
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 05/16 pp665–672
DOI: 10 .26599 /TST.2022 .9010032
Volume 28, Number 4, Augu st 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

DeepFilter: A Deep Learning Based Variant Filter for VarDict

Hao Zhang, Zekun Yin�, Yanjie Wei, Bertil Schmidt, and Weiguo Liu�

Abstract: With the development of sequencing technologies, somatic mutation analysis has become an important

component in cancer research and treatment. VarDict is a commonly used somatic variant caller for this task.

Although the heuristic-based VarDict algorithm exhibits high sensitivity and versatility, it may detect higher amounts

of false positive variants than callers, limiting its clinical practicality. To address this problem, we propose DeepFilter,

a deep-learning based filter for VarDict, which can filter out the false positive variants detected by VarDict effectively.

Our approach trains two models for insertion-deletion mutations (InDels) and single nucleotide variants (SNVs),

respectively. Experiments show that DeepFilter can filter at least 98.5% of false positive variants and retain 93.5%

of true positive variants for InDels and SNVs in the commonly used tumor-normal paired mode. Source code and

pre-trained models are available at https://github.com/LeiHaoa/DeepFilter.

Key words: variant filter; deep learning; somatic variant

1 Introduction

Cancer is a lethal genetic disease of the human
genome. Finding mutations between cancer and
normal tissues (somatic mutations) is the key to
understanding the cause of cancers. The rapid progress
of next-generation sequencing (NGS) has recently
made whole-exome sequencing (WES) and whole-
genome sequencing (WGS) feasible and less expensive.
Consequently, several somatic variant calling tools for
NGS data have been proposed over the last decade[1–6].
However, variability in the accuracy of somatic mutation
detection may affect the discovery of alterations and the
therapeutic management of cancer patients.

�Hao Zhang, Zekun Yin, and Weiguo Liu are with the School of
Software, Shandong University, Jinan 250100, China. E-mail:
haoz@mail.sdu.edu.cn; fzekun.yin, weiguo.liug@sdu.edu.cn.
� Zekun Yin and Weiguo Liu are also with the Shenzhen Research

Institute of Shandong University, Shenzhen 518057, China.
�Yanjie Wei is with the Shenzhen Institute of Advanced

Technology, Chinese Academy of Sciences, Shenzhen 518055,
China. E-mail: yj.wei@siat.ac.cn.
�Bertil Schmidt is with the Institute for Computer Science,

Johannes Gutenberg University, Mainz 55128, Germany. E-
mail bertil.schmidt@uni-mainz.de.
�To whom correspondence should be addressed.

Manuscript received: 2022-02-26; revised: 2022-04-27;
accepted: 2022-08-22

VarDict[7] is a commonly used somatic variant
calling tool used in clinical research. It can call
insertion-deletion mutations (InDels), single nucleotide
variants (SNVs), and complex variants simultaneously
based on a series of heuristic conditions and local
realignment. VarDict employs a Fisher-exact test to
obtain signature differences between tumor and normal
samples. It also performs other heuristic conditions,
such as variant allele frequency and mapping quality,
to filter false positive variants. An evaluation of
eight variant calling tools (HaplotypeCaller, Platypus,
VarScan, LoFreq, FreeBayes, SNVer, SAMtools, and
VarDict) on non-matched data revealed that VarDict
outperforms all other contenders[8]. Reference [9] has
reviewed four commonly used variant callers (VarDict,
Strelka, Mutect2, and VarScan2) using tumor-normal
paired data provided by the National Center for Clinical
Laboratories in China (NCCL). Results demonstrate that
the heuristic-based caller VarDict achieves the highest
recall among all callers in tumor-normal and tumor-only
mode. A synthetic data based evaluation[10] also shows
that VarDict can detect more true variants than others, but
at the same time, VarDict introduces more false positive
variants.

