoption of
the 
-approximation algorithm for the CARP without
triangle inequality. More exactly, when obtaining the
graph G0 we simply contract the depot set without
changing the costs and demands of the edges. In contrast,
after contracting the depot set, the UITPn.˛/ heuristic
for the nonfixed destination CVRP in Ref. [28] needs
to modify the edge costs by determining the shortest
paths between all pairs of vertices in G0 and adds some
dummy edges. This is because the algorithm UITPn.˛/
uses the UITP.˛/ heuristic for the CVRP with triangle
inequality, but the edge costs in G0 may violate the
triangle inequality.

4 Fixed Destination MCARP

We now deal with the (fixed destination) MCARP where
all the routes must start from and end at the same depot.

Our algorithm MUITP.˛0/ (see Algorithm 2) for
the MCARP is obtained by modifying the algorithm
NMCARP.
/ as follows. First, we substitute the above-
mentioned algorithm UITP.˛0/ for the 
 -approximation
algorithm in Step 2 in Algorithm 2. Then we adjust the
solution constructed in Step 4 in Algorithm 2 to produce
a feasible solution for the MCARP.

In Algorithm 2, one can see that in Step 2 the routes
C 01; C

0
2; : : : ; C

0
t are produced by the algorithm UITP.˛0/

for the CARP defined on G0 and hence satisfy the
capacity constraint. The definition of the demands of
G0 in Step 1 and the construction of C1; C 02; : : : ; Ct in
Step 4 imply thatC1; C 02; : : : ; Ct also satisfy the capacity
constraint.

By definition, we have

c.Pi / D cs.d
.i/
1 ; v

.i/
1 /C

ri�1X
hD1

c.v
.i/

h
; v
.i/

hC1
/C

cs.v
.i/
ri
; d

.i/
2 /:

To analyze the approximation ratio of the algorithm
MUITP.˛0/, we use L� to denote the cost of the optimal
rural postman tour with respect to G0 in Step 2 in
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Algorithm 2 MUITP(˛̨̨0)
1:Step 1: Do the same as in Step 1 of Algorithm 1 to obtain a

new graph G0 D .V 0; E0/ from G D .V;E/ with V 0 D
fdg [ .V nD/, where d represents the single depot.

2:Step 2: Run the algorithm UITP.˛0/ for the CARP defined on
G0 to produce a solution with t routes C 0

1
; C 0

2
; : : : ; C 0t starting

from and terminating at the depot d . As before we assume
without loss of generality, each C 0

i
includes d exactly twice.

3:Step 3: Do the same as in Step 3 of Algorithm 1 to produce
routes P1; P2; : : : ; Pt in G whose both end vertices are
depots in D.

4:Step 4: For each i D 1; 2; : : : ; t , according to
algorithm UITP.˛0/, Pi takes the following form:
d

.i/

1
; P.d

.i/

1
; v

.i/

1
/; v

.i/

1
; v

.i/

2
; : : : ; v

.i/
ri
; P.v

.i/
ri
; d

.i/

2
/; d

.i/

2
;

where d .i/

1
; d

.i/

2
2 D and P.d .i/

1
; v

.i/

1
/ (P.v.i/

ri
; d

.i/

2
/) is

the shortest path between d .i/

1
(v.i/

ri
/ and v.i/

1
(d .i/

2
), and

v
.i/

h
2 V nD (h D 1; 2; : : : ; ri ). We modify Pi to generate

Ci in the following way: if d .i/

1
and d

.i/

2
are identical,

then Pi is already feasible and we simply define Ci D Pi ;
otherwise Ci is redefined as8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

d
.i/

1
; P.d

.i/

1
; v

.i/

1
/; v

.i/

1
; v

.i/

2
; : : : ; v

.i/
ri
; P.v

.i/
ri
; d

.i/

1
/; d

.i/

1
;

if cs.d
.i/

1
; v

.i/

1
/C cs.v

.i/
ri
; d

.i/

1
/ 6

cs.d
.i/

2
; v

.i/

1
/C cs.v

.i/
ri
; d

.i/

2
/I

d
.i/

2
; P.d

.i/

2
; v

.i/

1
/; v

.i/

1
; v

.i/

2
; : : : ; v

.i/
ri
; P.v

.i/
ri
; d

.i/

2
/; d

.i/

2
;

if cs.d
.i/

1
; v

.i/

1
/C cs.v

.i/
ri
; d

.i/

1
/ >

cs.d
.i/

2
; v

.i/

1
/C cs.v

.i/
ri
; d

.i/

2
/ :

5:Step 5: Output the routes C1; C2; : : : ; Ct .

