
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 13/16 pp769–785
DOI: 10 .26599 /TST.2022 .9010042
Volume 28, Number 4, August 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Neighbor Library-Aware Graph Neural Network for Third Party
Library Recommendation

Ying Jin, Yi Zhang, and Yiwen Zhang�

Abstract: Modern software development has moved toward agile growth and rapid delivery, where developers must

meet the changing needs of users instantaneously. In such a situation, plug-and-play Third-Party Libraries (TPLs)

introduce a considerable amount of convenience to developers. However, selecting the exact candidate that meets

the project requirements from the countless TPLs is challenging for developers. Previous works have considered

setting up a personalized recommender system to suggest TPLs for developers. Unfortunately, these approaches

rarely consider the complex relationships between applications and TPLs, and are unsatisfactory in accuracy,

training speed, and convergence speed. In this paper, we propose a new end-to-end recommendation model called

Neighbor Library-Aware Graph Neural Network (NLA-GNN). Unlike previous works, we only initialize one type of node

embedding, and construct and update all types of node representations using Graph Neural Networks (GNN). We

use a simplified graph convolution operation to alternate the information propagation process to increase the training

efficiency and eliminate the heterogeneity of the app-library bipartite graph, thus efficiently modeling the complex

high-order relationships between the app and the library. Extensive experiments on large-scale real-world datasets

demonstrate that NLA-GNN achieves consistent and remarkable improvements over state-of-the-art baselines for

TPL recommendation tasks.

Key words: Third-Party Library (TPL); TPL recommendation; Graph Neural Network (GNN); bipartite graph

1 Introduction

With the rapid development of the Internet and electronic
devices, mobile application software has been attracting
the attention of a growing number of developers,
resulting in the creation of hundreds of excellent
products. According to statistics, in the first quarter
of 2021, Google Play and Apple App Store have

�Ying Jin is with the School of Artificial Intelligence and
Big Data, Hefei University, Hefei 230601, China. E-mail:
jiny@hfuu.edu.cn.
�Yi Zhang and Yiwen Zhang are with the School of

Computer Science and Technology, Anhui University,
Hefei 230601, China. E-mail: zhangyi.ahu@gmail.com;
zhangyiwen@ahu.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2022-06-13; revised: 2022-09-01;
accepted: 2022-09-26

approximately 3.48 and 2.22 million applications�,
respectively. Meanwhile, users downloaded 27.6 and
8.1 billion applications from Google Play and Apple
App Store, respectively�. This phenomenon is not
only an opportunity but also a significant difficulty for
mobile app developers. Mobile app developers must
accelerate their development speed to fulfill the ever-
changing demands of consumers[1]. Therefore, many
developers construct apps using publicly available Third-
Party Libraries (TPLs)[2], which prevent the repeated
implementation of certain functions and allow for fast
delivery[3].

TPLs have undeniably become an indispensable part
of mobile application development. Recent studies[4, 5]

� https://www.statista.com/statistics/276623/
� https://www.statista.com/statistics/695094/

770 Tsinghua Science and Technology, August 2023, 28(4): 769–785

have shown that mobile applications in Google Play
use an average of 11.81 TPLs, which also lead
to an explosion in the number of TPLs�. However,
this trend indicates that developers often need to
spend additional time searching TPLs that meet their
needs for their applications[6]. Moreover, different
TPL versions, interfaces, and compatibility issues
will interfere with the choices of developers, which
will certainly slow down application development[7].
Many pioneering works[8] attempted to leverage the
data-driven machine learning paradigm to recommend
suitable TPLs for mobile application development to
address the aforementioned problem. For example,
LibRec[8] uses Collaborative Filtering (CF)[9] and
association rule mining to find similar TPLs for
developers. LibSeek[5] empirically finds the fairness
bias[10] in TPL recommendation and combines
Matrix Factorization (MF)[11, 12] and adaptive weight
mechanism for recommendations. GRec[13] revisits the
TPL recommendation with a graph structure, which
models the relationship between mobile applications and
TPLs as an application-library graph, and applies Graph
Convolution Network (GCN)[14] to model high-order
collaborative signals[15] between applications and TPLs
explicitly to achieve state-of-the-art recommendation
performance.

However, GRec uses GCN to iteratively propagate
node information to obtain high-quality node
embeddings, which still has several drawbacks.
On the one hand, GCNs that perform well in node
classification tasks are not ideal for CF tasks, according
to some relevant studies[16, 17]. The core reason is that
the raw data only contain the mapped ID information
of the nodes (mobile app and library) and disregard
information-rich features. Such sparse raw data will
lead to feature transformation and nonlinear activation
in GCNs, severely limiting the normal training of the
model and the accuracy of downstream recommendation
tasks. On the other hand, GRec attempts to use the app-
library bipartite graph to learn high-quality embeddings.
However, app and library are different types of nodes
in the app-library graph because they have different
semantic information and are in different hidden feature
spaces[18]. In the app-library graph, the neighboring
nodes (first-order neighbors) of an app node are the

� In this paper, “application”, “mobile application”, “app”, and
“mobile app” all mean the same thing, and “library” is the same as
“TPL”.

library nodes used by the app, and it’s second-order
neighbors are some similar apps that have used the same
library. The simple scheme of aggregating information
from neighbor nodes may affect the performance
of the recommendation model, due to the inherent
heterogeneity of bipartite graph[19].

In order to solve the problems listed above, we
propose a novel Neighbor Library Aware Graph Neural
Network for third-party library recommendation, called
NLA-GNN. Specifically, we use the simplified GCN
structure[17, 20] to encode the high-order connectivity
between mobile apps and libraries explicitly in a rapid
way. We empirically remove the redundant nonlinear
activations and feature transformation operations
in GRec to accelerate the model training without
compromising model performance. Different from GRec,
we split the complete app-library bipartite graph into
two independent graphs: the app library graph and the
library app graph, respectively. We only initialize one
type of node feature (i.e., embeddings) of the mobile
app/library, and propagate information in an alternating
and iterative manner on two separate graphs to eliminate
the negative impact caused by the heterogeneity of
the bipartite graph. Extensive experiments on large-
scale real-world datasets demonstrate that NLA-GNN
achieves consistent and remarkable improvements over
state-of-the-art baselines for TPL recommendation tasks.
Moreover, NLA-GNN has significant advantages in
training efficiency, convergence speed, and model size
by removing unnecessary operations and learning only
one type of feature representation.