In summary, these evaluations indicate that the
heuristic-based VarDict is highly sensitive but lacks



666 Tsinghua Science and Technology, August 2023, 28(4): 665–672

precision. In most cases, VarDict introduces more false
positives than other callers. Confounding factors, such
as the contamination of tumor and normal samples, the
sub-clonal heterogeneity of cancer samples, the artifacts
introduced by sequencing error, the misalignment in
the alignment step, and the incompleteness of reference
genomes, lead to many false positive somatic variant
calls. Thus, removing large amounts of false positive
calls would be highly beneficial. Effective filtering
strategies can improve the accuracy and efficiency of
cancer diagnosis and treatment.

General-purpose variant filters include SnpEff[11],
VCFTools[12], and FiNGS[13]. However, these tools need
users to specify filtering conditions. For instance, SnpEff
and VCFTools require users to specify their own filtering
rules, whereas FiNGS needs a configuration file to
specify the filter parameters and thresholds.

Furthermore, many variant calling tools have their
own filter modules. For example, Strelka2[3] uses an
empirical variant scoring (EVS) step to produce a single
aggregate score for the detected variants. This step
takes multiple features, such as strand bias, genotype
probability, and mapping quality, to train a random forest
model. VarDict[7] uses a Perl-based hard filter to remove
certain false positive variants and format the detected
variants into variant call format (VCF) files. The latest
release of VarScan2[4] includes the fpfilter module to
filter false positive variants.

Recently, deep-learning based methods, such as
DeepVariant[6], NeuSoamtic[14], and Clairvoyante[5],
have been proposed for variant detection. DeepVariant
is based on deep learning technology to detect variants
from germline data. It converts sequence alignment data
of potential variant candidates into 221 � 100 “pileup”
images and uses convolutional neural networks (CNNs)
to process them. NeuSomatic summarizes alignment
information around candidate variants by converting
them into k � 5 � 32 feature matrices using k channels
representing different features (sequence, quality scores,
etc.), and then passes these data into a CNN network.
Other methods use ensemble learning to integrate the

result from a series of callers. Aside from NeuSomatic,
the Roche Sequencing team also provides an ensemble
learning caller named SomaticSeq, which ensembles
the detection results from a series of callers, including
VarDict, Strelka2, and VarScan2, to improve the
sensitivity of somatic variant calling. DeepVariant can
only detect germline variants, NeuSomatic is designed
for somatic mutations, and Cairvoyante is designed for
single molecule sequencing. Machine-learning based
methods treat the variant calling task as a classification
problem. In general, deep-learning based methods have
been shown to achieve high precision on certain datasets
but may perform worse on specific datasets that are very
different from their training data[15].

Some filtering tools are designed for a specific
variant caller. For example, FilterMutectCall is designed
for filtering variants called from Mutect2, and
GARFIELD-NGS[16] is designed to filter variants from
GATK HaplotypeCaller. GARFILED-NGS trains four
prediction models optimized for InDels and SNVs for
Illumina and ION platforms, respectively. Variant
caller specific filters can exploit the variant detection
information generated by the corresponding caller.

Inspired by these recent results, we introduce
DeepFilter, a deep-learning based variant filter designed
for VarDict to filter false positive variants effectively
while ensuring high calling sensitivity.

2 Method

There are three main steps in DeepFilter:
(1) A hard filter strategy is used for the intermediate

results produced by VarDict. Variants that match these
conditions are filtered.

(2) The filtered data are input to the neural network
for inference.

(3) The filtered data are formatted into VCF files.
The workflow is shown in Fig. 1. Details of each step

will now be described in Sections 2.1 and 2.2.

2.1 Hard Filter

To improve the sensitivity, DeepFilter firstly performs

Raw Data Hard Filter Network VCF File

Fig. 1 Workflow of DeepFilter: Raw data are the VarDict intermediate results, which are processed by a hard filter and then
input into a deep-learning based filter. The output of the network is converted into VCF format.