Algorithm 2. That is, L� indicates the length of the
shortest closed walk in G0 containing d and all required
edges. Let L.˛0/ be the cost of an ˛0-approximate rural
postman tour used by UITP.˛0/. Obviously, L.˛0/ 6
˛0L

�. Furthermore, due to UITP.˛0/ it holds that
tX
iD1

ri�1X
hD1

c.v
.i/

h
; v
.i/

hC1
/ 6 L.˛0/:

This is because Qi D v
.i/
1 ; v

.i/
2 ; : : : ; v

.i/
ri (i D 1; 2; : : : ;

t) is a consecutive segment along the ˛0-approximate
rural postman tour used by UITP.˛0/ and all Qi ’s are
edge disjoint.

Now we can prove the following result.
Lemma 2 ZMUITP.˛0/ 6 .2C .2 � 2=Q/˛0/Z�.
Proof Similarly to the analysis of the algorithm

ITPf .˛/ for the MCVRP in Ref. [28], one can deduce
that c.Ci / 6 c.Pi / C

Pri�1

hD1
c.v

.i/

h
; v
.i/

hC1
/. Thus we

have

ZMUITP.˛0/ D

tX
iD1

c.Ci / 6

tX
iD1

c.Pi /C

tX
iD1

ri�1X
hD1

c.v
.i/

h
; v
.i/

hC1
/ 6

�
2C

�
1 �

2

Q

�
˛0

�
Z�n C L.˛0/ :

Since Z�n 6 Z
� and L.˛0/ 6 ˛0L� 6 ˛0Z�, the proof

is completed. �
By replacing algorithm UITP.˛0/ with ITP.˛0/ in

Algorithm 2, we can derive an approximation algorithm
for the equal-demand MCARP whose approximation
ratio is at most 1C .2� 1=Q/˛0. In a nutshell, we have
shown the following result for the MCARP.

Theorem 2 There is a .2 C .2 � 2=Q/˛0/-
approximation algorithm for the MCARP. In particular,
for the equal-demand problem there exists a .1C .2 �
1=Q/˛0/-approximation algorithm.

5 Multi-Depot Rural Postman Problem

In this section, we discuss the Multi-depot Rural
Postman Problem (MRPP), i.e., a special case of the
MCARP with infinite vehicle capacity. Let k D jDj
be the number of depots. In essence, the MRPP is
to determine at most k closed walks covering all the
required edges, such that each closed walk starts from
and terminates at a distinct depot and the total cost of
the walks is minimized.

In the rest of this section, we suppose that the input
graph G D .V;E/ has the following two properties:
(1) V D V.R/ [D. That is, each vertex is either an end
vertex of some required edge or a depot; (2) V.R/\D D
∅ and any two required edges do not contain common
end vertices. This is without loss of generality because
the second property holds by splitting properly some
vertices and then the first property can be guaranteed
by considering an equivalent instance defined on the
reduced graph QG D .V . QG/;E. QG// of G. Here the
vertex set of QG is V. QG/ D V.R/ [D and the edge set
E. QG/ of QG consists ofR andE 0 D V. QG/�V. QG/, where
the length of any edge in R is the same as in G and the
length of each edge e D fu; vg 2 E 0 equals the length
of the shortest path between u and v in G (see Refs. [2],
[30], and [31] for more details). Furthermore, we also
assume that k > 2. Because the MRRP with k D 1

is exactly the rural postman problem, which admits an
approximation algorithm with ratio 3/2 as mentioned in
the introduction.

Next we describe two algorithms for the MRPP. In
the end, we will choose the better solution produced by
these two algorithms. The first one is given below and an
example demonstrating the steps of this algorithm can
be found in Fig. 1.

