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Identification of Key Genes as Potential Drug Targets for
Gastric Cancer

Md. Tofazzal Hossain�, Md. Selim Reza�, Yin Peng, Shengzhong Feng, and Yanjie Wei�

Abstract: Gastric cancer (GC) is one of the most common cancers and ranks the third in cancer mortality all over the

world. The goal of this study was to identify potential hub-genes, highlighting their functions, signaling pathways, and

candidate drugs for the treatment of GC patients. We used publicly available next generation sequencing (NGS) data

to identify differentially expressed (DE) genes. The top DE genes were mapped to STRING database to construct

the protein-protein interaction (PPI) network and top hub genes were selected for further analysis. We found a

total of 1555 DE genes with 870 upregulated and 685 downregulated genes in GC. We selected the top 400 (200

upregulated and 200 downregulated) genes to construct a PPI network and extracted the top 15 hub genes. The

gene ontology (GO) term and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses of

the 15 hub genes exposed some important functions and signaling pathways that were significantly associated with

GC patients. The survival analysis of the hub genes disclosed that the lower expressions of the three hub genes

CDH2, COL4A1, and COL5A2 were associated with better survival of GC patients. These three genes might be

the candidate biomarkers for the diagnosis and treatment of GC. Then, we considered 3 key proteins (genomic

biomarkers) (COL4A1, CDH2, and CO5A2) as the drug target proteins (receptors), performed their docking analysis

with the 102 meta-drug agents, and found Everolimus, Docetaxel, Lanreotide, Venetoclax, Temsirolimus, and Nilotinib

as the top ranked 6 candidate drugs with respect to our proposed target proteins for the treatment against GC

patients. Therefore, the proposed drugs might play vital role for the treatment against GC patients.
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1 Introduction
Gastric cancer (GC) is one of the most common
malignant tumors and the third leading cause of cancer
related mortality globally[1]. The prognosis of GC is still

poor despite of having current advanced treatment, and
the overall survival rate is not reached higher than 30%[2].
Molecular heterogeneity of GC patients is an obstacle in
clinical diagnosis and developing treatments[3]. Previous
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studies reported that high intake of salt and salty food
and inadequate intake of fresh fruit and vegetables are the
risk factors for GC[4, 5]. Smoking, alcohol consumption,
and inactive or limited physical activity also increase the
risk of GC[6]. Currently available GC treatments include
surgery[7], radiotherapy[8], neoadjuvant chemotherapy[9],
and immunotherapy[10]. Most of the GC patients are
diagnosed at advanced stages. Lack of early detection
of GC is a leading cause of poor survival rate after
diagnosis[11]. Therefore, identification of potential
biomarkers for GC diagnosis and finding potential drug
targets are of great interest.

Present strategies to identify combinatorial anti-cancer
therapies are dependent on large scale experimental
data for patient treatment[12] or for suggesting new
drug combinations[13–16]. But generating large scale
experimental data is a time consuming, expensive,
and challenging task. Computational models are also
used in predicting drug effects[14, 17] to reduce the
experimental obstacles. Drug repurposing (DR) is a
promising approach to overcome experimental obstacles
in discovering and developing new drugs[18–23]. It is
considered as the supporting process to the conventional
drug discovery. To explore more suitable repurposable
drugs for a new disease, it requires identifying
appropriate target proteins associated with the new
disease.

In the current study, we used DR approach in finding
potential drug targets. We analyzed publicly available
next generation sequencing (NGS) data collected from
GC tissue and adjacent normal tissue. After finding
the differentially expressed (DE) genes, we mapped
the top 400 (sorted based on adjusted p-value) genes
to STRING[24] database to construct a protein-protein
interaction (PPI) network. From the PPI network, the top
15 hub genes were selected for further analysis. The gene
ontology (GO) term and kyoto encyclopedia of genes and
genomes (KEGG) pathway analyses of the hub genes
revealed that some hub genes were enriched in several
important biological processes, molecular mechanisms,
cellular components, and GC related pathways. The
expressions of these hub genes were validated by the
cancer genome atlas (TCGA) data. The survival analysis
of the hub genes using the TCGA data showed that
the three genes CDH2, COL4A1, and COL5A2 were
associated with the prognosis of GC. Overall, the genes
CDH2, COL4A1, and COL5A2 might be the potential
candidates for GC prognosis and treatment. Finally, we
analyzed the molecular docking of key genes with meta-

drug agents, and suggested therapeutic targets with lead
small compounds against GC.

