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Decoupled Two-Phase Framework for Class-Incremental
Few-Shot Named Entity Recognition

Yifan Chen, Zhen Huang�, Minghao Hu�, Dongsheng Li, Changjian Wang, Feng Liu, and Xicheng Lu

Abstract: Class-Incremental Few-Shot Named Entity Recognition (CIFNER) aims to identify entity categories that

have appeared with only a few newly added (novel) class examples. However, existing class-incremental methods

typically introduce new parameters to adapt to new classes and treat all information equally, resulting in poor

generalization. Meanwhile, few-shot methods necessitate samples for all observed classes, making them difficult

to transfer into a class-incremental setting. Thus, a decoupled two-phase framework method for the CIFNER task

is proposed to address the above issues. The whole task is converted to two separate tasks named Entity Span

Detection (ESD) and Entity Class Discrimination (ECD) that leverage parameter-cloning and label-fusion to learn

different levels of knowledge separately, such as class-generic knowledge and class-specific knowledge. Moreover,

different variants, such as the Conditional Random Field-based (CRF-based), word-pair-based methods in ESD

module, and add-based, Natural Language Inference-based (NLI-based) and prompt-based methods in ECD module,

are investigated to demonstrate the generalizability of the decoupled framework. Extensive experiments on the three

Named Entity Recognition (NER) datasets reveal that our method achieves the state-of-the-art performance in the

CIFNER setting.
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1 Introduction

Named Entity Recognition (NER) is a fundamental task
in natural language processing that aims to identify and
classify entities in a given sentence. Recently, deep
neural networks have achieved promising performance
in NER tasks[1–6]. However, these methods typically
rely on large-scale labeled samples, and entity categories
cannot be modified in real-time. Contrarily, humans
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can recognize new entities incrementally while retaining
previous knowledge[7, 8] and require only a few examples
per class. To fill this research gap, we study a practical
yet challenging NER setting called Class-Incremental
Few-Shot NER (CIFNER) (see Fig. 1). Different from
traditional NER tasks, CIFNER requires the following:
(1) the NER model would be first trained on base classes
with enough training examples; (2) after training with
only a few annotated examples on novel classes, the
model is expected to perform well on all seen classes.

Recent research has divided the CIFNER task into
two parts: Class-Incremental NER (CINER)[9, 10], which
adds new classifiers or extends the dimension of old
classifier to adapt to new entity classes[10]; and few-
shot NER[11–13], which usually retrains the model with
all seen data through meta-learning or prompt learning.
However, these two group methods cannot be used
directly on CIFNER: (1) current CINER methods
introduce new parameters to fit novel entity classes[10],
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Fig. 1 Overview of the CIFNER task. Different from
CINER, the first step has enough data to train, whereas the
incremental steps are all few-shot.

but these parameters cannot be trained well with only a
few new data. Moreover, most CINER methods cannot
distinguish which part of parameters should be kept and
which part should be updated repeatedly, given that they
view knowledge added at the current step equally; (2)
few-shot NER methods presume that a class can appear
multiple times in different episodes[14] or all classes
arrive simultaneously[15], which are different from the
class-incremental few-shot scenario.

To solve the above problems, we propose a Decoupled
Two-Phase Framework (DTPF), which contains Entity
Span Detection (ESD) and Entity Class Discrimination
(ECD) to learn class-generic knowledge and class-
specific knowledge individually. The ESD module only
extracts spans from given sentences to avoid importing
new parameters. This module can gain class-generic
knowledge because the different classes usually have
similar boundary feature. The ECD module is dedicated
to classifying extracted entity spans into different classes
to specifically learn class-specific knowledge. For
both two phases, we adopt parameter-cloning and
label-fusion methods to prevent catastrophic forgetting
without retaining old data. Moreover, to verify the
generalizability of our proposed framework, we explore
the conditional random field-based (CRF-based) method
and the word-pair-based method in the ESD phase
and try three variants in the ECD phase, namely add-
based method, natural language inference-based (NLI-
based) method and prompt-based method. Our research
contributions in this paper can be summarized as follows:
�We propose a DTPF for the CIFNER task to learn

class-generic knowledge and class-specific knowledge
respectively.
�We explore two variants for the ESD phase and three

for the ECD phase, proving the generalizability of our
proposed framework.

� We perform substantial experiments on the three
NER datasets (Conll2003[16], OntoNotes[17], and Few-
NERD[14]). The results show that our proposed approach
outperforms existing baselines by a significant margin.

The rest of the paper is organized as follows: Section
2 reviews existing NER models about CIFNER. Section
3 introduces the problem and the definition of CIFNER
and describes our proposed framework in detail. Section
4 presents the experimental results. Section 5 concludes
this paper.

2 Related Work

Class-Incremental NER. Incremental learning (also
called lifelong learning, continual learning)[18] aims to
learn knowledge from a sequence of tasks. Incremental
learning has two types: (1) Task-Incremental Learning
(TIL) is to learn tasks with different task classes
sequentially and predict with task indexes[19, 20]. (2)
Class-Incremental Learning (CIL)[21–23] focuses on
distinguishing all the seen classes after learning from
different subtasks with the same task class. Recently,
knowledge distillation has been adopted for CINER[9, 10]

to alleviate the catastrophic forgetting problem[7, 8].
However, existing methods of CINER require large-scale
labeled data of the novel classes to train the model, which
is impractical for real-world applications.

Few-Shot NER. Few-shot learning[24–26] is usually
modeled as an N-way K-shot problem, and studies
on few-shot NER typically adopt meta-learning-based
approaches at either the token level[13, 27] or the span
level[12, 28]. However, these meta-learning methods
with episode training assume that a class can appear
multiple times in different episodes. Recently, prompt
learning[29, 30] has made great progress in few-shot
learning, which introduces prompt information to make
better utilize of the structure and prior knowledge of
the pre-trained model. However, few-shot NER based
on prompt learning[15, 31] presumes all the classes arrive
simultaneously, and the dataset has the labels for all
classes. As a result, prompt learning is also unable to
meet the needs of categories that change over time.

