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Use of Deep Learning for Continuous Prediction of Mortality for All
Admissions in Intensive Care Units

Guangjian Zeng, Jinhu Zhuang, Haofan Huang, Mu Tian, Yi Gao, Yong Liu�, and Xiaxia Yu�

Abstract: The mortality rate in the intensive care unit (ICU) is a key metric of hospital clinical quality. To enhance

hospital performance, many methods have been proposed for the stratification of patients’ different risk categories,

such as severity scoring systems and machine learning models. However, these methods make capturing time

sequence information difficult, posing challenges to the continuous assessment of a patient’s severity during their

hospital stay. Therefore, we built a predictive model that can make predictions throughout the patient’s stay and

obtain the patient’s risk of death in real time. Our proposed model performed much better than other machine

learning methods, including logistic regression, random forest, and XGBoost, in a full set of performance evaluation

processes. Thus, the proposed model can support physicians’ decisions by allowing them to pay more attention to

high-risk patients and anticipate potential complications to reduce ICU mortality.
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1 Introduction

Patients in the intensive care unit (ICU) tend to have
life-threatening conditions or the potential to develop
one during their ICU stay. Therefore, early recognition
of their illnesses’ changes in severity is invaluable in
helping them recover from life-threatening injuries and
illnesses[1] and stabilizing their condition. Early and
reliable prediction tools for sensitive medical conditions
are useful caregiving aids.

Outcome prediction models are one of the prognostic
tools for estimating the probability of a pre-specified
outcome[2]. In-hospital mortality is the most important
outcome in the ICU[3], thus making mortality prediction
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a crucial task[4]. Statistics indicate that about 11% of
deaths are due to the failure to identify patients at risk
of deterioration[5]. Mortality prediction aims to identify
high-risk people, make the right decisions, and save
ICU beds for patients in need[6]. An accurate mortality
prediction model provides a stratification of the risk of
an outcome at the population level[7]. These models
generally provide a numerical estimate of that risk based
on estimates from previous populations[8].

In the past, rule-based severity scoring systems
were developed based on experts’ experiences[9–14].
Later, the rapid development of artificial intelligence
techniques and their applications in health care has
resulted in the development of machine learning models
to achieve the same goals[15–18]. However, previous
reports of the continuous application of static scoring
systems[19–25] demonstrate a long-standing desire to
have a continuously updated patient assessment system.
Automated, continuous assessment of the severity of
a patient’s illness can provide decision support and
alert clinicians to a patient’s changing status during
intensive care. Moreover, the availability of temporal
trends in the ICU offers the opportunity to apply a
time sequence to state-of-the-art artificial intelligence
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methods beyond existing conventional models[26–28].
Therefore, a critical step is to develop predictive
models that can make continuously updated and accurate
predictions of the mortality of all ICU patients to
facilitate the administration of preventive treatments.

Deep learning techniques are commonly used
in medical applications and perform well in the
classification, prediction, and retrieval domains[29–32].
Recurrent neural networks (RNNs) based on long short-
term memory (LSTM) were originally proposed in other
literature[33]. These networks can learn sequences of
observations, thus causing the model to be well suited
for time series applications. The recurrent architecture
allows the integration of information from previous
timesteps with newly acquired data to update its risk
assessment, making the model dynamic instead of
static. RNNs analyze all available data with neither
preconceptions about which measures may be important
in determining a patient’s clinical status nor the need to
engineer features specific to a given clinical condition[34].
Previous work has demonstrated that RNNs are robust
when using high-dimensional inputs that may include
extraneous features for predicting a range of clinical
outcomes[35]. The flexibility and accuracy of RNNs
have made them increasingly popular for the predictive
modeling of many time-based clinical tasks[35–41].

Therefore, a predictive model was developed based
on RNN in this study to continuously predict all-
cause mortality in ICU settings based on the framework
proposed by Tomašev et al.[42], but with several
improvements: (1) A dynamic window was used to
generate sequential model input; (2) a resample operation

was introduced to improve label balance; and (3) a set of
model evaluation methods was performed to fully validate
the model performance.