2 Method and Material

2.1 RNA-seq data analysis

The RNA-seq data were downloaded from the gene
expression omnibus (GEO) database under accession
number GSE152309. These data were collected from
the 5 GC patient’s fresh tumor tissues and paired
adjacent non-tumor tissues. After downloading the raw
data in fastq format, the quality control analysis was
performed. The quality control was done using the
NGSQCToolkit[25] and the quality score 20 was used
as the cutoff point. Filtering/trimming was carried out if
the quality of the reads failed to reach the cutoff point.
The fastq reads were aligned to the human reference
genome (version GRCh38) using the BWA[26] aligner.
Then count data were generated using featureCount[27]

with the output of BWA (converted to bam and sorted).

2.2 Collection of meta-drug agents for exploring
candidate drugs

We collected host transcriptome-guided 102 meta-drug
agents by the literature review against GC patients (Table
S1, which is in the Electronic Supplementary Material
(ESM) of the online version of this article) for exploring
candidate drugs[28–32]. Thus, we considered 102 drug
agents to explore candidate drugs by molecular docking
with the identified proteins.

2.3 Identification of differentially expressed genes

The raw count data obtained from the tool featureCounts
were used for differential expression analysis. The R
package DESeq2[33] was used to identify DE genes
between two groups (normal vs. cancer). jLog2Fold
Changej > 2 and padj (adjusted p-value) < 0:05 were
considered as the cut-off for defining significant DE
genes. Among the DE genes, we selected top 400
genes sorted by adjusted p-value for performing the PPI
network analysis.

2.4 Protein-protein interaction analysis of DE
genes

STRING� is a database for obtaining the PPI between the
predicted and experimental interactions of proteins. The
top 400 DE genes were mapped to the STRING database
and a PPI network was constructed using Cytoscape[34].

� https://string-db.org/
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From the PPI network, we constructed a sub-network
with the top 15 hub genes using the Cytoscape plugin
Cytohuba. The hub genes were then extracted from the
sub-network.

2.5 Functional enrichment analysis

Biological processes, cellular components, and
molecular functions of the DE genes were investigated
by the well-known GO analysis. KEGG pathway
analysis was done to evaluate how the DE genes were
involved in or influenced by the GC related pathways.
We used DAVID[35] to perform the GO and KEGG
pathway analyses. The cutoff p-value<0.05 was used
for the significance of the functional enrichment
analysis.

2.6 Expression and survival analyses of the hub
genes

We examined the expression of hub genes in GC
tissue samples compared to normal tissue samples
using GEPIA[36] database. GEPIA is a new web-
based tool that uses gene expressions from TCGA
database to compare the expression profiles of genes
between normal and cancer samples. In GEPIA, there
were 408 GC tumor tissue samples and 36 normal
tissue samples from the TCGA database. The default
cutoffs jLog2FoldChangej > 1 and p-value<0.01 were
considered as statistically significant. The overall
survival analysis of the hub genes in GC was also
performed by the GEPIA tool. There were survival
data of 381 patients with GC in the GEPIA database.
Log rank P < 0:05 was considered to be statistically
significant.

2.7 Association of key genes (KGs) with other risk
factors

The Disease-KGs enrichment analysis was performed
using the Enrichr web tool[37] with DisGeNET
database[38] to explore other disease risk factors for GC
patients. The significance level was set to p-value<0.05.

