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Fusion Model for Tentative Diagnosis Inference Based
on Clinical Narratives
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Abstract: In general, physicians make a preliminary diagnosis based on patients’ admission narratives and admission

conditions, largely depending on their experiences and professional knowledge. An automatic and accurate tentative

diagnosis based on clinical narratives would be of great importance to physicians, particularly in the shortage of

medical resources. Despite its great value, little work has been conducted on this diagnosis method. Thus, in this

study, we propose a fusion model that integrates the semantic and symptom features contained in the clinical text.

The semantic features of the input text are initially captured by an attention-based Bidirectional Long Short-Term

Memory (BiLSTM) network. The symptom concepts, recognized from the input text, are then vectorized by using

the term frequency-inverse document frequency method based on the relations between symptoms and diseases.

Finally, two fusion strategies are utilized to recommend the most potential candidate for the international classification

of diseases code. Model training and evaluation are performed on a public clinical dataset. The results show that

both fusion strategies achieved a promising performance, in which the best performance obtained a top-3 accuracy

of 0.7412.

Key words: tentative diagnosis; clinical narrative; Bidirectional Long Short-Term Memory (BiLSTM); Term Frequency-

Inverse Document Frequency (TF-IDF); fusion strategy

1 Introduction

Tentative diagnosis[1] is a preliminary inference of
patient diseases. It is based on the recognition of
certain symptoms that may indicate disease presence.
Accordingly, it relies heavily on the experiences and
professional knowledge of physicians, making it at risk
of misdiagnosis or missed diagnosis.
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An automatic tentative diagnosis approach based
on the understanding of clinical narratives could be
a good assistant for physicians, particularly in the
shortage of medical resources. Furthermore, it can guide
patients for further examinations or treatments. Although
clinical data analysis and application based on Electronic
Medical Records (EMRs) have become focused issues
and trends in clinical research[2], few studies have been
conducted on this issue.

Considering the data-driven approaches used for
secondary analysis of EMRs[3–6], we explored an
automatic tentative diagnosis method based on EMRs.
As a significant component of EMRs, clinical note
records comprehensive information about patient
conditions, including the narratives about the present
illness based on patients’ statements at admission. It
can be used for tentative diagnosis inference as the input
text. Capturing features that are related to diseases from
clinical text is the main challenge of this method. On
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the one hand, the clinical note has a long text, and it
involves many medical terminologies and abbreviations.
It is not trivial for semantic feature extraction. On the
other hand, the onset of certain symptoms mentioned
in the clinical note may have a direct relationship with
some diseases. Another challenge is the identification of
useful symptoms and their representation.

In addressing the aforementioned challenges, we
proposed a fusion model that integrates semantic features
and symptom features of the clinical text. The contextual
semantic feature is captured by an attention-based
Bidirectional Long Short-Term Memory (BiLSTM)[7]

network. The feature of the symptom concept, extracted
by MetaMap[8], is represented into a weight vector by
the Term Frequency-Inverse Document Frequency (TF-
IDF)[9] algorithm. A preliminary attempt has been
explored in previous work[10]. Two fusion strategies
are applied in the model to efficiently utilize two
features: the concatenation of feature vectors before
classification and the combination of prediction results
after classification. We evaluated our proposed approach
on a public database, namely, Medical Information Mart
for Intensive Care (MIMIC) III. The experimental results
proved the advantages of two fusion strategies, which
achieve an average accuracy of 0.5072 and 0.5114 in the
automatic tentative diagnosis of 114 diseases. Moreover,
an average top-3 accuracy of 0.7412 indicates that our
model is helpful for clinical decision-making.

2 Related Work

Recently, clinical texts have been used for a series
of medical research, such as medical named entity
recognition and relation extraction[11–14], phenotype
classification[15], International Classification of Diseases
(ICD) code assignment[16–21], and de-identification[22, 23].
Deep learning models, such as Recurrent Neural
Networks (RNN)[16, 21, 24] and convolutional neural
networks[18, 19], have been widely used to learn the
representation of clinical texts without manual feature
engineering[18–20], and such models have achieved state-
of-the-art performances in most tasks. However, most
studies of disease classification based on clinical text
only focused on encoding text sequence[16–21], that is,
capturing the semantic features by neural networks.
Those studies overlook specific medical entities and their
relations with diseases, which we believe could capture
more disease-related features from clinical text.