To summarize, the contributions of our work are as
follows.
� We propose a novel end-to-end model named NLA-

GNN for TPL recommendation, which uses a simplified
GCN architecture to learn high-quality mobile app and
library embeddings.
� To eliminate the negative impact of heterogeneity

of the app-library bipartite graph, we split the graph
into two independent graphs and model the high-order
connectivity between app and library on both graphs
using one type of node.
� We conduct extensive experiments on large-scale

and real-world dataset MALib. The experimental results
show that compared with GRec and other state-of-
the-art TPL recommendation models, NLA-GNN can
achieve consistent and remarkable improvements and
has advantages in training speed, convergence speed,
and model size.

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 771

2 Preliminary

In this part, we briefly formalize the TPL
recommendation problem. To make our descriptions
easier to read and understand, we present the definitions
of some of the symbols used (Table 1). Then, we
recapitulate the GRec[13] model, which is a novel and
state-of-the-art solution for the TPL recommendation
task.

2.1 TPL recommendation

Definition 1 (TPL recommendation) The TPL
recommendation scenario has a set of M mobile apps
A D fA1; A2; : : : ; AM g and a set of N TPLs L D
fL1; L2; : : : ; LN g. Following previous works[5, 13], we
regard the relationship between mobile apps and libraries
as binary implicit feedback. The app-library graph G
can be described by an interaction matrix R 2 RM�N

according to the historical app-library interactions: for
app Ai and library Lj , if a mobile app-library usage
record exists, then an edge exists between app Ai and
library Lj on graph G and Rij D 1. Moreover, the
adjacency matrix of the app-library bipartite graph can

be defined as A D

"
0 R

RT 0

#
. We can then formulate

the TPL recommendation task as follows:
� Input: App-library interaction bipartite graph G

and interaction matrix R.
� Output: Top-N TPLs that the app is most likely to

use in the future.

Table 1 Notations and explanations.
Notation Explanation
A=L Set of mobile apps/TPLs
M=N Number of mobile apps/TPLs
G Interaction graph of mobile apps and TPLs
V=E Set of nodes/edges with respect to graph G
R Interaction matrix of mobile apps and TPLs
A Adjacency matrix of the interaction matrix
D Diagonal degree matrix of the adjacency matrixeA Graph Laplacian adjacency matrix

e.k/

A
=e.k/

L
Embedding of app A/library L in the k-th layer

E.k/
A =E.k/

L Embedding lookup table of apps/TPLs
NA=NL First-order neighbor set of app A/TPL L

W.k/ Trainable layer-specific transformation matrix

K
Total number of alternating information distillation
layers

� Nonlinear activation function (e.g., ReLU)
� Coefficient controlling the L2 norm
ORAL Predicted score between app A and TPL L

2.2 Recap GRec

GRec[13] attempts to use the powerful high-order
modeling capabilities of graph neural network to
establish connections between mobile apps and TPLs.
In brief, GRec is an end-to-end model based on the
graph structure, and its training process can be divided
into four parts: representation initialization, information
distillation, information aggregation, and prediction.

2.2.1 Representation initialization
Similar to the traditional recommendation models
based on latent vectors[21, 22], neural networks[9, 23],
and GCNs[15, 24], GRec projects each mobile app and
TPL into different latent vector spaces. Formally,
the embedding representations of App A and TPL
L are eA 2 Rd and eL 2 Rd , respectively, where
d is the embedding size. From the perspective
of representation learning, embedding representation
realizes the transformation from a high-dimensional
sparse feature vector to a low-dimensional dense feature
vector[25]. Embedding representation provides a lower
storage cost and higher expressive potential than those
of one-hot encoding.

2.2.2 Information distillation
The core of GRec is to propagate information iteratively
on the app-library bipartite graph. Specifically, given
app Ai and TPL Lj , the information distillation from
Lj to Ai can be described as

sLj!Ai
D

1q
jNAi
jjNLj

j

.W1eLj
CW2.eLj

ˇ eAi
//

(1)
where NAi

and NLj
are the neighbor sets corresponding

to Ai and Lj , respectively, W1 and W2 are the trainable
feature transformation matrices, andˇ is element-wise
product. Through the information distillation process,
the embedding representation of the ego node Ai can be
updated as

e.1/
Ai
D �

0@sAi!Ai
C

X
L2NAi

sL!Ai

1A (2)

where � is a nonlinear activation function (e.g.,
LeakyReLU). Formally, the first item is the self-
connection of the ego node Ai , and the second item is
the aggregation of information from all neighbor nodes.
Considering the bipartite nature of the app-library graph,
the information distillation process of the library nodes
is similar and will not be repeated herein.

772 Tsinghua Science and Technology, August 2023, 28(4): 769–785

2.2.3 Information aggregation and prediction
After passing through multiple information distillation
layers, all nodes receive information from neighboring
nodes while their information is also passed beyond the
multihop. Intuitively, the embeddings obtained from
different propagation layers carry different semantic
information. For example, the first-order neighbor
information of app node A is its used TPLs, and its
second-order neighbors are similar mobile apps that have
used the same TPLs. GRec attempts to concatenate the
embedding information of the same node from different
layers to obtain the final embedding representation,
eAi
D e.0/

Ai
ke.1/

Ai
k � � � ke

.K/
Ai
I eLj

D e.0/
Lj
ke.1/

Lj
k � � � ke.K/

Lj

(3)
where K is the number of information distillation layers,
and k is the concatenation operation. Finally, GRec uses
the inner product to obtain the matching score of TPL
Lj for mobile app Ai .

3 Our Proposed Model

We introduce the proposed NLA-GNN model in
this section. We first provide a general overview of
the model in Section 3.1, and the proposed NLA-
GNN comprises three modules, namely unilateral
representation initialization, alternating information
distillation, and aggregated information prediction.
We then comprehensively explain these modules in
Sections 3.2, 3.4, and 3.5, respectively. To facilitate
a macroscopic understanding of the NLA-GNN, we
provide a mathematical expression in matrix form in
Section 3.6. Finally, some deep analysis and discussion
of the proposed model are given in Section 3.7.

3.1 Model overview

The model framework of NLA-GNN comprises three

parts, as shown in Fig. 1, to learn high-quality vector
representations of mobile apps and libraries in the same
feature space.
� Unilateral representation initialization: In the

model initialization stage, NLA-GNN selects one type
of node in Graph G and creates hidden vectors for these
nodes, which are the input of the next layer.
� Alternating information distillation: NLA-GNN

first uses neighbor node information to construct the
embedding representation of another kind of node,
and then uses simplified GCNs to propagate node
information on the graph G alternately.
� Aggregated information prediction: NLA-GNN

aggregates the embeddings learned from multiple graph
convolution layers to obtain the final representation of all
types of nodes. NLA-GNN then calculates the matching
score between the mobile app and library through the
inner product.