2.8 Drug repurposing by molecular docking study

We performed a molecular docking analysis of our
suggested receptor proteins with drug agents to propose
in-silico validated efficient candidate drugs for the
treatment of GC. As previously mentioned in the data
sources (Table S1 in the ESM), we considered our
proposed genes based key proteins (KPs) as drug
target proteins and 102 meta-drug agents. Both receptor
proteins and meta-drug agents require 3-dimensional
(3D) structures for molecular docking studies. All of

the targeted proteins’ 3D structures were downloaded
from the protein data bank (PDB)[39] and SWISS-
MODEL[40]. All meta-drug agents’ 3D structures were
downloaded from the PubChem database[41]. Using
discovery studio visualizer 2019[42], the 3D structures
of the target proteins were displayed, and the target
chains that were not part of the genes were deleted.
Every protein was defined as a receptor, and the proteins’
active sites were found from the receptor cavities using
the discovery studio tool. The protonation state of
protein was assigned using the PDB2PQR and HCC
servers[43, 44]. All the absent hydrogen atoms were
properly added as well. The pKa for the receptor amino
acids were examined under the physical conditions of
pHD 7, salinityD 0.15, external dielectricD 80, and
internal dielectricD 10. Then, using AutoDock tools,
the receptor was prepared for molecular docking study
by eliminating water molecules and ligand heteroatoms
and by addition of polar hydrogens[45]. The ligands
were prepared for molecular docking study by using
AutoDock tools to set the torsion tree and rotatable
and nonrotatable bonds in the ligand. AutoDock Vina
was used to calculate binding affinities between target
proteins and drug agents[46]. The AutoDock Vina scoring
functions was as given below.

E D

ligandX
i

proteinX
j

epair.dij / (1)

Here, d is the surface distance calculated with Eq. (2).
dij D rij �Rj �Rj (2)

where r is the interatomic distance, and Ri and Rj are
the radii of the pair’s atoms. Every atom pair interacts
via a steric interaction described by the 1st component
of Eq. (3). In addition, depending on the atom type,
hydrophobic and non-directional H-bonding interactions
may exist, as indicated by the last two components of
Eq. (3).
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where w1; w2; w3; w4; and w5 are weight values equal
to �0:0356; �0:00516; 0:840; �0:0351; and �0:587;
respectively.
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The combination of an attractive Gaussian function
with a repulsive parabolic function reproduces the
general shape of a typical Lennard-Jones interaction,
provided the Gaussian term is negative and the parabolic
positive. If both atoms in the pair are hydrophobic, the
linear function in Eq. (7) is included. Also, if the pair
consists of an H-bond donor and an H-bond acceptor,
Eq. (8) is added.

gauss1 D e�.
d

0:5 /
2

(4)

gauss2 D e�.
d�3

2 /
2

(5)

repulsion.d/ D

(
d2; if d < 0I

0; if d > 0
(6)

hydrophobic.d/D

8̂̂<̂
:̂
1:0; if d < 0:5I

1:5 � d; if 0:5 6 d 6 1:5I

0; if d > 1:5

(7)

Hbond.d/ D

8̂̂<̂
:̂
1:0; if d < �0:7I

d
�0:7

; if � 0:7 6 d 6 0I

0; if d > 0

(8)

The exhaustiveness parameter was set to 10. PyMol[47]

and discovery studio visualizer 2019[42] were used to
analyze the docked complexes for surface complexes,
types, and distances of non-covalent bonds. Let Aij

denote the binding affinity between the i -th target
protein .i D 1; 2; : : : ; m/ and the j -th drug agent .j D
1; 2; : : : ; n/. To select the top-ranked lead compounds as
the candidate drugs, we ordered the drug target proteins
and agents according to the descending order of row
sums

Pn
jD1Aij ; i D 1; 2; : : : ; m and column sumsPm

iD1Aij ; j D 1; 2; : : : ; n, respectively. The discovery
studio visualizer 2019 and PyMol software[42, 48] were
used to examine the hydrogen bonds and hydrophobic
interactions between CA compound and the hVDAC
protein, as well as ˛-helix part of hVDAC protein.
Besides, the two-dimensional (2D) and 3D structures
of the complexes were analyzed using discovery studio
visualizer 2019.

3 Result

3.1 Differential expression analysis

We identified the DE genes between two groups (normal
vs. cancer). The R package DESeq2 was used to
find the DE genes. The volcano plot was used to
find the DE genes with the cutoffs p-value<0.05
and jLog2FoldChangej >2 (Fig. 1). A total of 1555

Fig. 1 Volcano plot of the genes. Red colors indicate
upregulated genes while blue colors indicate downregulated
genes and black colors indicate not significant.
jjjLog2FoldChangejjj>>>2 and adjusted p-value <<<0.05 were
considered as statistically significant.