2 Method

2.1 Study population

This study was a cohort retrospective study based on
the Medical Information Mart for Intensive Care III
(MIMIC-III) databases[43]. MIMIC-III is a large single-
center database that contains information about ICU
admissions from major tertiary care hospitals. In this
study, all ICU admissions were considered except those
that belong to four exclusive criteria: (1) Laboratory
measurement was not performed during the ICU stay;
(2) the patients had never been in the ICU; (3) the
patient’s survival information was missing; and (4)
the results of the laboratory measurement were not
numerical. We obtained the mortality labels from the
mortality information in hospitalization records. Finally,
46 467 patients were included, with a total of 334 722
encounters. The flowchart of data processing is shown
in Fig. 1.

2.2 Data pre-processing

2.2.1 Data extraction
Data were extracted from the MIMIC-III database. The
assessed variables included demographic information
and laboratory measurements of patients; more details
about the variables are shown in Fig. 1.

2.2.2 Patient sequence creation
A fixed time window was employed to generate a

Fig. 1 Flowchart of data extraction.
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sequential representation of patient features. Each
data point extracted from the database had a unique
timestamp. With the uneven gaps between consecutive
events, we adopted a fixed time window, i.e., 24 h, to
aggregate each variable within this window. A clinical
indicator may have been measured multiple times during
the time window, which is why we used the moving
average as the aggregation method. The original data
were then transformed into sequences that share the same
time steps, as shown in Fig. 2. By constructing patient
sequences, we can achieve continuous prediction, which
is an improvement over traditional static prediction.

2.2.3 Outlier filtering
The lower quartile point (Q1), upper quartile point
(Q3), and interquartile range (IQR) of each feature
were computed. Features beyond the upper/lower limit
(defined by Q3 + 3IQR/Q1 � 3IQR) were clipped by the
corresponding boundary values.

2.2.4 Feature normalization
The z-score was utilized to normalize numerical features.
The features were projected into the range of �1 to 1
using the z-score method, ensuring that all features were
at the same magnitude to improve the convergence speed
and accuracy of the model.

2.2.5 Missing value
Zero imputation and an additional indicator were
introduced to handle null values. Not all checks were
completed in each time step, which is why many null
values existed in the sequential representation of patients.
Thus, the sequential representation was transformed into
a feature vector by special imputation. As normalization
was previously performed, zero imputation was selected,
though many other imputation strategies could be
considered. To distinguish the original zero value from
the interpolated zero value, additional binary indicator
variables were used to supplement the null value’s
information. The indicator was set to 1 when its
corresponding value was not null.

2.2.6 Sequence generation with dynamic window
We improved the sequence input problem with a dynamic
window. Conventional methods input the whole patient

Fig. 2 Patient time sequence for continuous prediction.

sequence into the predictive model[42]. However, their
solutions do not scale up as the system sees through
longer sequences. In addition, large variations in the
length of stay create challenges for algorithm robustness.
To generate near real time inferences with constant
complexity, we used a moving window of 7 d to cut
off sequential input and feed it into our predictive model.
Figure 2 shows how this “dynamic window” mechanism
works.

2.2.7 Labeling
Fundamentally, our model takes the inputs from the
“past” to predict the “future”. During training, an “ahead
window” at each time step is adopted to generate the
label. If the patient died within the “ahead window”,
we mark the current time step as positive. The model
trained in this manner would then predict the likelihood
of mortality within the “ahead window” from each time
step. In this paper, we used 48 h, 72 h, and 7 d as three
options for the “ahead window”, as shown in Fig. 2.

2.2.8 Dataset splitting
We use 80% of the entire dataset for training, 10% for
internal validation and the remaining 10% for testing.