Hao Zhang et al.: DeepFilter: A Deep-Learning-Based Variant Filter for VarDict 667

a hard filter to remove variants that are highly unlikely
to be true variants. We analyzed all training datasets
to find the conditions for the hard filter. The statistical
results of our analysis are shown in Fig. 2. Based on
these statistical results, we chose the following hard filter
conditions to remove variants:
� Tumor sample allele frequency 6 0:01;
� Tumor sample mean quality 6 20;
� Tumor sample variant mismatch > 6;
� Variant type is Germline.
The hard filter conditions we chose were relatively

loose, ensuring that the true variants will most likely not
be filtered in this step.

2.2 Network

Filtering false positive variants is important because an
error rate of 1:10 000 in a genome with 3 billion positions
would result in many false calls, which may lead to

positives may also lead to missed diagnoses. Thus, the
goal of DeepFilter is to filter false positives effectively
while retaining as many as possible true positive variants.
In our opinion, “keeping true variants” can be regarded
as equally important as “removing false variants”. Thus,
based on the considerations above, the main principle for
designing DeepFilter is to remove as many false positive
variants as possible while retaining most true variants.

DeepFilter treats the task of distinguishing whether a
variant is true or false as a binary classification problem.
We trained two MLP networks for SNV and InDel
variants using PyTorch. The structure of the network
is illustrated in Fig. 3. The MLP network included one
input layer, four hidden layers, and one output layer. The
input layer size is the feature number we selected. The
hidden layer sizes of the SNV model are 80, 120, 140,
120, and 20, and the hidden layer sizes of the InDel
model are 140, 160, 170, 100, and 10. The output

Fig. 2 Distribution of Var1AF, Var1QMean, Var1NM, and VarLabel in all datasets we used.



668 Tsinghua Science and Technology, August 2023, 28(4): 665–672

Input 
features

Output
classes

Hidden
layers

Fig. 3 Network of DeepFilter. We trained two distinct models based on the multi-layer perceptron algorithm. The hidden layer
sizes of the SNV model are 80, 120, 140, 120, and 20, and the hidden layer sizes of the InDel model are 140, 160, 170, 100, and 10.

layer size is 2. At the beginning of training, the
weights of each layer were initialized using a Xavier
uniform distribution[17]. We used leak ReLU as the
active function. Each layer was proceeded by a dropout
operation with drop rate p D 0:5 to avoid overfitting. In
addition, we used Adam[18] optimizer, with ˇ1 D 0:9,
ˇ2 D 0:99, and � D 10�9. The learning rate is varied
over the course of training, according to the formula:
lr D lr � 0:9e, where e is the number of epochs, and
the initial learning rate lr D 0:001.

We adopted a weighted cross-entropy loss function in
this network to balance the filtration intensity and true
variant retention rate. The loss of each class is defined
as

loss.x; class/ D

weightŒclass�

0@�xŒclass�C log

0@X
j

exp.xŒj �/

1A1A
Thus, the average loss is

loss D

NX
iD1

loss.i; classŒi �/

NX
iD1

weight.classŒi �/

In our method, we assigned a higher weight to the
positive class. Thus, when the network filters a true
variant, it will have a more severe punishment than when
it retains a false positive variant. Hence, more true
variants will be retained. After careful consideration,
we selected a 1:24 ratio of false and true as the default

weight to train the network. Nevertheless, users could
also define other weights when they re-train the network.

DeepFilter uses different networks in SNV and InDel
filtering tasks. VarDict generates many variant features.
In the commonly used tumor-normal paired mode, we
selected 45 and 42 features for InDels and SNVs,
respectively. Each sample included 18 numerical features
(totalPosCov, posCoverage, refFwCov, refRvCov,
varsFwCount, varsRvCount, frequency, meanPosition,
pstd, pvalue, meanQuality, ratio, mapq, qratio, higreq,
nm, hicnt, and hicov), five numerical features of the
variant (shift3, msi, msint, pvalue, and ratio), and one
factor feature (varLabel). The feature varLabel included
six classes (including StrongSomatic, LikelySomatic,
StrongLOH, LikelyLOH, Germline, and Adiff) to
indicate the type of a variant.