DE genes were identified with 870 upregulated and
685 downregulated genes. The expression patterns of
these genes were shown in the heatmap (Fig. 2). The
dendrograms showed that the cancer and normal samples
were clearly distinguishable. Then, we sorted the DE
genes based on adjusted p-value and selected top 400
DE genes (200 upregulated and 200 downregulated) for
PPI network analysis.

3.2 PPI networks of DE genes and identification of
hub genes

The top 400 DE genes (sorted based on adjusted p-value)
were mapped to the STRING database and constructed a
PPI network. There were 280 nodes and 1166 edges in
the PPI network with an average node degree 8.23. From
the PPI network, we constructed a sub-network with the
top 15 hub genes. The sub-network was shown in Fig. 3.
The 15 hub genes were TIMP1, BGN, SPP1, CFTR,
ACAN, CDH2, COL6A3, MMP1, COL4A1, ITGA2,
COL2A1, THY1, COL5A2, MMP7, and CDX2. The
details of these 15 hub genes were given in Table 1.

3.3 GO and KEGG pathway analysis

To explore the functions of the DE genes, we performed
the GO term and KEGG pathway analyses for the top 15
hub genes obtained from the PPI network. The GO term
biological process analysis showed that some of the
genes were enriched in extracellular matrix organization,
collagen catabolic process, cell adhesion, collagen fibril
organization, skeletal system development, blood vessel
morphogenesis, focal adhesion assembly, etc. The GO
term molecular function analysis showed that some host
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Normal samples Tumor samples

Fig. 2 Heatmap of the DE genes. The heatmap shows the expression profile of the DE genes in GC compared to the adjacent
normal tissues. The color scale indicates the Log2FoldChange of the expression value for each gene in tumor vs. normal tissues.
Red colors indicate down-regulation and green colors indicate up-regulation.

Fig. 3 A sub-network with the top 15 hub genes and their interacted genes constructed with the Cytohuba plugin of
Cytoscape from the PPI network obtained from STRING database after mapping the top 400 differentially expressed genes
(200 upregulated and 200 downregulated). The deepness of the red color indicates higher degree nodes.
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Table 1 Top 15 hub genes extracted from the PPI network constructed with 400 top DE genes.
Gene symbol Degree in PPI network Log2FoldChange Adjusted p-value Expression (up/down)

TIMP 40 3.39 8:64 � 10–15 Up
BGN 40 3.60 1:41 � 10–6 Up
SPP1 38 4.89 4:65 � 10–13 Up
CFTR 36 4.88 3:94 � 10–14 Up
ACAN 34 3.69 9:38 � 10–8 Up
CDH2 34 –4.34 1:42 � 10–15 Down

COL6A3 34 2.83 8:64 � 10–7 Up
MMP1 32 3.79 8:43 � 10–10 Up

COL4A1 32 2.39 3:35 � 10–7 Up
ITGA2 32 2.71 1:81 � 10–14 Up

COL2A1 30 –5.41 2:42 � 10–18 Down
THY1 28 3.45 2:73 � 10–11 Up

COL5A2 28 2.01 2:45 � 10–6 Up
MMP7 26 4.48 9:30 � 10–10 Up

genes were enriched in extracellular matrix structural
constituent and were able to bind platelet-derived
growth factor binding, extracellular matrix binding,
etc. The GO term cellular component analysis showed
that some genes were enriched in extracellular region,
collagen trimer, basement membrane, extracellular
exosome, cell surface, extracellular space, apical plasma
membrane, etc. The KEGG pathway analysis indicated
that some host genes were enriched in several significant
pathways including ECM-receptor interaction, PI3K-Akt

signaling pathway, focal adhesion, etc. The results of the
significant GO term and KEGG pathway analyses were
provided in Fig. 4 and Tables 2 and 3.