3.2 Unilateral representation initialization

Different from most of the traditional recommendation
models[13, 15, 17], NLA-GNN only initializes the
embedding of any type of nodes on the bipartite graph G
into a d -dimensional latent space. Specifically, we take
the library set L as an example, where the latent vector
eLi
2 Rd denotes the embedding of a library Li . The

complete library embedding lookup table can then be
defined as

E.0/
L D feL1

; eL2
; : : : ; eLN

g 2 RN�d (4)

From the perspective of representation learning, such
embeddings are mapped into a specific feature space.
In the learning process, the distance between similar
embeddings will be close and that between dissimilar
nodes will be gradually alienated[26] to achieve the
purpose of CF.

A1 L2

L3 L4

A2

A3

L5

A4

L6

A1

L1

L2

L3 L4

A2

A3

L5

A4

L6

A1 L2

L3 L4

A2

A3

L5

A4

L6

A1

L1

L2

L3 L4

A2

A3

L5

A4

L6

A1
L1

L2

L3 L4

A2

A3

L5

A4

L6

A1

L1

L2

L3 L4

A2

A3

L5

A4

L6

A1
L1

L2

L3 L4

A2

A3

L5

A4

L6

A1

L1

L2

L3 L4

A2

A3

L5

A4

L6

Unilateral representation

initialization layer

A1

L1

L2

L3 L4

A2

A3

L5

A4

L6

A1

L1

L2

L3 L4

A2

A3

L5

A4

L6

A1

L1

L2

L3 L4

A2

A3

L5

A4

L6

Construct representation Update representation

Aggregated information

prediction layer

××
Aggregation

Aggregation

Ranked
libraries

Mobile app

node
L1

Library

node
A1

Mobile app

embedding

Library

embedding

Information flow from

mobile app to library

Information flow from

library to mobile app ×× Inner product

NOTE

1 2 3

Initialize representation Calculate predicted score

Alternating information distillation layer(s)

Fig. 1 Illustration of NLA-GNN model architecture.

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 773

After initializing one type of embedding (mobile app
or library), uninitialized nodes can be described by their
first-order neighbors in the bipartite graph seamlessly.
Intuitively, we can infer the function of an app through
the TPL information required by the application. For
example, if an app needs to use TPLs, such as online chat
and video communication, then the application should
belong to social software.

3.3 Alternating information distillation

After obtaining the library embedding lookup table, we
hope to use these known vectors to construct unknown
terms. Specifically, given a mobile app node Ai , NLA-
GNN first extracts the neighbor library nodes of node
Ai on the entire graph to obtain a neighbor set NAi

.
NLA-GNN then aggregates the information carried by
all neighbor nodes as the representation of the central
node Ai ,

e.1/
Ai
D

X
L2NAi

1p
jNAi
j
p
jNLj

e.0/
L (5)

where NL is the neighbor set corresponding to L,
and e.0/

L 2 e.0/
L is the representation of library L

initialized by the unilateral representation initialization
layer. Instead of employing the vanilla GCN paradigm
for information distillation, we use the simplified graph
convolution for training, which discards redundant
self-connection, feature transformation, and non-
linear activation. Through such one-way information
distillation, the neighbor information of the mobile app
is aggregated, and a new representation e.1/

Ai
is formed

for node Ai .
Subsequently, we return to the library side after

constructing the embedding representation of all mobile
app nodes. The first-order neighbors of the library
include concealed information, which may be used to
define the library itself (what sort of app utilizes this
information). Therefore, we can consider the library and
app as the same sort of nodes because app embedding
is built through library embeddings. We can also update
the representation of library nodes by aggregating
information from neighboring app nodes,

e.1/
Lj
D

X
A2NLj

1q
jNLj

j
p
jNAj

e.1/
A (6)

where e.1/
A is the embedding of mobile appA constructed

by Eq. (5).
Example: As shown in Fig. 2, we first randomly

initialize the embedding representations of all library
nodes on the app-library graph. Then, we take the app

L2

L3

L4

A3

L5 L6

A1

L2

A2

A3

Alternating information distillation

Construct representation of A3 Update representation of L2

Fig. 2 Process of alternating information distillation
centered on nodes A3 and L2 in Fig. 1.

node A3 as an example, which aggregates the node
embedding information from the neighboring nodes L3,
L4, L5, and L6 to obtain its embedding representation.
The viewpoint then switches to the TPL side, and the
L2 node receives the embedding representations from
the neighboring nodes A1, A2, and A3, which contain
all the neighboring information of the app node.

Finding the structural consistency is easy based on
Eqs. (5) and (6). Consistent with GRec, we attempt
to stack multiple information distillation layers to
propagate app and library information on the app-library
graph alternately. Without loss of generality, the k-th
(k > 1) alternating information distillation layer can be
defined as follows:

e.k/
Ai
D

X
L2NAi

1p
jNAi
j
p
jNLj

e.k�1/
L ;

e.k/
Lj
D

X
A2NLj

1q
jNLj

j
p
jNAj

e.k/
A (7)

Unlike GRec which completes the propagation over
the entire app-library bipartite graph at once, NLA-
GNN aggregates app and TPL embedding information
in an alternating manner, which not only benefits from
high-order information propagation but also effectively
reduces the impact caused by the heterogeneity of the
bipartite graph. In addition, the size and training speed of
the model have advantages over the previous approaches
because we only consider one type of node for graph
convolution operation. We will verify this conclusion in
the model analysis and experiment section.

3.4 Matrix forms

We perform the training process of NLA-GNN
considering a single mobile app or TPL node in the
previous subsections. In this Section, we provide a
uniform matrix representation of all nodes to understand
our model effectively. In the alternating information

774 Tsinghua Science and Technology, August 2023, 28(4): 769–785

distillation layer (s), we first need to define the adjacency
matrix A and graph Laplacian matrix eA of the app-library
bipartite graph, eA D D�0:5AD�0:5 (8)
where Di i D jNi j is the diagonal degree matrix.

Notably, the complete app-library bipartite graph
contains two sub-graphs, which we define as the
app library graph and the library app graph. To
facilitate performing alternating information distillation,
we construct graph Laplacian matrices for the two
subgraphs empirically,eAa�l D

eAŒWM;N W�;eAl�a D
eAŒM W; W N� (9)

where eAa�l and eAl�a are the Laplacian matrices of the
app library graph and the library app graph, respectively.eAŒW M;N W� represents rows 1 to M and columns N to
M CN of matrix eA. The construction process is shown
in Fig. 3. The matrix forms of alternating information
distillation layers are defined as follows:

E.k/
A D

eAa�lE.k�1/
L ;

E.k/
L D

eAl�aE.k/
A (10)

where k 2 Œ1;K�, and Eq. (10) is equivalent to
Eq. (7). NLA-GNN seamlessly realizes bipartite graph
information distillation and high-order connectivity
modeling by using only one type of embedding
representation, and alternately performing graph
convolution on app library and library app graphs.