Class-Incremental Few-Shot NER. Class-
incremental few-shot learning[32–34] aims to identify
entities of the categories that have appeared with only
a few newly added (novel) class examples, which has
recently received great attention. In NER, Wang et
al.[35] designed a distillation method for the CRF-based
NER models and used data-free distillation to transfer
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knowledge from the previous model to the current model.
In contrast to this method, we seek a general method
that applies not only to the CRF-based model but also
to models based on other NER decoders, such as the
word-pair decoder[36]. The NER model is decoupled into
two easier phases to explicitly distinguish class-generic
knowledge from class-specific knowledge, and several
variants are investigated to validate the generalizability
of our proposed framework.

In summary, existing works in CINER that have
sufficient training data are primarily concerned with
preventing catastrophic forgetting of previous entity
knowledge when the model is trained on new tasks. Few-
shot learning works almost entirely on prior knowledge
to reduce labeled data in training. In contrast to
these works, we aim to solve a more challenging and
practical problem, CIFNER, which requires the model to
incrementally learn novel entity information and retain
previous entity knowledge from a sequence of few-shot
NER tasks incrementally by using a decomposed two-
phase framework.

3 Methodology

In this section, the definition of the CIFNER problem
is formalized, and our proposed two-phase approach is
introduced in detail.

3.1 Problem definitions

CIFNER is defined as follows. Assume there is a
sequence of subtasks T D .T1; T2; : : : ; Tn/, where each

subtask Tt has its dataset Dt splitting into a training set
Dtrain

t and a validation set Dval
t . Dt contains samples

.Xd ; Yd /; d 2 Œ1; jDt j� and the labels in Yt belong
to the incremental classes set C new of the subtask
Tt . Particularly, the first subtask T1 has sufficient
data for training, whereas the subsequent new tasks
are few-shot. The classes for all the previous t � 1
subtasks are denoted asCt�1 D fc1; c2; : : : ; cog, and the
incremental classes for the new subtask Tt are denoted
as C new D fcoC1; coC2; : : : ; coCpg. Thus, Ct D Ct�1C

C new D fc1; c2; : : : ; coCpg means the whole entity
classes appearing at the previous t subtasks. Then, we
suppose the model M1 performs well for subtask T1

with sufficient data. At the time step t , the model Mt

is trained on the few data of Tt and expected to have
a good performance on C new for Tt and Ct�1 for the
previous t � 1 subtasks.

3.2 Overall architecture

To design a general CIFNER framework and to learn
class-generic and class-specific knowledge from various
angles, we build a decoupled two-phase NER framework
to solve the CIFNER task. The first phase is ESD, which
extracts spans from the row sentence to consummate
the class-generic knowledge. The second phase is
ECD, which divides the extracted spans into different
classes to distinguish class-specific knowledge. To avoid
catastrophic forgetting, we use parameter-cloning and
label-fusion methods in both phases. Furthermore, we
test several variants to ensure that our framework is
general. Figure 2 depicts a high-level overview of our

Fig. 2 Overall architecture of the proposed approach for CIFNER. The first phase of ESD judges whether the candidate span
is an entity, and the second phase of ECD determines the type of the extracted entity.
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decoupled framework.

3.3 Entity span detection

The ESD module, which takes row sentences as input
and predicts candidate entity spans, aims to learn
class-generic knowledge of entity boundaries. Given a
sentence X D fx1; x2; : : : ; xng, the ESD module aims
to find entity spans sij 2 f.i; j /ji; j 2 Œ0; n�; j > ig

from X , where S is the set of sij . Given that most recent
NER models adopt CRF-based[6] or word-pair-based[36]

decoding methods, we explore two different variants in
the ESD module.

3.3.1 CRF-based method
The first variant of the ESD module is the CRF-based
method, which is inspired by the BERT-CRF model[37].
We first feed X into a pre-trained BERT[2] encoder to
obtain token representations X D fx1; x2; : : : ; xng 2

Rh�n. Then, we use a linear projection with a CRF[38]

on X to obtain the final tags. Note that CRF is applied as
a post-process, where transition probabilities have been
hard coded to prevent impossible transitions, following
ExtendNER[10].

In step t , we adopt knowledge distillation to
keep knowledge learned in the previous t � 1 steps.
Specifically, for the token labeled as y D O , we use
Kullback-Leibler (KL) divergence to calculate the loss
LKD between the output distribution of the teacher model
MS

t�1 and the student modelMS
t . Meanwhile, the Cross-

Entropy (CE) loss LCE will be applied when the token
is labeled as y ¤ O . The model will be trained by
weighting the two losses:

LS
D ˛LCE C .1 � ˛/LKD (1)

where ˛ is a hyperparameter to weight the contribution
of the two losses.

3.3.2 Word-pair-based method
Recently, word-pair-based methods[36] have
reached promising performance in NER. To
avoid introducing additional parameters in the
incremental processing, we use one of the word-pair-
based methods, GlobalPointer[39], to decode token
representations X. Specifically, we obtain two sequences
Q D fq1; q2; : : : ; qng and K D fk1k2; : : : ; kng by
qi D Wqxi and ki D Wkxi , where Wq and Wk are the
learnable parameters. Then, we calculate the score for
the span sij as s.i; j / D .Ri qi /

T.Rj kj / D qT
i Rj�i kj ,

where Ri
[40] is a type of relative position encoding

which satisfies RT
i Rj D Rj�i . Eventually, the sentence

X can be transformed into an n � n matrix:

S D

0BBBB@
s.1; 1/ s.1; 2/ ::: s.1; n/

s.2; 1/ s.2; 2/ ::: s.2; n/
:::

:::
: : :

:::

s.n; 1/ s.n; 2/ ::: s.n; n/

1CCCCA (2)

The span sij would be detected as an entity only if
s.i; j / > 0 and j > i .