It is not hard to see that Algorithm 3 runs in
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Fig. 1 Example for Algorithm MRPP1. The dotted lines indicate the perfect matching M in (d), the dashed lines denote the
shortest paths corresponding to the matching edges in M in (e), and the dotted lines represent the copies of the odd edges in (f).

polynomial time and outputs a feasible solution to the
MRPP.

Algorithm 3 MRPP1
1:Step 1: Suppose that

R D ffu1; v1g; fu2; v2g; : : : ; fujRj; vjRjgg:

In G, we contract each required edge fui ; vi g 2 R into a
vertex ni to obtain a graph G1 with vertex set N [D where
N D fni j i D 1; 2; : : : ; jRjg. Then we derive a complete
graph NG on N [ D by setting the cost Nc.u; v/ of the edge
fu; vg to be the length of the shortest path between u and v
in G1.

2:Step 2: For the graph NG, find a minimum cost constrained
spanning forest F , i.e., a minimum cost spanning forest that
contains exactly k trees and each tree of the forest contains a
distinct depot>.

3:Step 3: Compute a minimum cost perfect matchingM on the set
of odd degree vertices in F . Adding M to F derives an even
graph F1 with at most k connected components. Replace
each edge of F1 by the shortest path in G1 to derive another
even graph F2.

4:Step 4: In F2, we uncontract the vertices in N as the original
required edges of G to generate a graph F3. For each edge
fui ; vi g 2 R corresponding to ni 2 N , if both ui and vi

are of odd degree in F3, we call fui ; vi g an odd edge and
replicate fui ; vi g

?. This will result in an even graph OF with
p 6 k connected components.

5:Step 5: For j D 1; 2; : : : ; p, compute the Eulerian tour Cj

of the j -th connected components of OF . Return the routes
C1; C2; : : : ; Cp .

Notes: > F can be found in polynomial time, as mentioned by Xu et al.[32].
? Note that the degrees of ui and vi have the same parity since F2 is an even
graph.

Let C � be the optimal solution. Next we evaluate the
performance of the algorithm. We need the following
result by Xu et al.[32].

Lemma 3 (Xu et al.[32]) Given a complete graph QG
with edge cost obeying the triangle inequality and k > 2
depot vertices, if QF is the minimum cost constrained
spanning forest of QG and QM is the minimum cost perfect
matching on the set of odd degree vertices in QF , then the
total cost of QF and QM is at most 2 � 1=k times the total
cost of any Qp 6 k cycles covering all the vertices such
that each cycle contains a distinct depot.

Now we can give an upper bound on the total cost of
the routes C1; C2; : : : ; Cp .

Lemma 4 If k > 2,
pX
jD1

c.Cj / 6 .2 �
1

k
/c.C �/C

1

k
cR.C

�/:

Proof It can be seen that all the non-required edges
in C � correspond to a constrained spanning forest of NG,
which implies that c.F / 6 c.C �/� cR.C �/. Moreover,
the non-required edges in C � also contain at most k
cycles covering all the vertices in NG with each cycle
including a distinct depot. Using Lemma 3, this leads to

c.F2/ D c.F1/ D c.F /C c.M/ 6�
2 �

1

k

�
.c.C �/ � cR.C

�// (1)

We proceed to derive an upper bound on the total cost
of the odd edges in R added in Step 4 in Algorithm 3.
Since F3 is obtained by uncontracting the edges in R
from F2, we have c.F3/ 6 c.F2/C c.R/. To produce
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OF we add a copy of each odd edge in R, which implies
c. OF / 6 c.F3/C c.R/ 6 c.F2/C 2c.R/ (2)

Therefore, Pp
jD1 c.Cj / D c.

OF / 6�
2 �

1

k

�
.c.C �/ � cR.C

�//C 2c.R/ 6�
2 �

1

k

�
c.C �/C

1

k
cR.C

�/;

where the first inequality follows Formulas (1) and (2),
and the second inequality holds by the fact that c.R/ 6
cR.C

�/. �
Our second algorithm for the MRPP is described

in Algorithm 4. An example illustrating the steps of
Algorithm 4 is given in Fig. 2.