3.5 Aggregated information prediction

By stacking K alternating information distillation
layers, NLA-GNN finally obtains a set of mobile
app embedding representations, ŒE.1/

A ;E.2/
A ; : : : ;E.K/

A �,
and a set of library embedding representations,
ŒE.1/

L ;E.2/
L ; : : : ;E.K/

L �, containing different semantic
information and are used to guide the recommendation
model on how to perform downstream TPL
recommendation tasks.

Similar to GRec, we first aggregate each type
of embeddings to obtain the final embedding
representations. We then obtain the predicted scores of
mobile app Ai and TPL Lj by inner product operation,

ORcon
ij D �

KX

kD1

e.k/
Ai

e.k/
Lj

!
; or

ORsum
ij D �

KX

kD1

e.k/
Ai

KX
kD1

e.k/
Lj

!
(11)

where ORcon
ij and ORsum

ij represent the predicted scores
obtained by aggregation through concatenation[and sum,
respectively, and � is a nonlinear activation function
(e.g., Sigmoid). Figuere 4 presents the process of
constructing the final embedding representation and
prediction using concatenation and sum operations for

[Note: The used derivative rules are .e.1/

Ai
ke.2/

Ai
k � � � ke.K/

Ai
/ �

.e.1/

Lj
ke.2/

Lj
k � � � ke.K/

Lj
/ D e.1/

Ai
� e.1/

Lj
Ce.2/

Ai
� e.2/

Lj
C� � �Ce.K/

Ai
� e.K/

Lj
.

A1

L1

L2

L3 L4

A2

A3

L5
A4

L6

A1

A2

A3

A4

L1 L2 L3 L4 L5 L6

App-library graph

 R

M

N
R

R
T

M N

M

N

M N

M

N

0

0

M N

M

N

M N

M

N

0

M+N

M M+N
0

M

M N

M

N

Adjacency matrix A

Graph Laplacian matrixD
−1/2

A D
−1/2 A

~

~
AAaa− ll
~

~
AAll− aa
~

Diagonal degree matrix D

Fig. 3 Division process of app library graph and library app graph.

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 775

d

d
a1

K×d

K×d

××

d

d
a1

××

d

d

(a) Concatenation (b) Sum

Fig. 4 Process of aggregated information prediction centered on nodes A3 and L2 in Fig. 1 (activation function in Eq. (11) is
omitted, and “jjjjjj”, “CCC”, and���������represent concatenation, sum, and inner product operations, respectively).

A3 and L2 nodes after three alternating information
distillation layers.

3.6 Model training

In line with the training approach of traditional
recommender systems[13, 15, 17], we divide mobile apps
into random mini-batches in each training epoch. A
batch is a set of app-TPL pairs that represent the history
of app-library interactions. Simultaneously, we add a
TPL that the app has not used as its negative sample for
each pair.

To train the parameters in NLA-GNN (i.e., initialized
single type embedding), a classical strategy is to
introduce a pairwise loss function (such as Bayesian
Personalized Ranking (BPR)[27]),

max
Y

LC�U ŒNA�
L��U ŒL=NA�

p
�
ORALC > ORAL� je

.0/
L

�
D

X
LC�U ŒNA�

L��U ŒL=NA�

�ln�
�
ORALC �

ORAL�

�
C �jje.0/

L jj
2
2

(12)

where LC and L� represent the positive and negative
TPL of app A, respectively, U Œ�� is uniform distribution,
ORALC and ORAL� are the predicted scores of app A

for TPL LC and TPL L� calculated by Eq. (11),
respectively, � is Sigmoid nonlinear activation function,
and � is a coefficient controlling the L2 norm.
Theoretically, BPR considers the relative order of
observables (positive samples) and unobservables
(negative samples) in the interaction, and assumes that
positive samples should be assigned higher predicted
scores compared to negative samples.

Example: Taking Fig. 1 as an example, the possible
combination can be obtained as hA1; L1; L3i, where L1

is the TPL used by A1, which is regarded as a positive

sample (LC), while L3 is not used by A1, which is
regarded as a negative sample (L�).

3.7 Model analysis

3.7.1 Model size
In contrast to previous works[13], NLA-GNN utilizes
only one type of embedding for model training. Taking
the TPL nodes as an example, the size of the embedding
table E.0/

L isN . Since we do not introduce any additional
auxiliary modules, which leaves NLA-GNN with only
N � d parameters while GRec has .M C N/ � d C
2Kd2 model parameters because it has two types of
embedding representations as well as multiple feature
transformation matrices, where d is embedding size.

3.7.2 Time complexity
NLA-GNN is a TPL recommendation model based
on GCN, whose training time overhead mainly comes
from iterative graph convolution operations. Considering
the size of the constructed app-library bipartite graph,
we use a mini-batch strategy for training. We divide
the training data in each epoch into jEj=B groups
with a predetermined batch-size B , and perform graph
convolution operations on each group separately to
update the embedding representations of all app and
library nodes on the graph. In each batch, the graph
convolution computation (Eq. (10)) must be completed
first, and the time complexity to complete this step
is O.KjEjd/. Finally, the overall time complexity
of the aggregation process on mobile app-library
bipartite graph is O

�
KjEj2d=B

�
, where K, jEj, B ,

and d indicate the number of alternating information
distillation layers, the number of interactions of
app-library G, the batch size, and embedding size,
respectively. The time complexity of NLA-GNN is
at the same level as that of the previous graph-based
recommendation models.

776 Tsinghua Science and Technology, August 2023, 28(4): 769–785

3.7.3 Relation with GRec
GRec is a TPL recommendation model based on graph
structure containing all the contents of basic GCN,
including self-connection, feature transformation, and
nonlinear activation (refer to Eqs. (1) and (2)). It is
worth noting that some related studies[16, 17] have pointed
out that nonlinear activation and feature transformation
are not applicable to recommender systems, which
may lead to training slowdown and performance loss.
Inspired by these works, NLA-GNN discards the
feature transformation process and disseminates node
information in an iterative and alternating manner. For
comparison, we rewrite the alternating information
distillation process of NLA-GNN as follows:

e.k/
Ai
D

X
L2NAi

sL!Ai
D

X
L2NAi

1p
jNAi
jjNLj

e.k�1/
L ;

e.k/
Lj
D

X
A2NLj

sA!Lj
D

X
A2NLj

1q
jNAjjNLj

j

e.k/
A (13)

Compared with the model structures of GRec (refer to
Eqs. (1) and (2)), NLA-GNN eliminates the processes
of self-connection, feature transformation, and nonlinear
activation. Obviously, NLA-GNN can be regarded as a
light GRec.