Tentative diagnosis is an essential manual work based
on the rich experience and knowledge of physicians. An

automatic tentative diagnosis model based on clinical
narratives may be used to make preliminary decisions.
To the best of our knowledge, no previous work has
systematically studied this issue. Thus, in this paper, we
fill this gap by proposing a fusion model. Except for the
semantic feature that is captured by neural networks, we
tried to integrate symptom features into the classification
model. We extracted symptom concepts from the clinical
text and represented them based on their relations with
diseases.

3 Material and Method

3.1 Dataset

This work used an open-access dataset MIMIC III[25],
which is a public, freely-available critical care database
developed by the MIT Laboratory for Computational
Physiology. It comprised health-related data of patients
who stayed in Beth Israel Deaconess Medical Center
between 2001 and 2012[26]. Over 46 000 patients are
associated with 58 976 admission records in the latest
version of MIMIC III v1.4[27]. Each admission record
is tagged by several ICD version 9 (ICD-9) codes.
A discharge summary records the whole information
of a patient’s hospitalizations in text, from admission
to discharge. A sample of the discharge summary is
illustrated in Fig. 1. The protected health information
in the data, such as patient name, telephone number,
address, and dates, has been de-identified in accordance
with the Health Insurance Portability and Accountability
Act (HIPAA) standards[27]. In addition, the text had
many abbreviations, with formal medical style, e.g.,
obstructive sleep apnea (OSA) or informal style, e.g.,
years old (yo).

The main body of the text is composed of dozens
of sections, such as chief complaint, major surgical or
invasive procedure, and history of present illness.

3.2 Preprocessing

We extracted “chief complaint, history of present illness,
and past medical history” as the input text. All three parts
are primarily recorded on the basis of patient narratives
about the onset, development, and present symptoms
of his/her illness right at admission. The ICD codes
for each admission record consisted of one primary
diagnosis code and several secondary diagnosis codes.
We selected the primary diagnosis code as the label,
which is marked with “1” in the sequence number. For
normalization, we used the first three numbers of the
ICD-9 code to indicate the category of disease.
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Fig. 1 Example of a discharge summary. A discharge summary consists of several sections. The content in “[**...**]” is privacy
information, which has been de-identified in accordance with HIPAA standards.

With regard to imbalance, we removed the samples
with infrequent ICD codes (less than 50) or with less than
three symptoms. The final dataset involved 31 213 notes
correlating with 114 ICD-9 codes. Statistical analysis of
the input texts is listed in Table 1. The “chief complaint”
section of the discharge summary is the shortest part,
with 3 words on average, whereas the “history of present
illness” section is the longest part, with 200 words on
average.

3.3 Symptom concept extraction

The first step of symptom feature representation is the
identification of the symptom concept mentioned in
clinical narratives. However, it is not suitable for simple
text searches because of formal or informal medical
abbreviations in clinical text. We used a widely available
tool MetaMap to identify the symptom concepts in the
narratives. It can provide access to standardized concepts
in the unified medical language system metathesaurus

Table 1 Overview of input texts.

Text section
Length of text (number of words)
Average Maximum Minimum

Chief complaint 3 609 1
History of present illness 200 1497 1

Past medical history 48 1188 1
All of three sections 253 1656 11

from English biomedical text[8]. Biomedical concepts
can be extracted automatically on the basis of the
user’s configuration of three options, i.e., data, output,
and processing[28]. Most medical abbreviations that
are often used in the clinical text can be recognized
by MetaMap, such as Chronic Obstructive Pulmonary
Disease (COPD), ArterioVenous Malformation (AVM),
and Congestive Heart Failure (CHF). A Concept Unique
Identification (CUI) is the identification code for each
concept. A total of 127 semantic types in MetaMap
2016v2 can be selected to filter out symptom concepts.
We selected 13 semantic types in accordance with Sondhi
et al.’s work[29] of constructing SympGraph.

In addition, we only focused on positive symptom
concepts found in the text. The negative symptom
concepts, that are found in negated contexts, such as the
presence of negation-related words, including “denies”,
“without”, and “no”, are filtered out. Some symptom
concepts may appear several times because of being
mentioned in different parts of an input text. Such
duplicated symptoms are all kept in our extraction.