3.4 Expression and survival analyses of the hub
genes in gastric cancer

The expressions of the 15 hub genes in the normal
tissue samples and gastric tissue samples were examined
by the GEPIA database. There were 408 gastric tumor
samples and 36 normal samples in GEPIA obtained from

Fig. 4 GO terms and KEGG pathways for the DE genes in GC. The significant GO terms (a) biological processes, (b) molecular
functions, (c) cellular components, and the significant (d) KEGG pathways for the 15 hub genes. The p-value<0.05 was
considered as statistically significant for the GO terms and KEGG pathways.
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Table 2 Significant GO terms for the top 15 hub genes from the PPI networks of the top 400 DE genes.
GO type GO term GO name Number of genes p-value

Biological process

GO:0030198 Extracellular matrix organization 8 8:49 � 10–11

GO:0030574 Collagen catabolic process 5 1:87 � 10–7

GO:0007155 Cell adhesion 6 2:44 � 10–5

GO:0022617 Extracellular matrix disassembly 4 3:13 � 10–5

GO:0030199 Collagen fibril organization 3 4:70 � 10–4

GO:0001501 Skeletal system development 3 0.0056
GO:0048514 Blood vessel morphogenesis 2 0.0141
GO:0001502 Cartilage condensation 2 0.0182
GO:0048041 Focal adhesion assembly 2 0.0198
GO:0071230 Cellular response to amino acid stimulus 2 0.0385
GO:0051216 Cartilage development 2 0.0481

Molecular function
GO:0005201 Extracellular matrix structural constituent 5 2:20 � 10–7

GO:0048407 Platelet-derived growth factor binding 2 0.0091
GO:0050840 Extracellular matrix binding 2 0.0214

Cellular component

GO:0031012 Extracellular matrix 7 4:70 � 10–8

GO:0005576 Extracellular region 10 4:26 � 10–7

GO:0005581 Collagen trimer 5 5:86 � 10–7

GO:0005578 Proteinaceous extracellular matrix 6 1:19 � 10–6

GO:0005604 Basement membrane 4 2:76 � 10–5

GO:0005788 Endoplasmic reticulum lumen 4 3:85 � 10–4

GO:0070062 Extracellular exosome 8 0.0026
GO:0005925 Focal adhesion 4 0.0030
GO:0009986 Cell surface 4 0.0075
GO:0005615 Extracellular space 5 0.0163
GO:0016324 Apical plasma membrane 3 0.0204

Table 3 Significant pathways for the top 15 hub genes from the PPI network of the top 400 DE genes.
Pathway ID Pathway description Number of genes p-value
hsa04512 ECM-receptor interaction 6 1:25 � 10–7

hsa04510 Focal adhesion 6 9:15 � 10–6

hsa04151 PI3K-Akt signaling pathway 6 1:11 � 10–4

hsa04974 Protein digestion and absorption 4 3:10 � 10–4

hsa05146 Amoebiasis 3 0.0118
hsa04611 Platelet activation 3 0.0174

TCGA database. Among the 15 hub genes, 13 genes,
TIMP1, BGN, SPP1, CFTR, ACAN, COL6A3, MMP1,
COL4A1, ITGA2, THY1, COL5A2, MMP7, and CDX2,
were upregulated, and 2 genes, CDH2 and COL2A1,
were downregulated. We found that 13 genes were
upregulated in the GC tissue compared to the normal
tissue (Figs. 5a–5e, 5g–5j, and 5l–5o). And 2 genes were
downregulated in GC compared to the normal samples
(Figs. 5f and 5k). Thus, our findings were validated by
the TCGA data.

The correlation analysis between the expression of
the hub genes in GC and the overall survival of the GC
patients was performed by GEPIA tool using TCGA data.
The survival data of 381 patients with GC were given in

the GEPIA database. The patients were classified into
higher and lower groups based on the median values
of the gene expression. As shown in Fig. 6, the lower
expression of the genes CDH2, COL4A1, and COL5A2
was associated with better survival of the GC patients.

3.5 Association of KGs with other disease risks

The disease-KGs interaction analysis revealed that
top-ranked 10 diseases (axenfeld anomaly (disorder),
cerebral autosomal recessive arteriopathy with
subcortical infarcts and leukoencephalopathy, tumour
budding, retinal hemorrhage, schizencephaly, dilatation
of the cerebral artery, congenital porencephaly,
cardiomyopathies, diabetic nephropathy, and autism
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Fig. 5 Validation of the expression of 15 hub genes in GC. The expression of (a) TIMP1, (b) BGN, (c) SPP1, (d) CFTR, (e)
ACAN, (g) COL6A3, (h) MMP1, (i) COL4A1, (j) ITGA2, (l) THY1, (m) COL5A2, (n) MMP7, and (o) CDX2 were upregulated,
and the expression of (f) CDH2 and (k) COL2A1 were downregulated in gastric tumor tissues compared to normal tissues from
the TCGA data through GEPIA. The cutoffs jLog2FoldChangej >1 and p-value<0.01 were considered as statistically significant.

spectrum disorders) are the highly significant risk
factors for GC patients due to the influence of 3 KGs
(Table 4) and the details were provided in Table S2 in
the ESM.