4 Experiment

In this section, we want to verify the validity of
the proposed model through a series of comparative
experiments and parametric analysis. We first present
a detailed description of the experiments, including
datasets, comparison models, and training and evaluation
strategies.

4.1 Datasets

To maintain consistency with previous works[5, 13], we
choose the MALib dataset\ to conduct our experiments.
The MALib dataset is a publicly available real-world
dataset that includes name information and interaction
data with 61 722 android applications, 827 TPLs, and

\ https://github.com/malibdata/MALib-Dataset

725 502 app and library usage records. To ensure the
quality of recommendations, we use a 10-core setting
(i.e., filter out apps or libraries with less than ten
interactions).

Consistent with the training strategy of traditional
recommendation models, we divide the complete dataset
into training and testing sets. Specifically, we randomly
select r .2 Œ1; 3; 5�/ interacted TPLs for each mobile
app in the complete app-library interaction records as
its corresponding testing set, and the rest as the training
set. In the training process, we first train all models on
the training set and subsequently calculate the matching
scores of each app for all libraries. Next, we filter and
sort the list of matching scores, and select the top-N
.2 Œ5; 10�/ libraries as the final recommendation list.
For the convenience of follow-up, we name the datasets
divided by the three training/testing sets MALib#1,
MALib#2, and MALib#3. The statistical information of
each dataset is shown in Table 2.

4.2 Baselines

To demonstrate the effectiveness of proposed model, we
compare NLA-GNN with the following baselines:
� Popular: This method mechanically recommends

the most popular TPLs for each mobile app without
considering personalization.
� MF[27]: The method is standard matrix

factorization for CF task, which the interaction
matrix is decomposed into independent latent vectors,
and the matching score is obtained by the inner product.
� LibRec[8]: The method is a hybrid approach that

combines association rule mining and CF for the TPL
recommendation task.
� LibSeek[5]: The method is a state-of-the-art

approach for TPL recommendation task. It additionally
considers the popularity bias and long-tail effect of
historical interactions on top of the original MF model.
� GRec[13]: The method is a state-of-the-art graph-

based method for TPL recommendation task. It
propagates the information of mobile app and library
nodes by stacking multiple graph convolution layers,
thus capturing the high-order relationships between the

Table 2 Statistics of the MALib datasets.
Dataset Number of apps Number of TPLs Size of training sets Size of testing sets Sparsity

MALib#1 31 421 727 499 107 31 091 0.978 15
MALib#2 31 421 727 436 956 93 242 0.980 87
MALib#3 31 421 727 374 771 155 427 0.983 59
Note: Sparsity refers to the proportion of zero elements in the interaction matrix R. Considering a recommendation scenario with M
mobile apps and N TPLs, with jEj observed interactions between them, the sparsity is defined as 1 � jEj=.M � N/.

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 777

mobile app and library.
Notably, we propose two schemes of information

aggregation for NLA-GNN in Section 3.5. That is, we
use concatenation and sum operations to obtain the final
node representations, which are named NLA-GNNcat

and NLA-GNNsum, respectively.

4.3 Experiment settings

We implement NLA-GNN in PyTorchz. All experiments
are conducted on a single Linux server with Intel
Xeon Silver 4214R CPU, 128 G RAM, and 4 NVIDIA
GeForce RTX 3080 GPU. For a fair comparison, the
embedding size is fixed to 128 for the performance
comparison experiment. We optimize the model
with Adam[28] and use the Xavier method[29] to
initialize the model parameters. And the batch size
is fixed to 4096 for all datasets. We follow the
suggested settings in the authors’ original papers
and use a grid search to choose the optimum hyper-
parameters for all methods: the learning rate is
tuned in the range Œ0:0001; 0:0005; 0:001; 0:005�; the
coefficient of L2 normalization is tuned in the range
Œ0; 10�6; 10�5; 10�4; : : : ; 0:1; 1�; the dropout ratio is
tuned in Œ0; 0:1; : : : ; 1:0�. We set the number of GCN
layers to 3 for GRec, and the weighted matrix size
of each GCN layer is also set to 128, which is used
as suggested by the original GRec paper[13]. For MF,
GRec, and NLA-GNN, we randomly select apps in
each training batch, along with their corresponding
positive and negative samples, and optimize the model
parameters by BPR loss.

4.4 Evaluation protocols

We adopt widely-used evaluation metrics to evaluate
the performance of top-N recommendation: Recall,
Precision, F1-Score, and Mean Average Precision
(MAP), computed by the all-ranking protocol[15, 17].
� Recall@N: Recall refers to the proportion of

positives predicted to be correct in all samples. Given a
mobile app A, the Recall@N can be defined as

Recall@NA D
jRN.A/ \ T .A/j
jT .A/j

(14)

where RN.A/ is the top-N recommendation list for app
A and T .A/ is the testing set of app A.
� Precision@N: Precision refers to the proportion of

the number of correctly predicted samples in the total
number of samples, which can be defined as

z https://pytorch.org/

Precision@NA D
jRN.A/ \ T .A/j
jRN.A/j

(15)

� F1-Score@N: F1-Score comprehensively
considers the two metrics, which is the summed
average of Precision and Recall,

F1-Score@NA D 2 �
Precision@NA � Recall@NA

Precision@NA C Recall@NA
(16)

� MAP@N: Average Precision (AP) is used to
measure the rationality of the ranking position of the
recommended results, and MAP is the mean value of
AP,

MAP@NA D
1PN

iD1 rel.i/

NX
iD1

Pi
jD1 rel.i/

i
� rel.i/

(17)
where rel.i/ is a binary indicator that indicates whether
the library at position i of the recommendation list is
in app A’s testing set. If RN.A/Œi � 2 T .A/, we set
rel.i/ D 1, and 0 otherwise.

We calculate four metrics independently for each
mobile app in testing set, and then get the overall
evaluation scores of the recommendation model by
average operation.

4.5 Performance comparison

4.5.1 Overall comparison
Table 3 reports the performance of NLA-GNNcat,
NLA-GNNsum, and other baselines on three datasets.
And we can draw the following conclusions.

Our proposed NLA-GNNcat and NLA-GNNsum

achieve significant performance improvements on all
evaluation metrics for all datasets. Taking NLA-GNNsum

as an example, it outperforms Popular, MF, LibRec,
LibSeek, and GRec by 81.82%, 20.11%, 39.80%,
16.25%, and 4.47% with respect to Recall@5 on
MALib#3 datasets, respectively. This shows the
rationality and generalization of the proposed NLA-
GNN. We attribute the performance improvements to the
following: (1) NLA-GNN enables seamless information
transfer between two types of node information on
the app-library bipartite graph by stacking multiple
alternating information distillation layers. This not only
explicitly models the higher-order connectivity of the
app-library, but also eliminates the negative impact
of the heterogeneity of the bipartite graph. (2) By
discarding the redundant design in graph convolution
and initializing only one node embedding, NLA-GNN is
easier to fit limited sparse samples, which is consistent
with previous studies.