We selected more features for the InDel network than
for the SNV network. Additional features included the
length of reference and alter sequence and varType
(Insertion, Deletion, and complex). The description
of each feature is listed in Table 1. We performed
standardization for numerical features and one-hot
encoding for factor features. Thus, the number of
features for SNV and InDel networks were changed to
48 and 53, respectively.

3 Result

3.1 Dataset

To ensure the generalization of the neural network, we
used three types of datasets to train and test DeepFilter:



Hao Zhang et al.: DeepFilter: A Deep-Learning-Based Variant Filter for VarDict 669

Table 1 Description of selected features.
Feature Description

totalPosCov Total coverage
posCoverage Variant coverage
refFwCov Forward coverage of reference
refRvCov Reverse coverage of reference
varsFwCount Forward coverage of variant
varsRvCount Reverse coverage of variant
frequency Allele frequency
meanPosition Mean position in read

pstd
Flag for read position standard deviation (1 if
the variant is covered by at least 2 read segments
with different positions, otherwise 0).

p-value The p-value from Fisher test
meanQuality Mean base quality
ratio Odd ratio from Fisher test
mapq Mean mapping quality
qratio Ratio of high-quality reads to low-quality reads
higreq Variant frequency for high-quality reads

shift3
Number of bases to be shifted to 3 prime for
deletions due to alternative alignment

msi Microsatellite > 1 indicates MSI
msint Microsatellite unit length in base pair (bp)

nm
Average number of mismatches for reads
containing the variant

hicnt Number of high-quality reads with the variant
hicov Position coverage by high quality reads

(1) Real-world tumor-normal sample data. We
used the SEQC-II data[19] provided by the Somatic
Mutation Working Group of SEQC-II consortium. The
consortium aims to develop guidelines for somatic
mutation detection and provide golden-standard variant
sets for widely accepted paired tumor-normal reference
samples/materials (HCC1395 and HCC1395BL). The
raw sequencing data were downloaded from https://
sites.google.com/view/seqc2/home/sequencing.

(2) Mixture of two golden-standard data. We used
the data obtained by The Hartwig Medical Foundation
and Utrecht Medical Center after simulating somatic
cancer calling using a mixture of two Genome in a Bottle
(GIAB) samples NA12878 and NA24385. NA12878 was
considered as the “tumor” mixed with NA24385. The
“tumor-normal” pair was generated by physical mixing
of samples prior to sequencing. We downloaded the
data using scripts provided by bcbio-nextgen[20] tutorial
website (https://bcbio-nextgen.readthedocs.io).

(3) Synthetic data. We used BamSurgen[21] to
generate in silico data. We generated two tumor-normal
paired alignment datasets by BamSurgen: one for
training and the other for validation. This step ensures
that the training data will not be treated as validation

data. We generated the synthetic data based on the
Fudan University sequencing sample from the SEQC-
II project, creating SNV and InDel variants with user-
defined parameters. In our experiments, we generated
variants with a minimal variant frequency of 0.01 and
a maximum variant frequency of 1.0. The distribution
of mutation frequency is ˇ-distribution with parameters
˛ D 2 and ˇ D 5. And the number of minimal variant
reads is 3.

We used two types of datasets to train DeepFilter. First,
we used a mixture of NA12878 and NA24385. Second,
we generated a synthetic dataset including 500 000 SNV
variants and 400 000 InDel variants. Then, we mixed the
two types of datasets as training datasets for DeepFilter
training. The detailed training methods and scripts
are listed in DeepFilter’s GitHub repository (https://
github.com/LeiHaoa/DeepFilter).

As for the test datasets, we used the raw sequencing
data of the HCC1395 sample from Fudan University
(FD2) to evaluate the performance of DeepFilter on
real-world tumor-normal data. We also generated 20 000
SNVs and 8000 InDels to evaluate the performance of
the network in DeepFilter. Neither of the two testing
datasets was trained before.