Furthermore, we focused on the appearance of
symptom concepts instead of the concept term itself
to represent a symptom concept by analyzing the
relations between symptoms and diseases. Thus, the
CUI, not the name, of the symptom was used to indicate
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a symptom. A total of 9386 symptom concepts are
extracted by MetaMap from all the input texts. Each
sample contained 20 symptoms on average and up to
113 symptoms at most. The distribution of symptom
frequency and ICD code frequency are shown in Figs. 2a
and 2b, respectively. As shown in Fig. 2a, the symptom
concepts occurred from one time to tens of thousands
of times. Over half of the extracted symptoms occurred
less than five times. In particular, nearly one-third
of symptoms occurred only once. The most frequent
symptom, “hypertensive disease (CUI: C0020538)”,
appeared 26 330 times. As shown in Fig. 2b, almost
15% of ICD codes occurred over 500 times. Half of the
ICD-9 codes appeared in 100–500 samples.

3.4 Feature representation

The task is text-based multi-classification. We extracted
semantic and symptom features from the input text to
obtain comprehensive features for disease prediction.
The model primarily consists of three parts: semantic
feature representation, symptom feature representation,
and feature fusion. The architecture of our model is
shown in Fig. 3. Each part of the model is illustrated in
detail in the following subsections.

3.4.1 Semantic feature representation
The semantic feature representation aims to learn a
contextual semantic representation of the input text. We
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Fig. 2 Distribution of extracted symptoms and ICD codes:
(a) distribution of symptoms and (b) distribution of ICD
codes.

 
 

 
 
 

l

-

h

h

h

h

hn

s

s

s

s

sk

C

Fig. 3 Architecture of our model. The upper part in the orange rounded rectangular box indicates semantic feature extraction,
whereas the bottom part in the blue rounded rectangular box indicates symptom feature extraction. CICD-9 indicates ICD-9 code.



690 Tsinghua Science and Technology, August 2023, 28(4): 686–695

used the Long Short-Term Memory (LSTM) network[30]

as the text encoder, which is a variant of RNN and is
competitive in feature extraction from sequential data[31].
Furthermore, we adopted the bidirectional version, that
is, BiLSTM, which can capture information from the
forward and backward directions of the sequences.
Given the noise in the narratives, we adopted the
attention mechanism, which has been used successfully
in many deep learning models[32–36], to focus on the most
important information in sequence.

Here, a word-level attention-based BiLSTM network
is applied for semantic feature extraction. As shown
in Fig. 3, each word of the input text is embedded
into a vector by word2vec with a dimension of 128.
Then, the embedding sequences are input into the
BiLSTM network. The output of the hidden layer is
the concatenation of both directional hidden states for
each LSTM element, that is,

 !
h i D Œ

�!
h i I
 �
h i � , i D

1; 2; : : : :; n. A context attention mechanism is used to
weigh the semantic feature after BiLSTM, and focus on
informative words of the input texts. The final semantic
feature vector of an input text is calculated by several
steps at the attention layer. In particular, the following
formulas are used:

ui D tanh .W
 !
hi C b/ (1)

˛i D
exp .uT

i uc/P
i

exp .uT
i uc/

(2)

v D
X

i

˛i

 !
hi (3)

A one-hidden-layer multi-layer perceptron with weight
matrix W is used to turn the output vector

 !
hi into a

hidden representation vector (denoted as ui ), which is
produced by the tanh. / activation function. The weight
for each word representation vector (denoted as ˛i ) is
calculated by the softmax function with ui . A context
vector uc is randomly initialized and jointly learned
during training. The final contextual semantic feature
vector v is the weighted sum of

 !
hi .

3.4.2 Symptom feature representation
In representing symptoms based on the relationship
between symptoms and diseases, a TF-IDF weighting
scheme is used to measure the occurrences of symptoms
in a text. TF-IDF is a classic statistic algorithm proposed
for information retrieval[37], which aims to reflect the
importance of a word to a document in a corpus.
It has been used for symptom-based human disease
network construction[38] and symptom representation[10].