After the t � 1 step, we would get a trained ESD
module MS

t�1. Using MS
t�1 for Ct�1 and Dt for C new,

we could train a new ESD module MS
t with Ct to

recognize all spans. We make the new model MS
t have

the same layers as MS
t�1. MS

t is a clone of MS
t�1 for

initializing parameters without adding new parameters.
In the word-pair-based method, we denote Y.S/ 2

Rn�n as the true label for X on new classes C new. The
item yij .S/ 2 f0; 1g in Y.S/ represents whether the
span sij belongs to C new. Given that the new sentence
only has labeled data for novel classes, training directly
with the true label Y.S/ will suffer from catastrophic
forgetting even with a good parameter initialization. To
alleviate this problem, we propose a simple label-fusion
method following Li et al.[41]. Specifically, we first
predict the sentence X with MS

t�1 to obtain the hard
label Y0.S/ 2 Rn�n and further combine Y0.S/ with
the true label Y.S/. The principle of combination is as
follows:

y00ij .S/ D y
0
ij .S/ _ yij .S/ (3)

where y00ij .S/ 2 f0; 1g is an element of the gold label
Yc.S/ being used to train MS

t . That is, MS
t is trained

by minimizing the loss function:
LS
D log.1C

X
y00

ij
.S/D1

e�s.i;j //C

log.1C
X

y00
ij

.S/D0

es.i;j // (4)

where we add 1 to ensure LS > 0.

3.4 Entity class discrimination

The ECD aims to discriminate the classes of detected
spans after ESD. In this section, we explore three
methods to incrementally learn class-specific knowledge,
namely, add-based method, NLI-based method and
prompt-based method.

3.4.1 Add-based method
Inspired by AddNER[10], we classify the extracted spans
into different classes in the ECD phase by adding new
classifiers when novel classes are added. Each classifier
corresponds to one category. We adopt ŒE1� and ŒE2� to
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mark the location of the entity span. Specifically, the
input of the ECD module becomes

Xin D fŒCLS�; x1; x2; : : : ; xi�1; ŒE1�; sij ; ŒE2�;

xjC1; xjC2; : : : ; xn; ŒSEP�g (5)

where sij denotes the extracted span that needs to be
classified. As an example, in Fig. 3a, we convert the
input “Reuters reported in New York...” into “[CLS] ŒE1�

Reuters ŒE2� reported in New York...” and use another
BERT encoder to obtain the token representations
X for each token. Then, we concatenate the token
representations of ŒE1� and ŒE2� to get the entity
representations h. Finally, we calculate the probability
p.cjsij / of the extracted span being in each entity class
c with binary classifiers:

p.c1jsij /; p.c2jsij /; : : : ; p.coCpjsij / D

softmax.W1h;W2h; : : : ;WoCph/;
h D concat.BERT.Xin/ŒE1�;BERT.Xin/ŒE2�/ (6)

where W1,W2; : : : ;WoCp denote the parameters of the
classifier corresponding to each class. We consider
the class with the largest probability as the label of
entity sij . Similar to the CRF-based method, we apply
knowledge distillation to keep knowledge of old classes.
The difference is that we only adopt KL divergence
on the classifiers of old classes. As for novel class
knowledge, we apply cross-entropy loss to update the
novel classifiers. We also apply parameter-cloning to
initialize parameters. Cloned parameters belong to
embeddings, the BERT encoder, and the classifiers for
Ct�1.

3.4.2 NLI-based method
Inspired by EFL[30], we classify the extracted spans
into different classes in the ECD phase by adopting
descriptions of entity classes and modeling it as a Natural
Language Inference (NLI) task: whether the template

sentence can be inferred from the row sentence. More
specifically, the input of the ECD module becomes

Xin D ŒCLS�CX C ŒSEP�CXtemp1 (7)

where Xtemp1 D sij means Xdes
[15] denotes the template

sentence, and Xdes is the entity class description. As
an example, in Fig. 3b, the input “Reuters reported in
New York: : : ” can be converted into “[CLS] Reuters
reported in New York: : : [SEP] Reuters means an [L]
entity.” where [L] is filled by all label words for Ct . We
input Xin into the BERT encoder to obtain the hidden
representation h and use it to calculate the probability
p.cjsij / of the extracted span being in each entity
class c:

p.cjsij / D softmax.h/;

h D W.BERT.Xin/ŒCLS�/ (8)

Only when p.cjsij / > threshold, we judge sij as an
entity owned by class c.

The ECD module also applies parameter-cloning to
initialize parameters. MC

t is trained with Ct and has the
same layers asMC

t�1, of which parameters are initialized
from MC

t�1.
Similar to the word-pair-based method, we adopt the

label-fusion method to avoid catastrophic forgetting.
Specifically, we first obtain Y0.S/ as shown in
Section 3.3 and build a part of inputs X 0in.C / for old
classes Ct�1. The other part of inputs Xin.C / for novel
classes C new is converted from the true label Y.S/. Mix
X 0in.C / and Xin.C / to obtain the final inputs X 00in.C /.
Then, we obtain the hard label Y0.C / by predicting
X 00in.C / with the t � 1 ECD module MC

t�1. Ultimately,
we integrate Y0.C / and the true label Y.C / to obtain
the gold label Y00.C / for training with the following
strategies to keep old knowledge:
� If sij belongs to C new, the corresponding input will

be labeled 1, whereas others will be labeled 0.

(a) Add-based (b) NLI-based (c) Prompt-based

Fig. 3 Comparison of different prompt methods. (a) Add-based method, which converts the multi-classification task to many
binary classification tasks. (b) NLI-based method, which converts the multi-classification task to a binary classification task. (c)
Prompt-based method, which reuses the MLM head and enhances the MLM head by predicting original words.
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� Else if sij is judged to be one or more classes
of Ct�1, the corresponding inputs will be labeled 1,
whereas the others will be labeled 0.

We denote the generated labels as y00
ijk
.C / 2

f0; 1g; 1 6 k 6 oC p. Each new sentence has o C p
corresponding training samples. We update MC

t by
computing CE, the cross-entropy loss is

LC
D CE.y00ijk.C /; p.cjsij // (9)

where p.cjsij / is the output probability distribution of
the extracted span belonging to a given entity class.
3.4.3 Prompt-based method
Prompt methods can help few-shot learning[29, 30, 42, 43];
thus, we combine the template sentence with the row
sentence to learn class-specific knowledge without
adding new parameters. However, using these prompt
methods directly requires oCp corresponding judgments
for each candidate entity span, causing substantial
computational costs. Therefore, we explore the prompt-
based method to predict once for each span inspired by
TemplateNER[15]. Specifically, the input of the ECD
becomes

Xin D ŒCLS�CX C ŒSEP�CXtemp2 (10)
where Xtemp2 D sij is a ŒMASK� entity, which
denotes the template sentence in the prompt-based
metric[15]. The goal is to predict which label word
is the best replacement in the ŒMASK� token. In the
vocabulary of the pre-trained model, each class will have
a corresponding label word. In this way, the Masked
Language Model (MLM) head trained during the pre-
training phase can be reused to close the gap between
fine-tuning and pre-trained. We define LWt as the set
of label words for seen classes at the t step. The input
sentence Xin will be sent into the BERT encoder along
with the MLM head to produce the hidden representation
h. Last, the probability p.cjsij / of class c is calculated
by applying the softmax function on h:

p.cjsij / D softmaxLWt
.h/;

h D MLM.BERT.Xin/ŒMASK�/ (11)
where softmaxLWt

means probabilities are only
calculated on label words in LWt . The category that
corresponds to the most likely label word is selected.