It is easy to see that Algorithm 4 runs in polynomial
time and returns a feasible solution to the MRPP.

As before, we use C � to denote the optimal solution.

Algorithm 4 MRPP2
Step 1: Construct a weighted graph G0 D .V [ D0; E0/

from G, where D0 D fd 0
1
; d 0

2
; : : : ; d 0

k
g is a copy of D D

fd1; d2; : : : ; dkg with d 0
i

corresponding to di and E0 D

E1 [E2 with

E1 D ffu; vg j at least one of u; v is not from D [D0g

and
E2 D ffdi ; d

0
i g j i D 1; 2; : : : ; kg:

The weight of each edge fu; vg equals the length of the
shortest path between u and v in G, while the weight of
each edge in E2 is defined as zero.

Step 2: Find a minimum weight perfect matchingM forG0. Set
M0 DM \E2, andM1 DM nM0. Each edge fu; vg 2M1

corresponds to a shortest path P.u; v/ from u to v in G.
Adding P.u; v/ for all u and v to the graph H0 D .V;R/

derives a spanning subgraphH ofG. Assume thatH contains
q connected components F1; F2; : : : ; Fq , each of which is
an Eulerian graph, and the first l 6 k components include at
least one depot.

Step 3: Find a minimum cost non-required edge subset E0, such
that for any vertex v 2 V nD there is a path between v and
some depot. This can be done by the following Kruskal-like
procedure. Starting with F1; F2; : : : ; Fq we keep adding the
least cost edge between two different connected components,
such that at least one of the components does not contain a
depot. The procedure is terminated when there are exactly l
connected components which constitute a spanning subgraph
H1. By doubling the edges ofE0 inH1, we derive a spanning
subgraph H2 composed of l connected components, say
F 0

1
; F 0

2
; : : : ; F 0

l
. Each of these components contains a depot

and is Eulerian. Let C 0
j

(j D 1; 2; : : : ; l) be the Eulerian tour
of F 0

j
.

Step 4: Return the routes C 0
1
; C 0

2
; : : : ; C 0

l
.

The total cost of the routes produced by Algorithm 4 is
bounded in the following lemma.

Lemma 5
Pl
jD1 c.C

0
j / 6 3c.C

�/ � 2cR.C
�/.

Proof Note that there may be multiple copies of
required edges of R in C �, we fix one copy of each edge
of R in C �. Then all the paths in C � between the end
vertices of the fixed copies of required edges correspond
to a perfect matching of G0 in Step 1 in Algorithm 4.
The weight of this perfect matching is at most c.C �/ �
c.R/. Due to the optimality of M , this implies that
c.M/ 6 c.C �/ � c.R/. It holds that c.H/ D c.M/C

c.R/ 6 c.C �/ by definition. It can be verified that the
non-required edges in C � can connect the connected
components F1; F2; : : : ; Fq into at most l components,
such that there is a path between any non-depot vertex
and some depot. This means that c.E 0/ 6 c.C �/ �

cR.C
�/. According to the construction of Steps 3 and 4

in Algorithm 4, one can see that
lX

jD1

c.C 0j / 6 c.H2/ D c.H/C 2c.E
0/ 6

c.C �/C 2.c.C �/ � cR.C
�// D

3c.C �/ � 2cR.C
�/: �

Due to Lemmas 4 and 5, the cost of the better solution
between Algorithm MRPP1 and Algorithm MRPP2 is
at most

min
�
.2 �

1

k
/c.C �/C

1

k
cR.C

�/; 3c.C �/�2cR.C
�/

�
6�

2 �
1

2k C 1

�
c.C �/ (3)

which holds by equality if cR.C �/ D
k C 1

2k C 1
c.C �/.

Theorem 3 There is a .2 � 1
ı
.2k C 1//-

approximation algorithm for the MRPP.

6 Multi-Depot CARP on a Line

In this section, we deal with the MCARP/MCVRP
defined on a line graph. We show that the equal-demand
MCARP on a line can be solved in O.n2/ time. For
the MCVRP on a line, we give the first 2-approximation
algorithm.