3.6 Drug repurposing by molecular docking study

To explore candidate drugs by molecular docking
simulation, we considered m D 3 drug target proteins
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Fig. 6 Overall survival analysis of the candidate hub genes. The association between the expression levels of (a) CDH2, (b)
COL4A1, and (c) COL5A2 and the overall survival of the patients with GC was obtained from the TCGA data through GEPIA.
The threshold log rank P<<<0.05 was considered as statistically significant.

Table 4 Top-ranked 10 diseases for 3 KGs of the DE genes for GC.
Term p-value Combined score Gene

Axenfeld anomaly (disorder) 9:00 � 10–4 14 021.17 COL4A1
Cerebral autosomal recessive arteriopathy with
subcortical infarcts and leukoencephalopathy 9:00 � 10–4 14 021.17 COL4A1

Tumour budding 9:00 � 10–4 14 021.17 COL4A1
Retinal hemorrhage 0.001 049 661 11 427.00 COL4A1
Schizencephaly 0.001 049 661 11 427.00 COL4A1
Dilatation of the cerebral artery 0.001 349 432 8255.546 COL4A1
Congenital porencephaly 0.001 349 432 8255.546 COL4A1
Cardiomyopathies 0.001 696 973 520.962 CDH2; COL4A1
Diabetic nephropathy 0.002 312 366 422.106 CDH2; COL4A1
Autism spectrum disorders 0.002 403 121 411.1017 CDH2; COL4A1

(receptors) and n D 102 meta-drug agents as mentioned
in the data source. We downloaded 3D structure of
our COL4A1 from protein data bank (PDB)[39] with
source codes 1li1. On the other hand, the 3D structures
of CDH2 and COL5A2 proteins were downloaded
from UniProt[49] with sources ID of P19022 and
P05997, respectively. The 3D structures of 102 meta-
drug agents (Table S1 in the ESM) were downloaded
from PubChem database[41] as mentioned previously.
Then, the molecular docking was carried out between
total 3 proteins and 102 meta-drug agents to calculate
the binding affinity scores (kcal/mol) for each pair of
proteins and drugs. Next, we ordered the proteins in
descending order of row sums of the binding affinity
matrix and drug agents according to the column sums
to select few drug agents as the candidate drugs for GC
(Fig. 7 and Table S3 in the ESM). Thus, we selected
top-ranked six drug agents (Everolimus, Docetaxel,
Lanreotide, Venetoclax, Temsirolimus, and Nilotinib)
as candidate drugs with the binding affinity scores –8.2
kcal/mol or less against the 3 proteins (Table S3 in the
ESM).

The docked complexes of the top three virtual hits
from AutoDock Vina docking were further considered
for protein-ligand interaction profiling. As shown in
Table 5 and Fig. 8a, COL4A1 Everolimus complex
showed three hydrogen bonds with trp192, thr206, and
ser208 residues, where trp192 and thr206 were involved
in conventional dydrogen bonding with the drug and
ser208 was also involved in carbon hydrogen bonding
with the drug. The drug formed major hydrophobic
interactions with leu210, leu215, met145, and pro205
alkyl bonding while TYR189, PHE191, and TRP192
were responsible for hydrophobic interactions via pi-
alkyl bonding. On the other hand, CDH2 Docetaxel
(Fig. 8b) formed one hydrogen bonds with ala521
residues while ile532 was responsible for hydrophobic
interactions via alkyl bonding. Furthermore, docetaxel
also formed electrostatic with asp523 residue. In Fig. 8c,
CO5A2 Lanreotide complex showed three hydrogen
bonds with gln77, pro94, and glu75 residues and the
major hydrophobic interactions with val79, cys93, val79,
and val95 residues.
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Fig. 7 Image of binding affinity scores based on the top-ordered 30 meta-drug agents out of 102 against the ordered 3 receptors,
where red colors indicate the strong binding affinities between target proteins and drug agents, and green colors indicate their
weak bindings.