3.2 Evaluation results

We compared the filtering performance of DeepFilter,
VarDict’s default hard filter (BuiltinFilter), and the filter
in bcbio-nextgen pipeline (bcbio). Bcbio-nextgen is a
Python toolkit providing best-practice pipelines for fully
automated high throughput sequencing analysis. It also
provides the best-practice filter pipeline of VarDict. The
pipeline integrates VarDict’s builtin hard filter scripts
and another carefully tuned hard filter. Then the pipeline
uses a call somatic module to calculate the genotype
likelihoods. These likelihoods were compared with
user-defined thresholds to filter false variants. In our
evaluation, we used the default settings of bcbio-nextgen.
VarDict’s hard filter supports users to specify extra hard
filter conditions according to the sample or sequencing
information. However, to be fair, we also used the default
parameters provided in VarDict’s hard filter.

FFR D 1 �
FPf iltered data

FPraw data

(1)

TRR D 1 �
TPf iltered data

TPraw data

(2)

The evaluation results are shown in Tables 2–5. We
recorded the false positive filtration rate (FFR) and
true positive variants retention rate (TRR) of each filter.



670 Tsinghua Science and Technology, August 2023, 28(4): 665–672

Table 2 Performance comparison of DeepFilter, bcbio, and
VarDict’s default hard filter in filtering SNV variants using
the synthetic dataset Syndata.

Tool TP FP FFR TRR Recall Prec F1-score
Ground truth 18 773 – – – – – –
Without filter 17 424 9 765 540 0 1.000 0.928 0.002 0.004
DeepFilter 16 793 39 094 0.996 0.964 0.895 0.300 0.449

Bcbio 15 711 36 382 0.996 0.902 0.837 0.302 0.444
BuiltinFilter 15 785 5 944 976 0.391 0.906 0.841 0.003 0.006

Table 3 Performance comparison of DeepFilter, bcbio, and
VarDict’s default hard filter in filtering SNV variants using
the real-world dataset FD2.

Tool TP FP FFR TRR Recall Prec F1-score
Ground truth 39 525 – – – – – –
Without filter 37 286 9 806 939 0 1.000 0.943 0.004 0.008

DeepFilter 34 844 90 559 0.991 0.935 0.882 0.278 0.423
bcbio 35 818 127 750 0.987 0.961 0.906 0.219 0.353

BuiltinFilter 35 727 6 026 155 0.386 0.958 0.904 0.006 0.012

Table 4 Performance comparison of DeepFilter, bcbio, and
VarDict’s default hard filter in filtering InDel variants using
the synthetic dataset Syndata.

Tool TP FP FFR TRR Recall Prec F1-score
Ground truth 7487 – – – – – –
Without filter 6227 1 785 748 0 1.000 0.832 0.003 0.006

DeepFilter 5903 9687 0.995 0.948 0.788 0.379 0.512
bcbio 4661 23 677 0.987 0.749 0.623 0.164 0.260

BuiltinFilter 4828 1 160 090 0.350 0.775 0.645 0.004 0.008

Equations (1) and (2) show the definitions of FFR and
TRR. In this evaluation, raw data correspond to the
intermediate result of VarDict, and filtered data are the
remaining variant calls after filtration. Furthermore, we
recorded the overall recall, precision, and F1-score (the
harmonic mean of precision and recall) of each variant
calling pipeline. In addition, the receiver operating
characteristic (ROC) curves on the SNV and InDel

Table 5 Performance comparison of DeepFilter, bcbio, and
VarDict’s default hard filter in filtering InDel variants using
the real-world dataset FD2.

Tool TP FP FFR TRR Recall Prec F1-score
Ground Truth 1921 – – – – – –
Without filter 1845 1 694 382 0 1.000 0.960 0.001 0.002
DeepFilter 1764 25 897 0.985 0.956 0.900 0.064 0.120

Bcbio 1769 48 216 0.972 0.959 0.921 0.035 0.067
BuiltinFilter 1753 1 172 550 0.308 0.950 0.913 0.001 0.002

modes were drawn to evaluate the pre-trained model
(Fig. 4). The area under the curve (AUC) values of the
SNV and InDel models were 0.95 and 0.99, respectively.