2.2.9 Resampling
To mitigate the imbalance between positive and negative
labels, we perform downsampling with bootstrap
to balance the dataset while preserving original
distributions. The validation and test sets were kept
unchanged.

2.3 Prediction algorithm

Our RNN-based architecture is shown in Fig. 3. The
whole model consists of three components: Signal
encoding and fusion layers, deep sequence network, and
classifier layer for prediction.

2.3.1 Encoding and fusion layer
The input of the whole model consists of two parts: the
numerical features N 2 Rk�l D fni ji D 1; 2; :::; lg,
where R is the set of real numbers, and the categorical
features C 2 Rm�l D fci ji D 1; 2; :::; lg, where ni is a
numerical vector of size k in time Ti on the sequence, ci

is a binary vector of size m in time Ti on the sequence,
and l is the length of sequence. Many zero values
exist in the features because of the zero-interpolation
operation, thereby making proper encoding of the
sparsity necessary. After N and C pass through their
independent encoding layers, the encoded features E1 2

Re�l and E2 2 Re�l , where e is the encoding size will
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Fig. 3 Model structure for continuous prediction.

be fused by concatenation into E 2 R.eCe/�l to the
following deep recurrent architecture.

2.3.2 Deep sequence architecture
RNN is used to extract sequential information from
E. For sequence data, RNN can capture the time
information that exists between the data. At the same
time, it can handle variable-length sequences and
build an internal memory that keeps track of relevant
information seen up to that point. Many different
RNN structures are considered; LSTM is used in this
work as shown in Fig. 3. The encoded vector ei 2 E,
where 1 6 i 6 l is sent into the LSTM cell to generate
hidden state Hi in chronological order while Hi will be
reentered into the cell to help generate HiC1. Finally,
the hidden layer vector Hl becomes the input of the last
layer; F 2 Rc , where c is the size of the LSTM cell.

2.3.3 Classifier layer
Fully connected layers are used to achieve the final
prediction y 2 R1. To map the output of multiple
neurons to the range of 0 to 1, which can be understood
as a probability for multi-classification, the softmax
activation function is introduced.

2.3.4 Hyperparameter sweep
We improved the time-consuming and labor-intensive
problem of manual parameter adjustment in the past
through the hyperparameter sweeps. Hyperparameter
sweeps are defined based on domain knowledge and
previous literature after model-building to confirm the
best model. Table 1 shows the hyperparameter and
corresponding value considered in this study. Different
hyperparametric values are combined as a group, and
the best group is selected.

Table 1 Hyperparameter sweep used in prediction.
Hyperparameter Values considered
Embedding size 200, 250, 300, 400, 500
Embedding dropout 0.3, 0.5, 0.7
Embedding residual connect True, false
Embedding activatione Relu, tanh, leaky relu, hardtanh, elu, sigmoid
RNN cell size 100, 150, 200, 250, 300, 400, 500
Number of RNN layers 1, 2, 3
Batch size 32, 64, 128, 256, 512
Number of epochs 150, 200, 250
Learning rate 0.01, 0.001, 0.0001, 0.000 01
Number of schedule epochs 10, 20, 30, 40
Schedule gamma 0.7, 0.8, 0.85, 0.9, 0.95
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2.3.5 Optimization
The loss between the prediction and the target is
calculated by the cross-entropy loss function. The Adam
optimizer performs gradient descent based on this loss.
Variable training steps can be set in the training schedule
to ensure the best result. A suitable training schedule is
also defined in hyperparameter sweep.

2.4 Performance evaluation

2.4.1 Cross-validation and performance matrix
Fivefold cross-validation was performed. The area under
the receiver operating characteristic curve (AUROC),
area under the precision-recall curve (AUPRC), accuracy,
and F-measure (F1) were calculated as the items in the
performance matrix.

2.4.2 Discrimination
The corresponding discrimination slopes were
demonstrated to present the differences between the
predicted risks in survivors and non-survivors.