Here, each symptom can be regarded as a word,
whereas the disease can be regarded as a document.
TF-IDF is used to determine the importance of a
symptom to a disease. Symptom si is represented by
a vector .wi1; wi2; : : : ; wiK/, consisting of its TF-IDF
weight values for 114 disease codes in our label set.
wij indicates the strength of the correlation between
symptom i and disease j . It is quantified by using the
following formula:

wij D TF ij � log
jKj

jDi j
(4)

where K is the number of all diseases mentioned in the
dataset, and Di denotes the number of diseases which is
associated with symptom i ; that is, symptom i occurs in
the clinical texts labeled with those disease codes. TFij

denotes the number of correlations between symptom i

and disease j in the text. A simple neural network of
Continuous-Bag-Of-Words (CBOW) is used to obtain
the symptom feature vector of the input text. The mean
value of symptom representation vectors is the final
representation of symptom features.

3.5 Fusion strategy

Two fusion strategies are explored to take advantage of
two features extracted from clinical narratives. The first
strategy is feature fusion. The semantic feature vector
and symptom feature vector are concatenated into one
feature vector as the input of the classifier (Fig. 4a).
The other strategy is decision fusion. Two models were
trained on the basis of two different features. Each model
produces a result vector of the probabilities for all labels
by its classifier, which is a fully connected network with
the softmax function. As shown in Fig. 4b, the max
value of the proportional sum of two probability result
vectors indicates the most likely outcome. In particular,
the following formulas are used:

p0i D ˇ � pt
i C .1 � ˇ/ � ps

i (5)
For sample i , pt

i is the probability vector produced by the
neural network based on semantic feature representation;
ps

i is the probability vector produced by the neural
network based on symptom feature representation; ˇ
indicates the proportion of pt

i in the sum vector of p
0

i .

4 Experiment and Result

4.1 Metrics and training

We used accuracy to evaluate the performance of models.
The Area Under the Precision-Recall curve (AUPR) is
another metric. Experiments were performed on a server
with an NVIDIA GeForce Titan X Pascal CUDA GPU
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Fig. 4 Two fusion strategies. (a) shows the feature fusion
strategy (Strategy 1); the annotation “˚̊̊” indicates the
concatenation operation, and (b) shows the decision fusion
strategy (Strategy 2).

processor. The dataset was split into the training set
and testing set at the ratio of 9:1, consisting of 28 091
and 3122 records, respectively. The testing set remained
unused until the final evaluation. We ran five times
(t1�t5) with the same hyper-parameters and recorded the
results on the testing set. The training set was shuffled
each time.

4.2 Comparison of two fusion strategies

The results of five tests are shown in Table 2. The model
based on the semantic feature shows over 10% more
advantages in average accuracy than the model based on
the symptom concept feature. Although the model based
on only symptom features does not achieve a remarkable
results, the good accuracy and AUPR achieved by both
fusion strategies indicate the effective supplementary
role of the symptom feature, compared with the results
of the model based on either single feature. Therefore,
the fusion model has advantages for this task. Based
on the standard deviation of results, the improvement
of Strategy 2 seems to be more stable than that of
Strategy 1. In the case of decision support applications,
we also reported the top-3 accuracy (denoted as Acc.@3).
Therefore, three candidate codes (out of 114 codes) with
the highest scores are presented for review. The average
Acc.@3 is approximately 0.74, which is inspiring and
auxiliary for clinical decision-making.

4.3 Hyper-parameter tuning and training

The hyper-parameters of our model are searched for the
best performance. The learning and dropout rates of
BiLSTM are 0.005 and 0.300, respectively. The value of
ˇ (0.55) in decision fusion strategy is searched for the
best performance. Figure 5 shows the performance at
different values of ˇ in five tests. Notably, the optimal
value of ˇ for each test is concentrated in an interval
between 0.55 and 0.65. The results of the model based on
the semantic feature do not account for a great proportion
during fusion, although the performance of the semantic-
based model is better than that of the symptom-based
model. Therefore, the symptom feature plays a role in
fusion.

4.4 Contribution of different parts of input text

The input text consists of three parts; however, the
part of the model with the most important contextual

Table 2 Performance of five tests.