Tables 2 and 3 show that in the SNV mode, VarDict’s
default hard filter is only able to filter 39.1% (38.6%)
false positive variants on the Syndata (FD2) dataset at
the expense of losing 9.4% (4.2%) true variants. The
heuristic-based VarDict introduced more false positives
than true variants. Thus, the overall variant calling
precision only slightly improved when the low FFR
hard filter was used. For example, the precision only
improved from 0:2% to 0:3% by using the hard filter
(Table 2). By combining hard filters and genotype
likelihood estimation, the filter in bcbio-nextgen pipeline
can filter out 99.6% (98.7%) false positive variants
and retain 83.7% (96.1%) true variants. DeepFilter can
filter 99.6% (99.1%) on the Syndata (FD2) dataset.
Although bcbio-nextgen’s filter and DeepFilter have
similar filter rates on Syndata, DeepFilter can retain
more true variants. Thus, the pipeline with DeepFilter
had higher F1-scores than the other pipelines.

In the InDel mode, VarDict’s default hard filter
has limited improvement to the variant calling results.
Compared with this BuiltinFilter, Bcbio-nextgen’s filter
performed better, and it can filter 98.7% (97.2%)
false positive variants. Nevertheless, DeepFilter still

Fig. 4 ROC curve of DeepFilter models.



Hao Zhang et al.: DeepFilter: A Deep-Learning-Based Variant Filter for VarDict 671

outperformed bcbio-nextgen’s filter, especially on the
Syndata dataset. DeepFilter filtered more false positive
variants while retaining more true positive variants than
bcbio-nextgen’s filter. In summary, the DeepFilter-based
pipeline achieved the highest F1-sore on the SNV and
InDel modes.

4 Conclusion

We proposed DeepFilter, a deep-learning based filter for
removing false positive somatic variants called by VarDict.
Our experimental results based on synthetic and real-
world NGS data showed that DeepFilter can effectively
filter out large amounts of false positive variants while
retaining most true positive variants. In addition, we
provided multiple pre-trained models for InDel and SNV
variants. DeepFilter outperformed VarDict’s default
builtin hard filter and bcbio-nextgen’s filter in terms
of FFR and TRR, which made VarDict more valuable
in practical clinical research and greatly facilitated
downstream analysis in biological research and patient
treatment. Source code and pre-trained models are
available at https://github.com/LeiHaoa/DeepFilter.

Acknowledgment

This work was partially supported by the National Natural
Science Foundation of China (NSFC) (Nos. 62102231
and 61972231); the Shenzhen Basic Research Fund
(No. JCYJ20180507182818013); the Key Project of
Joint Fund of Shandong Province (No. ZR2019LZH007);
Shandong Provincial Natural Science Foundation (No.
ZR2021QF089); the PPP project from CSC and DAAD;
and Engineering Research Center of Digital Media
Technology, Ministry of Education, China.

References

[1] D. Benjamin, T. Sato, K. Cibulskis, G. Getz, C. Stewart,
and L. Lichtenstein, Calling somatic SNVs and indels with
mutect2, arXiv preprint arXiv: 10.1101/861054, 2019.

[2] E. Garrison and G. Marth, Haplotype-based variant
detection from short-read sequencing, arXiv preprint arXiv:
1207.3907, 2012.

[3] S. Kim, K. Scheffler, A. L. Halpern, M. A. Bekritsky,
E. Noh, M. Kallberg, X. Chen, Y. Kim, D. Beyter, P.
Krusche�et al., Strelka2: Fast and accurate calling of
germline and somatic variants, Nature Methods, vol. 15,
no. 8, pp. 591–594, 2018.