Table 5 Detailed molecular interactions analysis for best hits obtained from Autodock Vina docking.

Complex name
Conventional

hydrogen bond
Carbon hydrogen

bond
Hydrophobic

(alkyl)
Hydrophobic

(pi-alkyl)
Electrostatic

COL4A1 Everolimus TRP192, THR206 SER208
LEU210, LEU215,
MET145, PRO205

TYR189, PHE191, TRP192 �

CDH2 Docetaxel ALA521 � ILE532 � ASP523

CO5A2 Lanreotide GLN77, PRO94, GLU75 �
VAL79, CYS93,
VAL79, VAL95

� �

4 Discussion
Gastric cancer is one of the most commonly diagnosed
tumors all over the world. Although, a lot of
advancements have been made in GC diagnosis and
treatment, the survival rate is still poor due to lack
of early diagnosis and proper treatments at advanced
level of GC. In this study, we investigated some
potential candidate genes for GC using the paired
cancer-normal sequencing data obtained from the
GEO datasets. Primarily, we identified 15 hub genes
TIMP1, BGN, SPP1, CFTR, ACAN, CDH2, COL6A3,
MMP1, COL4A1, ITGA2, COL2A1, THY1, COL5A2,
MMP7, and CDX2 from the PPI network of top
400 DE genes. Several of these genes were reported
as important biomarkers of GC by previous studies.
For example, overexpression of TIMP1 promoted
GC cell proliferation[50]. BGN was identified as a
candidate biomarker for GC prognosis and tumor
immune infiltration[51]. Overexpression of SPP1 was
closely correlated with GC occurrence[52]. THY1 was
identified as a potential novel biomarker for GC[53].
ITGA2 was reported as a potential therapeutic target for
GC[54]. MMP7 was identified as a prognostic biomarker
to predict the outcome of GC patients[55].

We performed the GO term and KEGG pathway
analyses for the top 15 hub genes. The GO term analyses
showed that some hub genes were enriched in several
important biological processes, molecular functions,
and cellular components (Table 2). Previous studies
also reported that the biological processes extracellular
matrix organization, collagen catabolic process, cell
adhesion, extracellular matrix disassembly, collagen
fibril organization and skeletal system development,
the molecular functions extracellular matrix structural
constituent and extracellular matrix binding, and the
cellular components extracellular region, collagen trimer,
extracellular exosome, cell surface, and basement
membrane were associated with GC related genes[56–59].
The KEGG pathway analysis showed that some hub
genes were enriched in GC related signaling pathways
including ECM-receptor interaction, PI3K-Akt signaling
pathway, focal adhesion, etc. ECM-receptor interaction
was reported as an important pathway linked with the
progression of GC[60]. Focal adhesion was identified as
a key player in regulating cell survival and proliferation,
migration, and invasion of GC cells[61]. The PI3K-Akt
signaling pathway was known to play an important role
in the development and progression of GC[62].
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Fig. 8 Top three potential targets and top three lead drugs based on docking results. Lead three drugs Everolimus, Docetaxel,
and Lanreotide were selected by investigating the binding affinity score. The 3D structure of the key protein with candidate
drugs is shown in left side. The 2D Schematic diagram of key protein with candidate drugs interaction and the neighbor residues
(within 4���10–10 m of the drug) are given in right side.

The survival analysis showed that the lower expression
of the genes CDH2, COL4A1, and COL5A2 was
associated with better survival of the GC patients (Fig. 6).
CDH2 can be used as a potential biomarker for the
prognosis of GC[63]. COL4A1 might be able to confer
trastuzumab resistance in GC[64]. COL5A2 is strongly
associated with the prognosis of GC[65]. Thus, these
three genes CDH2, COL4A1, and COL5A2 might serve
as potential biomarkers for GC.