Let L D .V;E/ with V D fv1; v2; : : : ; vng and
E D f.vi ; viC1/ j i D 1; 2; : : : ; n � 1g

be the underlying line graph. Assume that the depots
are given by d1 D vi1 ; d2 D vi2 ; : : : ; dk D vik with
i1 < i2 < � � � < ik . One can observe that there is an
optimal solution in which the demands between dj�1
and dj are always served by the vehicles located at either
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Fig. 2 Example for Algorithm MRPP2. Only edges in E2 are depicted in (b), each vertex d 000i 222 D000 has been merged with di 222 D
and the dotted lines indicate the edges in M1 in (c), the dashed lines denote the shortest paths corresponding to the matching
edges in M1 in (d), the dotted lines represent the edges in E000 and their corresponding copies in (e).

dj�1 or dj for j D 1; 2; : : : ; kC 1 (for convenience, we
define d0 D v1 and dkC1 D vn as two dummy depots).
This is true since otherwise we can break the routes of the
vehicles at the depots and reassign the new routes to the
vehicles to satisfy the above property without increasing
the total cost. Therefore, the MCARP on a line can be
reduced to two special cases of the same problem. The
first one is called the CARP on a half-line, where the
single depot is located at one of the two end points of
the line graph. The second one is called the 2-Depot
CARP on a line, where there are only two depots located
at the two end points of the line graph. As mentioned
in the introduction, the CVRP on a half-line cannot be
approximated within ratio 3/2 unless P D NP[23].

In the following, we first consider the equal-demand
case. Archetti et al.[24] showed that the equal-demand
CVRP on a half-line can be solved in O.n/ time by the
longest distance rule. That is, the first vehicle serves
the farthest Q vertices. After that the second vehicle
serves the farthest Q unserved vertices, and so on. The
last vehicle may serve less than Q vertices. Clearly, the
same rule can also solve the equal-demand CARP on
a half-line where the demands are located at the edges

instead of the vertices.
As for the equal-demand 2-Depot CARP on a line, we

observe that there is an optimal solution, such that the
routes of the vehicles from depot d1 can never intersect
with the routes of the vehicles from depot d2 (but may
have at most one common vertex). This can be verified
by a simple exchange argument. As a consequence,
the problem can be reduced to optimally partition the
line into two edge disjoint half-lines and solve two
subproblems defined on these two half-lines, separately.
Since there are at most n such partitions and the half-
line problem is solvable in O.n/ time. Thus, the equal-
demand 2-Depot CARP on a line can be solved inO.n2/
time.

As mentioned before, the equal-demand MCARP on
a line can be reduced to the equal-demand CARP on a
half-line and the equal-demand 2-Depot CARP on a line.
Therefore, we have the following result.

Theorem 4 The equal-demand MCARP on a line
can be solved in O.n2/ time.

Now we consider the general case for the MCVRP
on a line. We assume that d.v/ 6 Q for any v 2 V ,
otherwise there exists no feasible solution. As before,
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we need only focus on the CVRP on a half-line and the
2-Depot CVRP on a line. For the CVRP on a half-line,
Wu and Lu[23] gave a 5=3-approximation algorithm.

To devise an approximation algorithm for the 2-Depot
CVRP on a line, we first show how to solve optimally a
relaxed problem, called the split-delivery 2-Depot CVRP
on a line, where the demands of the vertices can be
split and satisfied by different routes of the vehicles.
By replacing each vertex vi with a path consisting of
d.vi / unit-demand vertices v1i ; v

2
i ; : : : ; v

d.vi /
i connected

by d.v/ � 1 zero-cost edges in L D .V;E/, we
can derive a line graph L0 D .V 0; E 0/ with V 0 DSn
iD1fv

1
i ; v

2
i ; : : : ; v

d.vi /
i g and

E 0 D .
Sn
iD1ffv

1
i ; v

2
i g; fv

2
i ; v

3
i g; : : : ;

fv
d.vi /�1
i ; v

d.vi /
i gg/

S
.
Sn�1
iD1fv

d.vi /
i ; v1iC1g/:

Then the split-delivery 2-Depot CVRP on a line
defined on L D .V;E/ is equivalent to the equal-
demand 2-Depot CVRP on a line defined on L0 D

.V 0; E 0/, which can be solved using the above-
mentioned algorithm�. After that, we merge the vertices
connected by zero-cost edges to obtain a set of m routes
C1; C2; : : : ; Cp; CpC1; : : : ; Cm for the split-delivery
problem, where C1; C2; : : : ; Cp (CpC1; CpC2; : : : ; Cm)
are the routes for the vehicles from the left (right)
depot, such that the vertices served by Cj are on the
left of those served by Cl for any j < l . Since the
split-delivery problem is a relaxation of the original
problem, we have

Pm
jD1 c.Cj / 6 Z�. For each route

Cj , only the first and the last vertex served by it may
have split demands and the demand of each vertex is
split at most once, since we use the longest distance
rule and d.v/ 6 Q by assumption. Thus, for each

� One may notice that this transformation may yield only a pseudo-polynomial
algorithm for the split-delivery problem since there are

P
v2V d.v/ possible

partitions of the line graph. However, we will show that we need only
considerO.n2/ partitions to find the optimal solution for the split-delivery
problem. Given any partition � of the line graph, which can be represented
by an edge fu; vg 2 E 0. Let C1; C2; : : : ; Cp (CpC1; CpC2; : : : ; Cm) be
the routes generated by the longest distance rule for the split-delivery problem
defined on the half-line between the left end vertex and u (the right end vertex
and v), such that the vertices served by Cj are on the left of those served by
Cl for any j < l . By properly shifting the edge fu; vg to the right we can
obtain another partition � 0 whose corresponding routes are C 01; C

0
2; : : : ; C

0
p

(C 0pC1; C
0

pC2; : : : ; C
0
m0 ) for the vehicles from the left (right) depot such

that m0 6 m and
Pm0

jD1 c.C
0

j
/ 6

Pm
jD1 c.Cj /. Moreover, the routes

C 01; C
0
2; : : : ; C

0
p; C

0
pC1; C

0
pC2; : : : ; C

0
m0 also satisfy at least one of the

following conditions: (1) C 01 serves exactlyQ vertices; (2) there exists some
j with 1 6 j 6 p, such that the first vertex served inCj is vd.vi /

i
for some

i ; (3) there exists some j with pC 1 6 j 6 m0, such that the first vertex
served in Cj is v1

i
for some i . Clearly, the number of partitions � 0 whose

corresponding routes satisfy at least one of these three conditions is at most
O.n2/. To sum up, the split-delivery problem can be solved inO.n3/ time.

j D p; p � 1; : : : ; 1, we can add a route C 0j starting
from the left depot to serve solely the first vertex of Cj
and remove the demands of the first vertex and the last
vertex (if 2 6 j 6 p) of Cj to generate another route
C 00j . For each j D p C 1; p C 2; : : : ; m, we add a route
C 0j starting from the right depot to serve solely the first
vertex of Cj and remove the demands of the first vertex
and the last vertex (if pC1 6 j 6 m�1) of Cj to derive
another route C 00j . Clearly, maxfc.C 0j /; c.C

00
j /g 6 c.Cj /

for any j D 1; 2; : : : ; m. Moreover, one can see that
the 2m new routes C 01; C

00
1 ; C

0
2; C

00
2 ; : : : ; C

0
m; C

00
m form a

feasible solution of the original problem whose cost is
mX
jD1

.c.C 0j /C c.C
00
j // 6 2

mX
jD1

c.Cj / 6 2Z
�:

To sum up, we obtain the following result.
Theorem 5 The MCVRP on a line admits a 2-

approximation algorithm.

7 Experiment

In this section, we conduct numerical experiments on
our algorithms for the MRPP. We test the algorithms
on randomly generated instances to investigate the
average performance, which is then compared with the
theoretical worst-case performance. The experiments
are performed on a desktop computer with 3.6 GHz
CPU and 16 GB RAM. All the algorithms are
implemented with VS 2022 (C++ 17). Besides, we
use the COIN-OR LEMON library for basic graph
operations. The source code can be found at https://
github.com/agamemnon314/mdcarp.