[4] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D.
McLellan, L. Lin, C. A. Miller, E. R. Mardis, L. Ding,
and R. K. Wilson, Varscan 2: Somatic mutation and copy
number alteration discovery in cancer by exome sequencing,
Genome Res., vol. 22, no. 3, pp. 568–576, 2012.

[5] R. Luo, F. J. Sedlazeck, T. -W. Lam, and M. C.
Schatz, A multi-task convolutional deep neural network
for variant calling in single molecule sequencing, Nature
Communications, vol. 10, no. 1, p. 998, 2019.

[6] R. Poplin, P. -C. Chang, D. Alexander, S. Schwartz, T.
Colthurst, A. Ku, D. Newburger, J. Dijamco, N. Nguyen, P.
T. Afshar, et al., A universal SNP and small-indel variant
caller using deep neural networks, Nature Biotech., vol. 36,
no. 10, pp. 983–987, 2018.

[7] Z. Lai, A. Markovets, M. Ahdesmaki, B. Chapman, O.
Hofmann, R. McEwen, J. Johnson, B. Dougherty, J. C.
Barrett, and J. R. Dry, Vardict: A novel and versatile variant
caller for next-generation sequencing in cancer research,
Nucleic Acids Research, vol. 44, no. 11, p. e108, 2016.

[8] S. Sandmann, A. O. D. Graaf, M. Karimi, B. A. V. D.
Reijden, E. Hellström-Lindberg, J. H. Jansen, and M.
Dugas, Evaluating variant calling tools for non-matched
next-generation sequencing data, Scientific Rep., vol. 7, no.
1, p. 43169, 2017.

[9] X. He, S. Chen, R. Li, X. Han, Z. He, D. Yuan, S. Zhang,
X. Duan, and B. Niu, Comprehensive fundamental somatic
variant calling and quality management strategies for human
cancer genomes, Briefings in Bioinformatics, vol. 22, no. 3,
p. bbaa083, 2021.

[10] X. Bian, B. Zhu, M. Wang, Y. Hu, Q. Chen, C. Nguyen,
B. Hicks, and D. Meerzaman, Comparing the performance
of selected variant callers using synthetic data and genome
segmentation, BMC Bioinformatics, vol. 19, no. 1, p. 429,
2018.

[11] P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen, L.
Wang, S. J. Land, X. Lu, and D. M. Ruden, A program for
annotating and predicting the effects of single nucleotide
polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3, Fly, vol. 6, no. 2,
pp. 80–92, 2012.

[12] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks,
M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth,
S. T. Sherry, et al., The variant call format and VCFtools,
Bioinformatics, vol. 27, no. 15, pp. 2156–2158, 2011.

[13] C. P. Wardell, C. Ashby, and M. A. Bauer, FiNGS: High
quality somatic mutations using filters for next generation
sequencing, BMC Bioinformatics, vol. 22, no. 1, p. 77,
2021.

[14] S. M. E. Sahraeian, R. Liu, B. Lau, K. Podesta, M.
Mohiyuddin, and H. Y. K. Lam, Deep convolutional neural
networks for accurate somatic mutation detection, Nature
Communications, vol. 10, no. 1, p. 1041, 2019.

[15] M. Wang, W. Luo, K. Jones, X. Bian, R. Williams,
H. Higson, D. Wu, B. Hicks, M. Yeager, and B. Zhu,
SomaticCombiner: Improving the performance of somatic
variant calling based on evaluation tests and a consensus
approach, Scientific Reports, vol. 10, no. 1, p. 12898, 2020.

[16] V. Ravasio, M. Ritelli, A. Legati, and E. Giacopuzzi,
Garfield-NGS: Genomic variants filtering by deep learning
models in NGS, Bioinformatics, vol. 34, no. 17, pp. 3038–
3040, 2018.

[17] X. Glorot and Y. Bengio, Understanding the difficulty



672 Tsinghua Science and Technology, August 2023, 28(4): 665–672

of training deep feedforward neural networks, in Proc.
13th International Conference on Artificial Intelligence
and Statistics, Sardinia, Italy, 2010, pp. 249–256.