Only predicting the ŒMASK� word has the probability
of losing old knowledge as new sentences may not
contain old class entities, which may cause overfitting
of new classes. To solve the above problem, we propose
an improved version of the prompt-based method (see
Fig. 3c). When fed with the input sentence “[CLS]
Reuters reported in New York: : : [SEP] Reuters is a

ŒMASK� entity”, the ECD module is trained to predict
a label word “organization” at the position of the tag
“ŒMASK�” as an indication of the label “ORG”. While for
other words, the module remains to predict the original
words.

We employ knowledge distillation and label-fusion
simultaneously to transform old knowledge. When sij 2
C new, we compute the loss of MLM head LMLM for
tokens ¤ ŒMASK� to predict original tokens and LCE

for the ŒMASK� token. If sij 2 Ct�1, LCE is calculated
for the ŒMASK� token with its hard label, while LKD

is utilized for the other tokens to keep knowledge from
MC

t�1. Finally, we train the ECD module by minimizing
the loss:

LC
D 1LCE C 2LKD C 3LMLM (12)

where 1, 2, and 3 are three hyperparameters to
measure the contribution of the three losses.

4 Experiment

4.1 Experimental setting

4.1.1 Datasets
We perform experiments on three well-known datasets in
NER: Conll2003[16], OntoNotes[17], and Few-NERD[14].
Conll2003 includes 22 000 sentences and consists of 4
classes. OntoNotes comprises 104 000 sentences and
has 18 classes. To compare with Monaikul et al.[10], we
only consider 6 classes on OntoNotes. Few-NERD has
66 classes with 188 000 sentences.
4.1.2 Incremental settings
Following Monaikul et al.[10], we separate the train set
and the dev set of Conll2003 into 4 subsets, OntoNotes
into 6 subsets, and Few-NERD into 66 subsets using
D1;D2; : : : ; Dt , where t is the number of the subsets.
Dt only has annotated labels for one classCt�Ct�1. For
Conll2003, we randomly select 3 classes as base classes
and the remaining 1 as the incremental class, whereas for
OntoNotes, we randomly select 4 classes as base classes
and the remaining 2 as incremental classes. For Few-
NERD, we designated 50 classes as base classes and
every 4 classes in the remaining classes as an incremental
subtask. The first subtask T1 has enough training data,
whereas all subsequent tasks are few-shot. For subtask
Tt ; t > 1, we conduct 5/10/20-shot experiments to verify
the effectiveness of our method. Specifically, we use K
examples per class to train and other K examples per
class to validate, where K 2 f5; 10; 20g. For testing at
the t step, we use the test examples only annotated for
Ct .
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We consider two different incremental cases: (1)
adding at once, where all novel classes will be added in
step t D 2 once; (2) adding one by one, where all novel
classes divided into subtasks are introduced one at a time
to test our approach’s ability to learn one entity class at
a time.

4.1.3 Baselines and variants
We consider the following three groups of baselines:
(1) Few-shot NER. To test our decoupled two-phase
NER method, we adopt some few-shot NER models
as baselines shown as follows: Proto[26], NNShot[13],
and StructShot[13]. To apply these few-shot models
to our incremental NER situation, we first represent
old class prototypes as average embeddings of pseudo-
labels over a few instances. The distances between the
token representation and each class prototype or training
token representation are then compared. For NNShot,
we consider two labeling methods (Inside-Outside (IO)
and Begin-Inside-Outside (BIO)). (2) Class-Incremental
NER. We also experiment with two class-incremental
NER baselines showing high performance with training
on large-annotated data. We implement ExtendNER and
AddNER[10]. (3) Class-Incremental Few-shot NER. We
compare our proposal with the state-of-the-art work of
CIFNER, namely, CIF NER[35].

We also consider the following combinations for our
DTPF: (1) DTPF (WP+Add), which adopts word-pair-
based in ESD and add-based method in ECD; (2) DTPF
(WP+NLI), which utilizes the NLI-based method to
classify; (3) DTPF (WP+P), which uses the prompt-
based method instead of the NLI-based method; (4)
DTPF (CRF+Add), replaces the word-pair-based method
with the CRF-based method compared with the DTPF
(WP+Add); (5) DTPF (CRF+NLI), which adds NLI-
based method after CRF-based; (6) DTPF (CRF+P),
which uses the prompt-based method instead of the NLI-
based method compared with the DTPF (CRF+NLI).

4.1.4 Hyperparameters and evaluation metrics
We train the model with a batch size of 32, a
maximum sentence length of 200/300/400 tokens for
Conll2003/OntoNotes/Few-NERD, and a learning rate
of 5�10�5 for 20 epochs with early stopping (patienceD
3/. A batch size of 2 was used for model training in
incremental subtasks, and patience increased to 5. We
train and test our model on a V100 GPU with 32 GB of
memory for all experiments. We train the ESD and ECD
modules independently.

For the CRF-based method, we select ˛ from 0.1, 0.25,

0.5, and 0.75 on Conll2003 and choose the best ˛ D 0:1
on Conll2003. Then we set ˛ D 0:1 on OntoNotes
and Few-NERD. For the prompt-base method, we set
1 D 2 D 3 D 1 in all experiments.

At time step t , we evaluate the model performance
through F1 scores on the test set of all seen
classes Ti ; i 2 Œ1; t �. We report our experimental
results for 8/6 sequences of class permutations on
Conll2003/OntoNotes as shown in Table 1. Additionally,
we randomly choose ten permutations for Few-NERD.
We report the average F1 scores over different
permutations.