7.1 Data generation

Given the number jDj of depots and the number jRj of
required edges, we generate the random instances by the
following steps:

Step 1: Generate a complete graph with 2.jDjC jRj/
vertices;

Step 2: Randomly select jDj vertices as depots and
jRj edges R0;

Step 3: For each edge fu; vg 2 R0, split the graph
into three new edges fu; u1g, fu1; v1g, and fv1; vg, and
select the middle one as a required edge;

Step 4: For each edge e, assign an integer edge cost
c.e/ � U.0; 100/;

Step 5: Construct a new complete graph G D .V;E/
with V D V.R/[D and the edge cost between any two
vertices is defined as the length of the shortest path in
the graph obtained in Step 4.



Wei Yu et al.: Exact and Approximation Algorithms for the Multi-Depot Capacitated Arc : : : 925

7.2 Shortcut procedure

We introduce a shortcut procedure to further improve
the numerical performance of Algorithm MRPP1 and
Algorithm MRPP2. Let Csol be the better solution
returned by these two algorithms. We perform the
following steps to obtain a shortcut solution.

Go through each walk in Csol one by one, let e D
fv;wg be the current visiting edge and e0 D fu; vg be
the last visited edge, we consider the following cases:

Case 1: If both e and e0 are non-required edges, then
we make a shortcut by replacing e and e0 by a new edge
e00 D fu;wg;

Case 2: If e is a non-required edge and e0 is a
required edge already visited, then we make a shortcut
by replacing e and e0 by a new edge e00 D fu;wg;

Case 3: For all the other cases, no shortcut is
performed.

Note that the walks after shortcut still form a feasible
solution. And the total edge cost will not increase due to
the triangular inequality.

7.3 Lower bounds

For large-scale MRPP instances, it is hard to calculate
the optimal value. Thus, we use some theoretical lower
bound on the optimal value instead.

Let Csol be the solution before the shortcut, and OCsol
be the solution after the shortcut.

By Formula (3), we have

.2 �
1

2k C 1
/c.C �/ > c.Csol/;

c. OCsol/

.2 � 1
2kC1

/c.C �/
6
c. OCsol/

c.Csol/
;

c. OCsol/

c.C �/
6 .2 �

1

2k C 1
/
c. OCsol/

c.Csol/
(4)

In fact, this bound for the optimal solution can be
further improved. Because we can take advantage of

the actual value of the trees and matchings and required
edges used, which are unknown when analyzing the
approximation ratio.

Let ˛ D 2 � 1=k. By Formula (1), we have

c.C �/ >
c.F /C c.M/

˛
C c.R/:

To avoid confusion, we denoted the minimum cost
matching in Algorithm MRPP2 by M 0. By the proof
of Lemma 5, we have c.M 0/ 6 c.C �/ � c.R/ and
c.E 0/ 6 c.C �/ � cR.C �/ 6 c.C �/ � c.R/. Thus,

c.C �/ > maxfc.M 0/; c.E 0/g C c.R/;

c.C �/ > maxf
c.F /C c.M/

˛
; c.M 0/; c.E 0/g C c.R/ :

Therefore, it holds that
c.Csol/

c.C �/
6

c.Csol/

maxf c.F /Cc.M/
˛

; c.M 0/; c.E 0/g C c.R/
(5)

and
c. OCsol/

c.C �/
6

c. OCsol/

maxf c.F /Cc.M/
˛

; c.M 0/; c.E 0/g C c.R/
(6)

7.4 Experiment results

Table 1 shows the upper bounds of c.Csol /
c.C�/

and c. OCsol /
c.C�/

on instances of different sizes, where k is the number of
depots and n is the number of required edges. Oub D 2�
1
ı
.2k C 1/ is the theoretical upper bound by Lemma 5.

ub1 D
c.Csol/

maxf c.F /Cc.M/
˛

; c.M 0/; c.E 0/g C c.R/

is the upper bound before the shortcut in Formula (5)
and

ub2 D
c. OCsol/

maxf c.F /Cc.M/
˛

; c.M 0/; c.E 0/g C c.R/

is the upper bound after the shortcut in Formula (6). The
value of each entry represents the average solution value
of 100 random instances with a given size.