778 Tsinghua Science and Technology, August 2023, 28(4): 769–785

Table 3 Overall performance comparison. The performance of the proposed model on each dataset is highlighted in bold, and
the best score in baselines is underlined.

Dataset Method
Top-5 Top-10

Precision Recall F1-Score MAP Precision Recall F1-Score MAP

MALib#1

Popular 0.0753 0.3765 0.1255 0.2840 0.0457 0.4565 0.0831 0.2949
MF 0.1326 0.6629 0.2210 0.5150 0.0754 0.7544 0.1371 0.5274

LibRec 0.1267 0.6335 0.2112 0.4622 0.0668 0.6682 0.1215 0.4669
LibSeek 0.1348 0.6741 0.2247 0.5236 0.0755 0.7553 0.1373 0.5346

GRec 0.1521 0.7607 0.2536 0.6269 0.0828 0.8283 0.1506 0.6360
NLA-GNNcat 0.1540 0.7699 0.2567 0.6307 0.0833 0.8329 0.1515 0.6394
NLA-GNNsum 0.1544 0.7721 0.2574 0.6322 0.0835 0.8345 0.1517 0.6409

MALib#2

Popular 0.2147 0.3579 0.2684 0.5931 0.1341 0.4468 0.2063 0.5682
MF 0.3497 0.5904 0.4387 0.7209 0.2095 0.7068 0.3229 0.6829

LibRec 0.2789 0.4648 0.3486 0.6883 0.1542 0.5142 0.2373 0.6864
LibSeek 0.3710 0.6183 0.4637 0.7280 0.2158 0.7193 0.3320 0.6971

GRec 0.4099 0.6915 0.5142 0.7977 0.2337 0.7879 0.3602 0.7605
NLA-GNNcat 0.4163 0.7026 0.5223 0.8051 0.2347 0.7922 0.3617 0.7710
NLA-GNNsum 0.4176 0.7046 0.5237 0.8080 0.2350 0.7930 0.3621 0.7742

MALib#3

Popular 0.3383 0.3383 0.3383 0.7413 0.2180 0.4360 0.2907 0.6813
MF 0.5052 0.5121 0.5083 0.7838 0.3238 0.6555 0.4333 0.7253

LibRec 0.4400 0.4400 0.4400 0.6922 0.2434 0.4868 0.3245 0.6890
LibSeek 0.5291 0.5291 0.5291 0.7896 0.3293 0.6587 0.4391 0.7396

GRec 0.5868 0.5945 0.5902 0.8397 0.3613 0.7312 0.4834 0.7856
NLA-GNNcat 0.6062 0.6140 0.6097 0.8540 0.3680 0.7445 0.4923 0.8034
NLA-GNNsum 0.6073 0.6151 0.6108 0.8567 0.3683 0.7452 0.4927 0.8054

Comparing all baseline models horizontally, Popular
only mechanically recommends the most popular TPLs,
which undoubtedly goes against the original intention of
personalized recommender system. The performance
of MF, LibRec, and LibSeek are at the same level.
Although LibRec combines association rule mining
and LibSeek additionally considers popularity bias and
long-tail effect, they fail to consider the high-order
relationship between app and library, resulting in sub-
optimal performance. In addition, the performance
improvement of NLA-GNNcat and NLA-GNNsum in
MALib#3 is greater than that in MALib#2, while the
performance improvement of MALib#2 is higher than
that of MALib#1. This shows that NLA-GNN has a
strong anti-sparsity ability when the training set is
sparser.

An interesting phenomenon is that, in most cases,
the performance of NLA-GNNsum is better than that
of NLA-GNNcat. One possible reason is that the
concatenation operation will significantly increase the
dimension size of the final representation of the mobile
app and library nodes. The inner product operation with
too large a dimension may restrict the correct prediction
of the model, while the sum operation integrates the
embedding information of different semantic layers in a

consistent dimension, which is helpful for the learning
of downstream recommendation tasks.

4.5.2 In-depth comparison with GRec
In this section, we perform detailed comparisons of
NLA-GNN with GRec, the current state-of-the-art graph-
based TPL recommendation model containing three
parts: convergence speed, training speed, and model
size.

(1) Convergence speed: Taking MALib#3 dataset as
an example, we provide the training curves (Fig. 5a) of
NLA-GNN and GRec, in which the ordinate represents
the Recall@5 of the corresponding model on the testing
set. Intuitively, the efficiency of model training can
be effectively improved by abandoning the redundant
design in GCN and using only one type of embedding
for representation learning.

(2) Training speed: Figure 5b provides a comparison
of the training speed of GRec and NLA-GNN
on the three datasets under the same experimental
environment and parameter settings. Not surprisingly,
since NLA-GNN utilizes only the most basic light
graph convolution paradigm to propagate information,
the training speed of NLA-GNN has an advantage
over GRec for the same experimental setup, which is
especially important for recommender systems with high

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 779

Fig. 5 Detailed comparison between GRec and NLA-GNN,
(a) training efficiency and (b) training speed per epoch.

requirements for real-time performance.
(3) Model size: Another concern is the model size,

i.e., the number of parameters that can be trained in
the model. Figure 6 shows the visualization results of
comparing the model size of GRec with that of NLA-
GNN when embedding size d D 128. Consistent with
the analysis in Section 3.7.1, NLA-GNN initializes only
one type of node (e.g., library) and does not introduce
additional feature transformation matrices in each graph
convolution layer. Thus the number of parameters of
NLA-GNN is far less than that of GRec (44.28 times
smaller). Furthermore, the analysis of model size can
also support that of convergence speed (Fig. 5a) and
training speed (Fig. 5b). That is, an excessive number

Fig. 6 Comparison of model parameters between GRec and
NLA-GNN when embedding size dDDD 128.

of model parameters may not bring additional benefit to
the model, but rather affect the training and convergence
speed of the model.

4.6 Parameter analysis

As previously analyzed, NLA-GNN is an extremely
simplified model. The hyper-parameters that can be
modified are the number of alternating information
distillation layers K, embedding size d , and
regularization coefficient �. In this part, we focus
on these parameters to analyze their impact on the
performance of NLA-GNN.