2.4.3 Reclassification
The categorical net reclassification index and
reclassification table were used to measure
reclassification for the various methods.

2.4.4 Clinical usefulness
Decision curve analysis (DCA) was performed to

estimate the clinical usefulness and net benefit of the
proposed prediction models.

3 Result

3.1 Model building and validation

The newly proposed models performed much better than
the baseline algorithms did, with an accuracy of 0.92, an
F1-score of 0.45, an AUROC of 0.90, and an AUPRC
of 0.45 in the 24-h mortality task; an accuracy of 0.91,
an F1-score of 0.52, an AUORC of 0.93, and AUPRC of
0.52 in the 48-h mortality task; and an accuracy of 0.93,
an F1-score of 0.67, an AUROC of 0.96, and an AUPRC
of 0.67 in the 7-day mortality task (Table 2).

3.2 Discrimination

The whole population was grouped into five bins
according to the predicted risk scores to determine
the discrimination ability of our predicted results. The
observed mortality rate was calculated. As demonstrated
in Table 3, a low relative rate of patient mortality
corresponds to a low predicted risk score, especially
in patients with risk scores greater than 80% or
lower than 20%. These results suggest that our model
can successfully identify survivors and non-survivors,
especially among patients with high (0.8–1.0) and low
(<0.2) risk scores.

Table 2 Model performance for mortality prediction in validation.
Task Method Accuracy F1-score AUROC AUPRC

48-h mortality

LR 0.75 0.23 0.81 0.20
RF 0.79 0.25 0.84 0.18

XGBoost 0.80 0.27 0.86 0.28
Our method 0.92 0.45 0.90 0.45

72-h mortality

LR 0.71 0.25 0.81 0.23
RF 0.77 0.27 0.83 0.20

XGBoost 0.80 0.30 0.86 0.31
Our method 0.91 0.52 0.93 0.52

7-day mortality

LR 0.70 0.31 0.82 0.31
RF 0.78 0.36 0.83 0.27

XGBoost 0.81 0.40 0.87 0.41
Our method 0.93 0.67 0.96 0.67

Table 3 Relative risk ratios for various risk groups with our method.

Risk Number of
patients

48-h mortality 72-h mortality 7-day mortality
Mortality (%) Relative ratio Mortality (%) Relative ratio Mortality (%) Relative ratio

>80% 6360 45.78 4.9 27.85 4.2 23.6 4.2
60%–79% 6694 3.38 0.4 5.62 0.9 4.27 0.8
40%–59% 6694 0.28 0.0 0.75 0.1 1.14 0.2
20%–39% 6695 0.09 0.0 0.13 0.0 0.19 0.0

<19% 7029 0.00 0.0 0.03 0.0 0.04 0.0
Total 33 472 9.45 – 6.60 – 5.61 –
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3.3 Reclassification

The net reclassification index (NRI), which was
devised to overcome the limitations of usual
discrimination measures, was computed to compare our
proposed algorithm with XGBoost,which had the best
performance among the traditional machine learning
methods. The reclassification tables that involve our
method’s score and the XGBoost scores are provided in
Table 4. Our method’s score proposals resulted in the
reclassification of a large proportion of patients.

3.4 Decision curve analysis

DCA was performed to estimate the clinical usefulness
and net benefit of the intervention[44]. The decision
curve[45] was grounded in a decision-theoretical
framework that accounted for both the benefits and the
costs of intervention to a patient who could not benefit
from it. As shown in Fig. 4, the standardized net benefit
yielded by the model developed in this study is larger
across the major high-risk ranges compared with other
models.

Table 4 Reclassification tables between our method and XGBoost.