Table 1 Average upper bounds on the approximation ratio.

n
k D 2 k D 5 k D 10 k D 20

ub1 ub2
Oub ub1 ub2

Oub ub1 ub2
Oub ub1 ub2

Oub

50 1.48 1.13 1.8 1.54 1.15 1.91 1.52 1.14 1.95 1.54 1.14 1.98
100 1.46 1.14 1.8 1.49 1.12 1.91 1.52 1.12 1.95 1.51 1.12 1.98
150 1.44 1.13 1.8 1.49 1.12 1.91 1.52 1.13 1.95 1.52 1.13 1.98
200 1.45 1.12 1.8 1.49 1.12 1.91 1.52 1.13 1.95 1.52 1.13 1.98
250 1.44 1.12 1.8 1.50 1.13 1.91 1.51 1.12 1.95 1.51 1.12 1.98
300 1.44 1.12 1.8 1.49 1.12 1.91 1.51 1.12 1.95 1.51 1.12 1.98
350 1.45 1.12 1.8 1.49 1.12 1.91 1.50 1.12 1.95 1.51 1.12 1.98
400 1.44 1.12 1.8 1.48 1.12 1.91 1.51 1.12 1.95 1.51 1.12 1.98
450 1.44 1.12 1.8 1.48 1.12 1.91 1.50 1.12 1.95 1.51 1.12 1.98
500 1.44 1.12 1.8 1.49 1.12 1.91 1.50 1.12 1.95 1.51 1.12 1.98



926 Tsinghua Science and Technology, October 2023, 28(5): 916–928

By comparing the values of columns ub1, ub2, and
Oub, we can find that the performance of our algorithm is

much better than the theoretical upper bound on average.
For instances with a larger number of required edges,
ub2 is hardly affected by the number of depots. By
comparing the values of columns ub1 and ub2, we can
see that the shortcut procedure has a great effect on the
performance of the algorithm for the MRPP. Note that
the only difference between ub1 and ub2 is the shortcut
procedure.

7.5 Sensitivity analysis

In this section, we analyze how the performance of
the algorithm is affected by different parameters of the
inputs, which includes the number of depots, the number
of required edges, and the ratio between the cost of
required edges and non-required edges.

For the number of required edges, we calculate
the average approximation ratio upper bounds for 100
random instances with jRj ranging from 5 to 100. From
Fig. 3, we can observe that the value ub1 decreases
quickly when the number of required edges increases
from 5 to 20. After that, ub1 converges to around 1.45
which is much less than the theoretical value. At the
same time, we can see that ub2 converges to around 1.1
and is always much better than ub1.

For the number of depots, we compute the average
approximation ratio upper bounds for 100 random
instances with jDj ranging from 2 to 20. As shown in
Fig. 4, the solution without the shortcut (ub1) is already
better than the theoretical worst-case value. While the
solution with the shortcut (ub2) is always much better
than the theoretical worst-case value and ub1. Besides,
we can observe that both ub1 and ub2 are hardly affected
when the number of depots increases.

For the parameter of the ratio between the cost of

Fig. 3 Average approximation ratio according to the
number of required edges.

Fig. 4 Average approximation ratio according to the
number of depots.

non-required and required edges, we reckon the average
approximation ratio upper bounds for 100 random
instances with the cost ratio ranging from 0.1 to 10.
As demonstrated in Fig. 5, when the ratio is closed to
zero, ub1 is close to the theoretical value. Both ub1 and
ub2 decrease quickly with the increment of the cost ratio.
Note that ub2 almost converges to the optimal value, as
expected, since both the solution of our algorithm and
the optimal solution will not contain any required edge
twice.

In summary, we find that the cost of the solutions
before the shortcut is always close to the theoretical
value from below. And the shortcut can help to improve
the solution quality considerably. In addition, the key
factor that affects the average solution quality after the
shortcut is the ratio between required edge costs and
non-required edge costs.
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