4.6.1 Impact of layer numbers
A key factor in the remarkable success of GCN is the
capability to encode the high-order connectivity of nodes
on the graph explicitly. In this part, we study the effect
of different numbers of alternate information distillation
layers on the performance of NLA-GNN. Specifically,
we fix other parameters and adjust the number of
layers K in the range of 1 to 5. The performance of
NLA-GNNcat and NLA-GNNsum on the three datasets
with different K is provided in Table 4. The results
reveal the following observations.

The trends for NLA-GNNcat and NLA-GNNsum are
generally consistent across the three datasets, with
the performance starting to increase as the number of
layers rises and is particularly pronounced at low layers.
This finding suggests that NLA-GNN can benefit from
multi-layer graph convolution operation. Through K-
layer information propagation, each mobile app and
library node can obtain node information beyond K-
hops. Meanwhile, its node information is also passed
beyond K-hops, which helps break the information
blockage and allows the model to learn collaborative
signals that contribute to downstream recommendation
tasks.

By contrast, the performance improvement starts
to slow down and even degrades in some cases as
the number of layers increases further. The possible
reasons are presented as follows. (1) Excessively deep
model structures may allow nodes to over-propagate
and aggregate high-order information, which may
introduce noisy information that can interfere with the
normal training of the model. (2) Stacking too many
graph convolution layers may over-smooth the node
embedding and result in limited differentiation of node
representation, i.e., the over-smoothing problem that has
received wide attention in graph structure representation
learning[14, 30, 31].

780 Tsinghua Science and Technology, August 2023, 28(4): 769–785

Table 4 Performance comparison with respect to layers. The best performance of the model on each dataset is highlighted in
bold. “Prec” is an abbreviation for Precision to save space.

Dataset Layer
NLA-GNNcat NLA-GNNsum

Prec@5 Recall@5 F1-Score@5 MAP@5 Prec@5 Recall@5 F1-Score@5 MAP@5

MALib#1

1 Layer 0.1527 0.7636 0.2545 0.6256 0.1527 0.7636 0.2545 0.6256
2 Layers 0.1531 0.7658 0.2552 0.627 0.1534 0.7672 0.2557 0.6273
3 Layers 0.1532 0.7663 0.2554 0.6281 0.1541 0.7705 0.2568 0.6303
4 Layers 0.1540 0.7699 0.2567 0.6307 0.1544 0.7721 0.2574 0.6322
5 Layers 0.1532 0.7680 0.2553 0.6291 0.1540 0.7699 0.2566 0.6301

MALib#2

1 Layer 0.4134 0.6969 0.5186 0.7902 0.4134 0.6969 0.5186 0.7902
2 Layers 0.4139 0.6983 0.5192 0.7953 0.4152 0.7011 0.5208 0.8006
3 Layers 0.4164 0.7026 0.5224 0.8051 0.4171 0.7036 0.5232 0.8061
4 Layers 0.4160 0.7018 0.5219 0.8013 0.4176 0.7046 0.5237 0.8080
5 Layers 0.4156 0.7017 0.5214 0.7993 0.4176 0.7044 0.5238 0.8053

MALib#3

1 Layer 0.6013 0.6091 0.6048 0.8476 0.6013 0.6091 0.6048 0.8476
2 Layers 0.6024 0.6103 0.6059 0.8499 0.6047 0.6125 0.6081 0.8494
3 Layers 0.6062 0.6140 0.6097 0.8540 0.6073 0.6151 0.6108 0.8567
4 Layers 0.6057 0.6135 0.6091 0.8530 0.6074 0.6153 0.6109 0.8567
5 Layers 0.6054 0.6132 0.6089 0.8503 0.6089 0.6167 0.6124 0.8587

In addition, it is worth noting that when K D 1, NLA-
GNN is equivalent to completing an app embedding
construction process and then obtaining the prediction
score through the inner product. Compared with
MF and LibSeek, NLA-GNN-1 has made significant
improvements on all datasets, which shows the
rationality of initializing only one type of node.

4.6.2 Impact of embedding dimension
To investigate the effect of embedding size on the
performance of NLA-GNN, we fix other irrelevant
parameters and set the number of alternating information
distillation layers to 3. Subsequently, we change
the embedding size d D Œ32; 64; 128; 256; 512� into
NLA-GNNcat and NLA-GNNsum. Figure 7 plots
the effect of embedding size d against Recall@5,
Precision@5, F1-Score@5, and MAP@5 on three
datasets, and the following findings are presented.

The performance of NLA-GNNcat and NLA-GNNsum

improves as the dimensions become increasingly
large, implying that large embedding dimensions
aid representation learning. This finding is easy to
comprehend because each dimension of the node’s
representation reflects a node feature; thus, additional
dimensions allow the recommender system to learn
more important information regarding the node and its
neighborhoods.

Large embeddings are beneficial for representation
learning, but they can markedly increase the time
overhead of model training. Furthermore, when the
embedding dimension is too large, the performance gain

is restricted, implying that massive scale parameters
might interfere with the normal training of the model
and should thus not be encouraged.

4.6.3 Impact of regularization coefficient
The last parameter worthy of attention is the L2

regularization coefficient �, which, as a part of the loss
function, plays a vital role in alleviating the over-fitting
of the model to the training set. In this part, we first fix
other parameters and set the number of layers to 3; we
then set � in the range of Œ0; 10�6; 10�5; 10�4; 10�3�.
Figure 8 plots the performance of NLA-GNNcat and
NLA-GNNsum corresponding to different values of �
in three datasets and obtains the following findings.

The performance of NLA-GNNcat and NLA-GNNsum

shows consistency across all datasets. The performance
of the model first improves as the � increases, indicating
that the regularization of appropriate strength helps
model training. However, the performance of the model
starts to decrease sharply after the � increases further,
indicating that an overly large regularization term can
seriously interfere with model parameter updates.

In addition, it is worth noting that even if � is set
to 0, NLA-GNN can still train effectively and achieve
satisfactory performance. This finding indicates that
NLA-GNN is not easily affected by over-fitting. A key
reason is that NLA-GNN only initializes one type of
node, facilitating its easy training and convergence,
and does not need to use additional anti-over-fitting
mechanisms such as dropout, so as to ensure model
simplification.

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 781

Fig. 7 Recall@5, Precision@5, F1-Score@5, and MAP@5 curves of NLA-GNNcat and NLA-GNNsum with respect to different
embedding sizes on three datasets (results on the Top-10 task show the same trend and are omitted herein for space).