4.2 Results on Conll2003 and OntoNotes

4.2.1 Adding at once
Table 2 illustrates the performance of our proposed
method and baselines on Conll2003 and OntoNotes
when adding new classes all at once. We present
the average F1 scores for all classes as well as the
incremental classes after the addition of new classes.
Our observations are as follows. (1) In the class-
incremental few-shot setting, our decoupled two-phase
method outperforms all baselines for novel and base
classes simultaneously, demonstrating its superiority.
Especially, DTPF outperforms AddNER in the 5-shot
setting by 10.26% and 16.76% on Conll2003 and
OntoNotes, respectively. With fewer shots, the relative
gain of DTPF becomes more significant, demonstrating
our method’s ability to handle fewer-shot tasks. (2)
When compared to other methods, few-shot methods
(Proto/NNShot/StructShot) produce the worst results.
The lack of examples for previous classes leads to

Table 1 Entity class permutations for each step.
Permutations with CoNLL2003

P1 W PER! LOC! ORG!MISC
P2 W PER!MISC! LOC! ORG
P3 W LOC! PER! ORG!MISC
P4 W LOC! ORG!MISC! PER
P5 W ORG! LOC!MISC! PER
P6 W ORG!MISC! PER! LOC
P7 WMISC! PER! LOC! ORG
P8 WMISC! ORG! PER! LOC

Permutations with Ontonotes
P1 W ORG! PER! GPE! DATE! CARD! NORP
P2 W DATE! NORP! PER! CARD! ORG! GPE
P3 W GPE! CARD! ORG! NORP! DATE! PER
P4 W NORP! ORG! DATE! PER! GPE! CARD
P5 W CARD! GPE! NORP! ORG! PER! DATE
P6 W PER! DATE! CARD! GPE! NORP! ORG
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Table 2 Results on the Conll2003 dataset and OntoNotes dataset for CIFNER in the setting of adding at once.
Conll2003 Ontonotes

Model 5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
Novel All Novel All Novel All Novel All Novel All Novel All

Proto 8.04 6.85 35.42 31.73 45.42 42.93 33.03 24.42 25.34 19.31 37.84 24.99
NNShot (IO) 48.88 44.59 58.54 62.30 58.30 61.92 35.26 42.93 43.72 53.31 46.38 53.57

NNShot (BIO) 27.18 39.12 39.63 55.89 47.33 59.52 34.12 46.48 36.15 48.17 40.30 49.7
StructShot 27.43 39.15 36.26 54.68 46.08 58.59 32.85 40.11 38.75 48.02 40.99 49.84
AddNER 53.21 66.59 61.71 73.61 70.64 76.61 26.40 55.45 54.65 72.61 62.01 73.95

ExtendNER 37.72 41.67 52.99 66.81 64.42 71.82 37.89 56.49 53.09 65.85 48.19 67.52
DTPF (CRF+Add) 52.54 68.16 63.49 71.66 71.54 74.44 35.83 58.52 54.02 60.40 63.65 73.73

DTPF (CRF+P) 54.93 76.32 65.25 77.09 67.62 76.18 44.72 69.24 56.83 69.84 64.86 74.61
DTPF (WP+Add) 54.55 64.44 60.51 72.69 70.81 76.31 38.14 60.35 56.20 73.48 63.61 74.69
DTPF (WP+NLI) 53.83 69.56 56.56 71.25 69.26 77.89 45.30 74.82 57.28 74.17 64.71 76.98

DTPF (WP+P) 59.49 76.85 66.09 74.79 73.58 82.29 47.81 72.21 57.73 74.86 66.3 77.89

distorted feature distributions of new data. (3) In the
CIFNER scenario, the methods (AddNER/ExtendNER)
also suffer from catastrophic forgetting. However,
AddNER which provides a classifier for each class,
which reaches the best performance except ours,
showing that a good parameter initialization is beneficial
to CIFNER.

Based on our variants, we discover that DTPF (WP+P)
is the superior combination for our proposed framework,
particularly in fewer-shot settings. Furthermore, the
small difference of 2.61% between DTPF (WP+P) and
DTPF (CRF+P) explains why the first phase of ESD is
more focused on learning class-generic knowledge. In
light of the inconsistent performance (76.48%, 74.11%,
and 70.33%) among DTPF (WP+P), DTPF (WP+NLI),
and DTPF (WP+Add), the second phase ECD is more

focused on learning class-specific knowledge.

4.2.2 Adding one by one
To verify the effectiveness of our method in the setting
of adding novel classes in turn, we report the average
F1 scores for all classes as new classes emerge on
Conll2003 and OntoNotes. Specifically, the first subtask
T1 has enough training data with one class, whereas all
subsequent subtasks are few-shot, and each subtask has
only one class. We only consider the word-pair-based
method in the ESD phase because the CRF-based
method is worse than the word-pair-based method
in terms of performance (see Table 2). The results
are exhibited in Tables 3 and 4. From the results,
we can see that our method has better performance
in the condition of adding novel classes in turn. For
instance, our proposed method outperforms all baseline

Table 3 Results of Conll2003 in the setting of adding one by one.

Model
5-shot 10-shot

Step1 Step2 Step3 Step4 Avg > 2 Step1 Step2 Step3 Step4 Avg > 2

ExtendNER 88.28 25.70 22.74 20.05 22.83 88.28 51.52 38.47 33.44 41.14
AddNER 88.59 57.53 37.18 35.51 43.41 88.59 59.72 53.51 49.30 54.18

CIF NER� 88.35 71.31 63.76 59.37 64.18 88.35 70.75 64.60 60.02 65.12
DTPF (WP+Add) 88.24 60.37 45.37 40.69 48.81 88.24 62.68 57.65 50.11 56.81
DTPF (WP+NLI) 87.58 61.35 55.65 53.16 56.72 87.75 65.86 60.69 58.39 61.65

DTPF (WP+P) 87.75 63.73 60.04 60.30 61.36 87.75 68.27 65.55 64.55 66.12
Note: � denotes the results reported in CIF NER[35]. The best results are in bold.

Table 4 Results of OntoNotes in the setting of adding one by one.