[18] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv: 1412.6980, 2014.

[19] W. Chen, Y. Zhao, X. Chen, Z. Yang, X. Xu, Y. Bi, V.
Chen, J. Li, H. Choi, B. Ernest, et al., A multicenter study
benchmarking single-cell RNA sequencing technologies
using reference samples, Nature Biotechnology, vol. 39, no.
9, pp. 1103–1114, 2020.

[20] R. V. Guimera, Bcbio-nextgen: Automated, distributed next-
gen sequencing pipeline, Embnet Journal, vol. 17, no. B, p.
30, 2011.

[21] A. D. Ewing, K. E. Houlahan, Y. Hu, K. Ellrott, C.
Caloian, T. N. Yamaguchi, J. C. Bare, C. P’ng, D. Waggott,
V. Y. Sabelnykova, et al., Combining tumor genome
simulation with crowdsourcing to benchmark somatic
single-nucleotide-variant detection, Nature Methods, vol.
12, no. 7, pp. 623–630, 2015.

Hao Zhang received the bachelor degree
from Shandong University in 2017. He is
currently pursuing the PhD degree with the
School of Software, Shandong University,
Jinan, China. His major research interests
are high performance computing and its
application in life science.

Zekun Yin is a postdoctoral researcher
at Shandong University. He received the
bachelor and PhD degrees from Shandong
University in 2014 and 2020, respectively.
His major research interests are high
performance computing and its application
in life science and geoscience. He is an
expert in the design, implementation, and

deployment of parallel bioinformatics algorithms, applications,
and libraries on multi- and many-core HPC platforms. He
won ACM Gordon Bell Prize in 2017 for the research work
on Tangshan earthquake simulation on the Sunway TaihuLight
supercomputer.

Yanjie Wei is a professor and the executive
director in Center for High Performance
Computing, Shenzhen Institute of
Advanced Technology, Chinese Academy
of Sciences. He received the PhD degree
from Michigan Tech University in the field
of computational biophysics in 2007. From
2008 to 2011, he worked as a postdoctoral

research associate at Princeton University. His research focuses
on high performance computing and bioinformatics. He is serving
as the editorial member for Future Generation Computer Systems
and Interdisciplinary Sciences: Computational Life Sciences. He
has published more than 100 peer reviewed journal/conference
papers, including Nucleic Acids Research, PloS Computational
Biology, Briefings in Bioinformatics, Bioinformatics, Cell
Research, BMC Bioinformatics, Proteins, Journal of Chemical
Theory and Computation, Journal of Physical Chemistry B,
ICPP2016, ICPP2018, and PPoPP2015.

Bertil Schmidt is currently a tenured
full professor and the chair of parallel
and distributed architectures with Johannes
Gutenberg University, Germany. Prior to
that, he was a faculty member with Nanyang
Technological University, Singapore, and
with University of New South Wales. His
research group has designed a variety of

algorithms and tools for bioinformatics, mainly focusing on
the analysis of large-scale sequence and short read datasets,
and data mining. He is a senior member of IEEE. For his
research work, he was the recipient of CUDA Research Center
Award, CUDA Academic Partnership Award, CUDA Professor
Partnership Award, and Best Paper Award at IEEE ASAP 2009
and IEEE ASAP 2015.

Weiguo Liu received the bachelor and
master degrees from Xi’an Jiaotong
University, China, and the PhD degree
from Nanyang Technological University,
Singapore. He is currently a full professor
and the director of High-Performance
Computing Lab at School of Software,
Shandong University. His research interests

include high-performance computing, bioinformatics, and data
mining. His research group has designed tools and algorithms for
applications in data processing and computational science using
parallel computing technologies such as CUDA-enabled GPUs,
CPU or GPU or Xeon Phi clusters, and supercomputers. He was
the recipient of numerous awards, including the ACM Gordon
Bell Prize Award, Fraunhofer IGD Best Paper Award, and CCF
HPC China Best Paper Award.