Task Updated risk
Reclassification of initial risk Reclassified

ratio (%)
Statistics

<25% 25%–50% 50%–75% >75% NRI (95 CI) P

48-h mortality

<25% 15 347 1409 696 391 14

0.206 (0.178, 0.235) <0.001
25%–50% 2503 909 668 517 80
50%–75% 1993 814 787 923 83

>75% 1691 838 1055 2931 55

72-h mortality

<25% 15 439 588 418 786 10

0.328 (0.302, 0.354) <0.001
25%–50% 3085 439 369 891 91
50%–75% 2668 468 467 1387 91

>75% 1942 460 624 3442 47

7-day mortality

<25% 15 118 300 206 678 7

0.566 (0.546, 0.587) <0.001
25%–50% 3989 274 231 922 95
50%–75% 3620 311 261 1659 96

>75% 2065 275 277 1286 44
Note: Updated risk, predicted probability according to our method. Initial risk, predicted probability according to XGBoost.

Fig. 4 DCA of our methods and traditional models in different tasks.
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4 Discussion

In this study, we developed a framework to continuously
predict the mortality of all admissions in the ICU
by using RNN. The strengths of this study are as
follows. First, unlike the static prediction method,
our proposed method could use real-time data to
continuously predict patients’ mortality during their
hospitalization by constructing the patient sequence;
that is, it could capture the time information in the
sequence to improve the performance. In addition, the
problem of the large difference in the lengths of the
traditional method’s sequence input could be addressed
by introducing dynamic window sliding for each patient.
Under the framework of our proposed method, three
models were constructed with different lengths of ahead
windows, thus enabling different predictive horizons
to be developed and validated in large, heterogeneous
populations of ICU patients. The outcomes of these
three predictive models are given in terms of mortality
in 48 h, 72 h, and 7 d. Moreover, label resampling
was introduced to mitigate the imbalance between
positive and negative labels, and a hyperparameter sweep
was used to obtain the best model and save time on
experimental validation.

The performance of our method was compared with
that of other machine learning algorithms, including
logistic regression (LR), random forest (RF), and
XGBoost. The predicted performance had superior
accuracy, F1-score, AUROC, and AUPRC for all tasks.
Overall, our method performed better than the baseline
algorithms.

In addition to the performance matrix, discrimination,
and reclassification, DCA was introduced to evaluate
the performance of the validation. Findings show that
our model could successfully identify survivors and
non survivors, and its score proposals resulted in the
reclassification of a large proportion of patients. At the
same time, it could yield a larger standardized net benefit
compared with the baseline models.

On the basis of the above findings, the newly
developed models can be potentially applied to the risk
stratification of ICU patients right after their admission
and can be monitored continuously because our proposed
framework provides the predicted mortality risk in real
time as the new lab results are updated in the EHR
database. Under these circumstances, with the help of
such a predictive model, more appropriate care can be
given to patients with a high risk of mortality. Therefore,

we can better allocate the limited medical resources in
ICU settings.

The limitations and the future work of this study
should be mentioned. First, because of the nature of
real-world medical data, missing values and imbalanced
positive-negative sets were major problems during the
development and validation of the predictive model.
Although missing values and imbalance were properly
dealt with during data pre-processing, more advanced
methods should be tested to improve the data quality.
Second, the predictive models were built to predict the
mortality risk of all patients admitted to the ICU by
using demographics and lab data. Patients with different
medical histories and comorbidities vary greatly in
the risk of mortality; thus, including medical history
and comorbidity information in the model construction
would be valuable.

5 Conclusion

Three continuous predictive models with different time
windows were developed in this study. These models
exhibit significantly improved performance compared
with current machine learning methods, namely, LR, RF,
and XGBoost. We innovated several ideas, including
constructing patient sequences to achieve continuous
prediction, using appropriate dynamic windows to
ensure more accurate results, and adopting a series
of result evaluation methods to provide more reliable
results. Findings indicate that our method achieves the
best performance. Thus, our new models are promising
tools for building mortality prediction models in clinical
and research settings. This model was developed to
predict the risk of in-hospital mortality for all patients
admitted to the ICU, thus helping physicians pay more
attention to high-risk patients and anticipate potential
complications.
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