To explore our proposed genomic biomarkers guided
repurposable drugs, we proposed 3 key proteins (CDH2,
COL4A1, and COL5A2) as the drug target receptors
and performed their docking simulation with the 102
meta-drug agents. Then, we selected top ranked six
drugs (Everolimus, Docetaxel, Lanreotide, Venetoclax,
Temsirolimus, and Nilotinib) as the most probable
repurposable candidate drugs for GC infections based
on their strong binding affinity scores (kcal/mol) with
all the target proteins (Fig. 7). Among the identified
candidate drugs, Everolimus was an mTOR inhibitor
with antitumor activity. Everolimus was recommended
as a potential drug against GC[32, 66, 67]. In a phase I

clinical trial, Everolimus was used in combination
with capecitabine in patients with refractory GC
where the clinical benefits were modest[68]. In phase
I clinical trials NCT01049620 and NCT01042782,
Everolimus was used in combination with capecitabine
and oxaliplatin, and mitomycin C, respectively, in
patients with advanced GC but the results of these
trials were unknown[69]. In a multicenter phase II study
(NCT00519324), Everolimus was used in patients
with metastatic GC with previous chemotherapy
failure[70]. Docetaxel was a standard chemotherapy
regimen for GC patients[30, 66, 67, 71]. Perioperative
chemotherapy with docetaxel, oxaliplatin, fluorouracil,
and leucovorin significantly improved the progression-
free survival and overall survival among patients with
resectable GC compared with epirubicin, cisplatin,
and fluorouracil or capecitabine (ECF/ECX)[72].
Patients with advanced GC benefited more with the
combination of apatinib and docetaxel than with apatinib
monotherapy[72]. Lanreotide was approved in the USA
and Europe to improve progression-free survival (PFS)
in patients with unresectable gastroenteropancreatic
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neuroendocrine tumors (GEP-NETs)[73]. Lanreotide
acetate inhibitor was considered as a potential
therapeutic against GC patients[32, 67]. Venetoclax was
used as a potential treatment against GC patients[32].
Venetoclax was a potent, clinically approved BH3-
mimetic that induced apoptosis by targeting BCL-
2[74]. Several authors recommended the mTOR inhibitor
temsirolimus as a potentially useful drug by screening
drugs that reduced the proliferation of diffuse-type
GC-initiating cells[32, 75]. Several articles reported that
mTOR played an important role in the growth regulation
of GCs[76–78]. Temsirolimus was used for the treatment
of patients with renal cell carcinoma, multiple myeloma,
and mantle cell lymphoma[75]. Nilotinib was considered
a potential treatment for GC patients[32, 79, 80]. Two
cases of GC were reported with nilotinib therapy in a
post-marketing clinical use survey in Japan and one case
was reported in a global phase III multicenter trial[80].

The literature review also supported our proposed
drugs for the treatment against GC infections. Therefore,
the proposed six candidate drugs might play the vital role
for the treatment against GC patients with comorbidities
as our proposed target proteins are also associated with
several comorbidities. Further wet lab experimental
validation is needed for both the proposed target proteins
and candidate drugs to confirm the role of the candidate
drugs for the treatment of GC.

5 Conclusion

We identified a total of 1555 DE genes with 870
upregulated and 685 downregulated genes. Through
the PPI network analysis, we screened 15 hub genes.
The GO term analysis showed that some hub genes
were enriched in several significant biological processes,
molecular mechanisms, and cellular components. Again,
the KEGG pathway analysis showed that some hub genes
were associated with several GC related pathways. The
expressions of the hub genes were validated by the
TCGA data. Among the 15 hub genes, three genes,
CDH2, COL4A1, and COL5A2, were significantly
associated with the GC patients found by survival
analysis. Therefore, these three genes, CDH2, COL4A1,
and COL5A2, might be considered as potential
biomarkers for GC diagnosis and treatment. In this paper,
we also attempted to suggest effective supporting drugs
for the treatment against GC patients. For this purpose,
we identified 3 host receptor proteins (CDH2, COL4A1,
and COL5A2) guided top ranked 6 repurposable

drugs (Everolimus, Docetaxel, Lanreotide, Venetoclax,
Temsirolimus, and Nilotinib) for the treatment against
GC patients by molecular docking simulation. The
literature review also supported our proposed drugs
for the treatment against GC patients. Therefore, our
findings might be effective therapeutic resource for the
better treatment against GC patients.
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