Model
5-shot 10-shot

Step1 Step2 Step3 Step4 Step5 Step6 Step2 Step3 Step4 Step5 Step6
ExtendNER 82.41 22.68 11.21 13.85 9.87 8.70 35.60 28.53 30.51 23.49 22.18

AddNER 83.32 46.62 30.45 18.95 16.54 7.73 51.36 41.96 37.56 35.45 34.59
DTPF (WP+Add) 82.09 53.55 37.45 25.70 18.52 9.27 58.89 47.14 41.63 40.61 36.98
DTPF (WP+NLI) 81.68 53.42 41.83 39.75 38.59 34.35 60.46 52.97 45.86 43.37 39.08

DTPF (WP+P) 82.69 57.92 44.56 43.57 40.45 38.08 61.75 54.02 48.49 45.64 40.35
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models in both 5-shot and 10-shot settings. Specifically,
DTPF surpasses the current state-of-the-art method CIF
NER on COnll2003 by 1.00% in the 10-shot setting,
demonstrating the superiority of our method on the
class-incremental few-shot NER task. Furthermore,
when learning a sequence of incremental subtasks,
our method loses less performance than baselines,
indicating that our method has a more stable capability
in incremental steps.

4.3 Results on Few-NERD

We run experiments on Few-NERD to validate
the effectiveness of our framework on larger
datasets with more classes. Table 5 displays the
5/10/20-shot results on Few-NERD when adding at
once. We can see that DTPF outperforms CINER
methods by 12.93%/5.53%/6.66%, demonstrating our
proposed method’s strong generalization ability of our
proposed method even on datasets with many classes.
Furthermore, we use 50 base classes and four classes in
each incremental step. Table 6 shows that our method
outperforms other baselines by more than 25.51% on
Few-NERD in the 5 shot setting, indicating that our
decoupled two-phase method can achieve better results
even with fewer examples.

4.4 Effect of error propagation

The problem of error propagation is a well-known
disadvantage of pipeline training. In our final model,
we use predicted entity spans to determine entity type,
and the NER task must identify both the entity span
and its category simultaneously. Thus, if the entity
span is not correctly judged in the first phase of ESD,
the overall F1 score will suffer regardless of whether
the ECD module can identify entity classes. The effect
of error propagation in our model is discussed further

Table 5 Results on Few-NERD dataset for CIFNER in the
setting of adding at once.

Model
5-shot 10-shot 20-shot

Novel All Novel All Novel All
AddNER 32.03 42.36 33.10 43.84 38.02 43.89

ExtendNER 24.65 32.37 27.30 35.66 32.84 40.83
DTPF (WP+P) 41.95 55.29 39.48 49.37 43.22 50.55

below.
We compare the performance of our method and two

end-to-end models (AddNER and ExtendNER) on the
entity span extraction task in the incremental 10-shot
setting. Specifically, we apply the same incremental
sequences to Conll2003 (see Table 1) and compute the
F1 scores that only consider entity spans and not the
entity classes. As shown in Table 7, our method DTPF
(WP) only decreases by 5.49% after four steps, whereas
DTPF (CRF) decreases by 6.24%. However, ExtendNER
decreases by 13.79%, and AddNER reaches 17.20%.
In the first phase of the NER task, the end-to-end
methods exhibit a greater performance drop than pipeline
methods. In addition, the error rate in ESD is low,
which has a negligible effect on ECD’s second phase. We
hypothesize that it is because contextual representations
of entity span and entity category capture different
levels of information (class-generic knowledge and class-
specific knowledge) in NER. Consequently, sharing their
representations via an end-to-end framework may hinder
performance. Decoupling the NER task and fusing entity
span information at the input layer of ECD enables
more accurate contextual representations, resulting in
improved results.

To sum up, our two-phase method is less affected
by error propagation and is more competitive than the
end-to-end models on the CIFNER task.

5 Conclusion

In this paper, we primarily investigate CIFNER, which
requires the model to incrementally learn new entity
classes with few labeled data while retaining previous
knowledge. We proposed a DTPF to solve the
CIFNER task, which has the obvious advantage of
obtaining better parameter initialization as well as
learning class-generic and class-specific knowledge
independently in the two phases. In comparison to other
methods, sufficient experimental results demonstrate
the efficacy of our approach in preventing catastrophic
forgetting and learning new entity classes. We intend
to improve CIFNER’s performance and robustness in
the future by incorporating external knowledge into the
prompt process or by employing adversarial learning to

Table 6 Results on Few-NERD dataset for CIFNER in the setting of adding in turn.

Model
5-shot 10-shot 20-shot

Step1 Step2 Step3 Step4 Step5 Step1 Step2 Step3 Step4 Step5 Step1 Step2 Step3 Step4 Step5
AddNER 60.64 47.11 31.93 23.39 21.89 60.64 42.17 28.07 22.63 19.95 60.64 41.37 30.69 23.57 22.35

ExtendNER 59.85 15.75 11.71 11.15 9.33 59.85 21.08 14.98 14.56 14.80 59.85 27.77 20.07 18.41 18.53
DTPF (WP+P) 60.14 52.34 49.75 48.96 47.4 60.14 52.39 48.23 45.79 42.44 60.14 50.18 43.32 39.19 43.64
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Table 7 Results on Conll2003 at the first phase ESD in the
10-shot learning setting.

Model Step1 Step2 Step3 Step4 Avg > 2

ExtendNER 88.05 57.86 67.05 74.26 66.39
AddNER 89.13 62.75 65.14 71.93 66.61

DTPF (CRF) 89.13 73.31 76.81 82.89 77.68
DTPF (WP) 88.69 73.60 77.11 83.20 77.98

mine class-generic and class-specific knowledge more
deeply.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (No. 62006243).

References

[1] J. P. C. Chiu and E. Nichols, Named entity recognition
with bidirectional LSTM-CNNs, Trans. Assoc. Comput.
Linguist., vol. 4, pp. 357–370, 2016.

[2] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova,
BERT: Pre-training of deep bidirectional transformers
for language understanding, in Proc. 2019 Conf. North
American Chapter of the Association for Computational
Linguistics, Minneapolis, MN, USA, 2019, pp. 4171–4186.

[3] X. Li, H. Yan, X. Qiu, and X. Huang, FLAT: Chinese NER
using flat-lattice transformer, in Proc. 58th Ann. Meeting
of the Association for Computational Linguistics, Virtual,
2020, pp. 6836–6842.