Test
Semantic feature only Symptom feature only Strategy 1 Strategy 2 (ˇ=0.55)

Acc. AUPR Acc.@3 Acc. AUPR Acc.@3 Acc. AUPR Acc.@3 Acc. AUPR Acc.@3
t1 0.498 0.395 0.727 0.390 0.272 0.633 0.506 0.413 0.731 0.509 0.406 0.741
t2 0.497 0.377 0.715 0.394 0.274 0.632 0.514 0.399 0.723 0.511 0.399 0.739
t3 0.499 0.384 0.721 0.393 0.273 0.635 0.501 0.395 0.741 0.514 0.401 0.740
t4 0.498 0.393 0.734 0.393 0.275 0.630 0.508 0.401 0.734 0.512 0.406 0.744
t5 0.501 0.388 0.728 0.395 0.273 0.631 0.507 0.400 0.740 0.511 0.409 0.742

Average 0.4986 0.3874 0.7250 0.3930 0.2734 0.6322 0.5072 0.4016 0.7338 0.5114 0.4042 0.7412
Standard deviation

(�10�3) 1.36 6.47 6.48 1.67 1.02 1.72 4.17 6.05 6.55 1.62 3.66 1.72
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Fig. 5 Combination performance at different values of ˇ̌̌ .

semantic features remains unknown. The experiments
based on each text section were performed, and the
average accuracy is listed in Table 3. The section
“history of present illness” shows its dominant position
in the three parts, whose accuracy value is only 4%
lower than the value based on all three sections. The
average length of this section is the longest among the
three parts. High accuracy indicates that the section
“history of present illness” includes informative text,
and indicates diseases inference at present admission.
Although the “chief complaint” is the shortest section,
it may involve keywords or symptom terms related to
diseases. Based on the input text of two parts, namely,
“chief complaint” and “history of present illness”, a 2%
accuracy promotion is achieved. Although the “past
medical history” section is long, it shows the worst
performance in results. However, it seems helpful for
our task, considering the best result of all three parts.

5 Discussion

5.1 Analysis of combined feature representation

We projected the feature vector into a 2D space by
using the t-SNE method to qualitatively and evidently
assess the combined feature representation in Strategy
1. The scatterplots of three feature representations of
those samples related to top-5 and top-3 diseases in the
testing set are shown in Fig. 6. The scatterplot of symptom
feature representation shows an unclear clustering margin
compared with that of semantic feature representation.

Table 3 Prediction performance of different sections of
patient narratives.

Text section Average accuracy
Chief complaint 0.3390

History of present illness 0.4598
Past medical history 0.2224

Chief complaint and history of present illness 0.4795
All of three sections 0.4986

However, the combined feature representation is more
evident than the semantic feature representation, which
indicates the advantage of Strategy 1.

5.2 Contribution of symptom feature

Based on the performance of the single feature-based
model, the symptom-feature-based model is not as good
as the semantic-feature-based model. In revealing the
contribution of the symptom feature, we analyzed the
results of the decision fusion strategy by observing the
number of true-positive samples in the union of two
classifier results. Such results were compared with those
of the single classifier and their intersection. As shown
in Table 4, 924 true-positive samples, on average, were
found in the intersection set. However, over 1800 true-
positive samples were found in the union set. Based
on the union results, around 300 true-positive samples
were increased, compared with the results of the model
based on the semantic feature. Those labels undoubtedly
are replenished by the model based on symptom feature.
Therefore, the semantic feature and symptom feature are
complementary.

6 Conclusion

Tentative diagnosis prediction based on clinical
narratives is a significant and challenging task. In
capturing disease-related features from the input texts,
we proposed a fusion model based on two kinds
of features: the semantic feature and the symptom
feature. Feature-level fusion and decision-level fusion
are utilized to predict the candidate ICD code. The two
fusion models achieved better experimental results on
the MIMIC III dataset, which indicate that the fusion
of two kinds of features enriches the representation of
clinical text. Result analysis of the decision fusion
strategy proves that the representation of symptoms is a
useful supplement for semantic features. However, our
work also has some limitations. A better representation
method for symptoms is needed when some diseases
are correlated with the same symptoms. In addition, the
records of MIMIC III are about inpatients, particularly
patients in intensive care units. For more general cases,
the exploration of outpatients’ records is our future
direction.
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(a) Scatterplots of the final representations of the samples related to the top-5 diseases in the testing set

(b) Scatterplots of the final representations of the samples related to top-3 diseases in the testing set

Fig. 6 t-SNE scatterplots of three final representations. In Figs. 6a and 6b, the left chart is the scatterplot of contextual
semantic feature representation, the middle chart is the scatterplot of symptom feature representation, and the right chart is the
scatterplot of combined feature representation.
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