[4] X. Ma and E. Hovy, End-to-end sequence labeling via bi-
directional LSTM-CNNs-CRF, in Proc. 54th Ann. Meeting
of the Association for Computational Linguistics, Berlin,
Germany, 2016, pp. 1064–1074.

[5] H. Yan, B. Deng, X. Li, and X. Qiu, TENER: Adapting
transformer encoder for named entity recognition, arXiv
preprint arXiv: 1911.04474, 2019.

[6] S. Zhao, M. Hu, Z. Cai, H. Chen, and F. Liu, Dynamic
modeling cross-and self-lattice attention network for
Chinese NER, in Proc. 35th AAAI Conf. on Artificial
Intelligence, 33rd Conf. on Innovative Applications of
Artificial Intelligence, The 11th Symp. on Educational
Advances in Artificial Intelligence, Virtual, 2021, pp. 14515–
14523.

[7] R. M. French, Catastrophic forgetting in connectionist
networks, Trends Cognit. Sci., vol. 3, no. 4, 1999, pp. 128–
135.

[8] M. McCloskey and N. J. Cohen, Catastrophic interference
in connectionist networks: The sequential learning problem,
Psychol. Learn. Motiv.– Adv. Res. Theory, vol. 24, pp. 109–
165, 1989.

[9] G. Castellucci, S. Filice, D. Croce, and R. Basili, Learning
to solve NLP tasks in an incremental number of languages,
in Proc. 59th Ann. Meeting of the Association for
Computational Linguistics and the 11th Int. Joint Conf. on
Natural Language Processing, Virtual, 2021, pp. 837–847.

[10] N. Monaikul, G. Castellucci, S. Filice, and O. Rokhlenko,
Continual learning for named entity recognition, in Proc.

35th AAAI Conf. on Artificial Intelligence, 33rd Conf. on
Innovative Applications of Artificial Intelligence, The 11th

Symp. on Educational Advances in Artificial Intelligence,
2021, pp. 13570–13577.

[11] A. Fritzler, V. Logacheva, and M. Kretov, Few-shot
classification in named entity recognition task, in Proc.
34th ACM/SIGAPP Symp. on Applied Computing (SAC’19),
Limassol, Cyprus, 2019, pp. 993–1000.

[12] P. Wang, R. Xu, T. Liu, Q. Zhou, Y. Cao, B. Chang, and
Z. Sui, An enhanced span-based decomposition method
for few-shot sequence labeling, in Proc. 2022 Conf.
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Seattle, WA, USA, 2022, pp. 5012–5024.

[13] Y. Yang and A. Katiyar, Simple and effective few-shot
named entity recognition with structured nearest neighbor
learning, in Proc. 2020 Conf. on Empirical Methods in
Natural Language Processing (EMNLP), Virtual, 2020, pp.
6365–6375.

[14] N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H.
Zheng, and Z. Liu, Few-NERD: A few-shot named entity
recognition dataset, in Proc. 59th Ann. Meeting of the
Association for Computational Linguistics and the 11th

Int. Joint Conf. on Natural Language Processing, Virtual,
2021, pp. 3198–3213.

[15] L. Cui, Y. Wu, J. Liu, S. Yang, and Y. Zhang, Template-
based named entity recognition using BART, in Proc. 59th

Findings of the Association for Computational Linguistics,
2021, pp. 1835–1845.

[16] E. F. T. K. Sang and F. De Meulder, Introduction to the
CoNLL-2003 shared task: Language-independent named
entity recognition, in Proc. 7th Conf. on Natural Language
Learning at HLT-NAACL 2003, Edmonton, Canada, 2003,
pp. 142–147.

[17] E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and R.
Weischedel, OntoNotes: The 90% solution, in Proc. 2006
Human Language Technology Conf. of the NAACL, New
York City, NY, USA, 2006, pp. 57–60.

[18] Z. Chen and B. Liu, Lifelong machine learning, second
edition. Cham, Germany: Springer, 2016.

[19] Z. Ke, B. Liu, H. Xu, and L. Shu, CLASSIC: Continual
and contrastive learning of aspect sentiment classification
tasks, in Proc. 2021 Conf. on Empirical Methods in Natural
Language Processing (EMNLP), Virtual, 2021, pp. 6871–
6883.

[20] F. K. Sun, C. H. Ho, and H. Y. Lee, LAMOL: Language
modeling for lifelong language learning, arXiv preprint
arXiv: 1909.03329, 2019.

[21] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A.
A Rusu, A. Pritzel, and D. Wierstra, Pathnet: Evolution
channels gradient descent in super neural networks, arXiv
preprint arXiv: 1701.08734, 2017.

[22] Z. Li and D. Hoiem, Learning without forgetting, IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–
2947, 2018.

[23] S. A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert,
iCaRL: Incremental classifier and representation learning,
in Proc. 2017 IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017, pp.
2001–2010.



986 Tsinghua Science and Technology, October 2023, 28(5): 976–987

[24] T. Gao, X. Han, Z. Liu, and M. Sun, Hybrid attention-
based prototypical networks for noisy few-shot relation
classification, in Proc. 33rd AAAI Conf. on Artificial
Intelligence, Honolulu, HI, USA, 2019, pp. 6407–6414.

[25] R. Geng, B. Li, Y. Li, J. Sun, and X. Zhu, Dynamic memory
induction networks for few-shot text classification, in Proc.
58th Ann. Meeting of the Association for Computational
Linguistics, Virtual, 2020, pp. 1087–1094.

[26] J. Snell, K. Swersky, and R. Zemel, Prototypical networks
for few-shot learning, in Proc. 31st Int. Conf. on Neural
Information Processing Systems, Long Beach, CA, USA,
2017, pp. 4080–4090.

[27] Y. Hou, W. Che, Y. Lai, Z. Zhou, Y. Liu, H. Liu, and T. Liu,
Few-shot slot tagging with collapsed dependency transfer
and label-enhanced task-adaptive projection network,
in Proc. 58th Ann. Meeting of the Association for
Computational Linguistics, 2020, pp. 1381–1393.

[28] D. Yu, L. He, Y. Zhang, X. Du, P. Pasupat, and Q. Li,
Few-shot intent classification and slot filling with retrieved
examples, in Proc. 2021 Conf. of the North American
Chapter of the Association for Computational Linguistics,
2021, pp. 734–749.

[29] T. Schick and H. Schütze, Exploiting cloze-questions for
few-shot text classification and natural language inference,
in Proc. 16th Conf. of the European Chapter of the
Association for Computational Linguistics, Virtual, 2021,
pp. 255–269.

[30] S. Wang, H. Fang, M. Khabsa, H. Mao, and H. Ma,
Entailment as few-shot learner, arXiv preprint arXiv:
2104.14690, 2021.

[31] R. Ma, X. Zhou, T. Gui, Y. Tan, L. Yi, Q. Zhang, and X.
Huang, Template-free prompt tuning for few-shot NER, in
Proc. 2022 Conf. of the North American Chapter of the
Association for Computational Linguistics, Seattle, WA,
USA, 2022, pp. 5721–5732.

[32] S. Dong, X. Hong, X. Tao, X. Chang, X. Wei, and Y.
Gong, Few-shot class-incremental learning via relation
knowledge distillation, in Proc. 35th AAAI Conf. on
Artificial Intelligence, 2019, pp. 1255–1263.

[33] J. Pérez-Rúa, X. Zhu, T. M. Hospedales, and T. Xiang,
Incremental few-shot object detection, in Proc. 2020
IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 2020, pp. 13843–

13852.
[34] X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and

Y. Gong, Few-shot class-incremental learning, in Proc.
2020 IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 2020, pp. 12180–
12189.

[35] R. Wang, T. Yu, H. Zhao, S. Kim, S. Mitra, R. Zhang,
and R. Henao, Few-shot class-incremental learning for
named entity recognition, in Proc. 60th Ann. Meeting of the
Association for Computational Linguistics, Dublin, Ireland,
2022, pp. 571–582.

[36] J. Li, H. Fei, J. Liu, S. Wu, M. Zhang, C. Teng, Ji
D, and F. Li, Unified named entity recognition as word-
word relation classification, in Proc. 36th AAAI Conf. on
Artificial Intelligence, 2022, pp. 10965–10973.

[37] Y. Chang, L. Kong, K. Jia, and Q. Meng, Chinese named
entity recognition method based on BERT, in Proc. 2021
IEEE Int. Conf. on Data Science and Computer Application
(ICDSCA), Dalian, China, 2021, pp. 294–299.

[38] J. D. Lafferty, A. McCallum, and F. C. N. Pereira,
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data, in Proc. 18th Int.
Conf. on Machine Learning (ICML), Virtual, 2001, pp. 282–
289.

[39] J. Su, GlobalPointer: Handle NER in a unified way, (in
Chinese), https://spaces.ac.cn/archives/8373, 2021.

[40] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu,
RoFormer: Enhanced transformer with rotary position
embedding, arXiv preprint arXiv: 2104.09864, 2021.

[41] Z. Z. Li, D. W. Feng, D. S. Li, and X. C. Lu, Learning to
select pseudo labels: A semi-supervised method for named
entity recognition, Front. Inf. Technol. Electron. Eng., vol.
21, no. 6, pp. 903–916, 2020.

[42] T. Schick and H. Schütze, It’s not just size that matters:
Small language models are also few-shot learners, in
Proc. 2021 Conf. of the North American Chapter of the
Association for Computational Linguistics, Virtual, 2021,
pp. 2339–2352.

[43] T. Le Scao and A. Rush, How many data points is a prompt
worth? in Proc. 2021 Conf. of the North American Chapter
of the Association for Computational Linguistics, Virtual,
2021, pp. 2627–2636.

Zhen Huang received the BS and PhD
degrees from the National University of
Defense Technology (NUDT), Changsha,
China, in 2006 and 2012, respectively.
He was a visiting student with Eurecom,
France, in 2009. From 2012 to 2016, he
was an assistant professor in the Science
and Technology on Parallel and Distributed

Laboratory, NUDT, where he is currently an associate professor.
He has authored over 70 publications and is an academic editor
of the International Journal of Intelligent Systems. His research
interests include natural language processing, data mining, and
knowledge graph.

Minghao Hu received the BS and PhD
degrees from the National University of
Defense Technology (NUDT), Changsha,
China, in 2015 and 2019, respectively. He
is currently an assistant researcher in the
Information Research Center of Military
Science, PLA Academy of Military Science.
His research interests lie in natural language

processing, question answering, and knowledge graph, and he has
published more than 20 papers. His doctoral thesis received the
Excellence Doctoral Thesis Award from the Chinese Information
Processing Society of China.



Yifan Chen et al.: Decoupled Two-Phase Framework for Class-Incremental Few-Shot Named Entity Recognition 987

Yifan Chen obtained the BS degree
from the National University of Defense
Technology, Changsha, China, in 2020. He
is currently pursuing the MS degree at the
National University of Defense Technology,
Changsha, China. His research interests
include natural language processing and
information extraction.

Dongsheng Li obtained the PhD degree in
computer science and technology from the
National University of Defense Technology,
Changsha, China, in 2005. He was awarded
the Chinese National Excellent Doctoral
Dissertation in 2008. He is a professor
and doctoral supervisor at the College of
Computer, National University of Defense

Technology, Changsha, China. His research interests include
distributed systems, cloud computing, and big data processing.

Changjian Wang obtained the PhD
degree in computer science from National
University of Defense Technology in 2015.
He is currently an associate professor at the
National University of Defense Technology
(NUDT), Changsha, China. His current
research interests include medical image
analysis, natural language processing, and

big data.

Feng Liu acquired the BS and PhD degrees
from the National University of Defense
Technology, China, in 1999 and 2006,
respectively. He is currently a professor
of engineering at the National University of
Defense Technology. His research interests
include distributed computing technology
and artificial intelligence.

Xicheng Lu obtained the BS degree in
computer science from Harbin Military
Engineering Institute, China, in 1970. He
was a visiting scholar at the University
of Massachusetts, MA, USA from 1982
to 1984. He is now a professor at the
College of Computer, National University
of Defense Technology (NUDT), China.

He has served as a member of the editorial boards of several
journals and cochaired many professional conferences. He has
been an academician of the Chinese Academy of Engineering
since 1999. His research interests include distributed computing,
computer networks, parallel computing, and so on.