4.7 Threats to validity

4.7.1 Internal validity
A main threat to the internal validity lies in the possible
correlation between the performance improvement of
NLA-GNN and the negative impact of graph neural
networks, and the heterogeneity of bipartite graphs on
recommender systems. To minimize this threat, we first
perform a detailed comparison with GRec considering
training speed, convergence speed, and model size. This
experiment can effectively verify that NLA-GNN has
rapid training and a small cost, which is consistent with
our hypothesis in the Introduction section. In addition,
we analyze the effect of the number of layers on the
performance of NLA-GNN in the parametric analysis.
Such an analysis allows us to observe whether NLA-
GNN can benefit from multi-layer graph convolution
operations. The experimental results show that NLA-
GNN can achieve effective performance as the number
of layers increases. This finding indicates that NLA-
GNN can adapt well to bipartite graph structures and
learn the necessary knowledge from them.

4.7.2 External validity
A main threat to the external validity is the MALib
dataset used in our experiments, which is a real
dataset from Google Play with 31 432 real applications
corresponding to TPLs, and which is open source. In
order to minimize the threat, we adopt this dataset and
use it to simulate different scenarios in the real world.
Specifically, we remove different proportions of TPLs
as the ground-truth and recommend different numbers
of TPLs in the testing phase, which can simulate real-
world scenarios with different sparsity and sizes of user
requirements.

4.7.3 Construct validity
The main threat comes from the capability of the
chosen baseline to demonstrate the effectiveness of
NLA-GNN. To minimize the threat, different types
of models are selected for comparison. Specifically,
Popular recommends only the most prevalent TPLs.
MF and LibSeek consider only interactions in the
mobile app-TPL co-occurrence matrix. LibRec is a
classical library recommendation algorithm, and GRec

782 Tsinghua Science and Technology, August 2023, 28(4): 769–785

Fig. 8 Recall@5, Precision@5, F1-Score@5, and MAP@5 curves of NLA-GNNcat and NLA-GNNsum with respect to different
regularization coefficient on three datasets (results on the Top-10 task show the same trend and are omitted herein for space).

additionally considers multiple layers of interactions. By
comparing with these different types of approaches, it
can be effectively verified that NLA-GNN has additional
advantages while retaining the advantages of these
models. For example, one-layer NLA-GNN (Section
4.6.1) demonstrates strong performance gains over MF
and LibSeek, which demonstrates the effectiveness of a
single type of representation learning.

4.7.4 Conclusion validity
The main threat is whether our conclusions are
statistically significant and credible. We take three
steps to minimize the threat. First, we use a consistent
experimental setup and dataset, which is mainly for
fairness. We also run each experiment 50 times and
report mean results to ensure the credibility and
non-coincidence of the results. Second, we conduct
comparative experiments using the open-source code
of the baseline model and maintain the consistency of
conclusions with previous works. Third, we provide
a detailed description of the proposed model, the
parameter description, and the parameter analysis, which

will help the subsequent research and replication work.

5 Related Work

With the fast expansion of the Internet and electronic
devices in recent years, developers have begun to provide
increased attention to mobile application development.
Researchers have also explored how developers choose
appropriate apps from an expanding number of off-
the-shelf TPLs to decrease repetitious effort and
accomplish agile development and speedy delivery of
customer needs. In such a context, the concepts of
TPL recommendation[8] and API recommendation[32] are
proposed and have been investigated in two conceptual
directions.

The first type of work used traditional machine
learning paradigms, such as clustering[33, 34], similarity
measures[35, 36], or feature matching[37, 38], to find similar
modules. For example, LibPecker[38] designs an adaptive
class matching module to measure the similarity of
different TPLs. Another research direction is realized
with the help of recommendation techniques. CF[9, 23, 39],

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 783

the core idea of modern recommender systems, assumes
that users (items) with behavioral (feature) similarities
will show consistent preferences for items (users). In the
TPL recommendation scenario, users and items represent
mobile applications and TPLs, respectively. Inspired by
traditional recommender systems, many excellent works
have been produced in the field of TPL recommendation.
For example, LibRec[8] is a pilot study that combines
association rule mining and CF to find TPLs that the
target project may use in the future. However, this
approach can only recommend highly popular libraries.
Unlike LibRec, CrossRec[40] additionally considers the
dependencies of the project under development, thus
providing highly relevant recommendation results to
the project. Subsequently, LibSeek[5] is a novel TPL
recommendation model that uses the matrix factorization
technique[11] that has made a big splash in recommender
systems to decompose the app-library interaction matrix
into two single hidden vectors that can be used to
compute the similarity scores between the app and the
library through the inner product operation. In addition,
this model considers the popularity bias[10] and the long-
tail effect in recommender systems. By additionally
adding an adaptive weighting mechanism to distinguish
the importance of different TPLs, LibSeek achieves a
better performance than traditional MF. Although both
types of approaches are simple and effective, they have
some inherent limitations. Specifically, content-based
models often require additional side information, such as
app development-related logs, library functionality, and
interface definitions[7], and such auxiliary information
is also not easily accessible. The CF-based approaches,
on the other hand, only consider the correlation between
the app and its historical interactions, while ignoring the
complex relationships between app and library, app to
app, and library to library over long distances[15].

In the last few years, GCNs[14, 20, 30, 31] have started
to emerge and have had remarkable success in semi-
supervised classification tasks. Inspired by this, GRec[13]

defines TPL recommendations for the first time from
a graph perspective. Specifically, GRec treats the app
and library as nodes and their interaction record as
an edge on the graph. GRec basically covers all
techniques of GCNs, including self-connection, feature
transformation, and nonlinear activation[14, 15, 24]. By
stacking multiple graph convolutional layers, GRec can
easily learn the high-order connectivity between the app
and library, which is impossible with the traditional

TPL recommendation model. However, as described
in the previous sections, GRec still has limitations and
there is still a considerable room for improvement. The
proposed NLA-GNN further simplifies the framework
of GRec by removing redundant modules and steps and
initializing only one type of node embedding to perform
the graph convolution process. The experimental results
show that NLA-GNN achieves the best performance on
all datasets and has significant advantages considering
training speed, convergence speed, and model size.

6 Conclusion and Future Work

In this paper, we proposed a novel NLA-GNN for TPL
recommendation task. NLA-GNN further simplifies
the graph convolution process based on GRec, i.e., it
removes the redundant processes of self-connection,
feature transformation, and nonlinear activation, and
alternatively completes the construction and update of
all types of node representations on the app-library
graph by only one type of node embedding. This
condition enables NLA-GNN to tap into the complex
high-order relationships between the app and library
while keeping the model compact and eliminating
the impact of heterogeneity of bipartite graphs. We
have conducted extensive comparison experiments and
parameter analyses on a real large-scale dataset MALib.
The experimental results show that the proposed NLA-
GNN can more accurately recommend the preferred
TPLs for developers than the state-of-the-art baseline
models, and has significant advantages in terms of
training speed, convergence speed, and model size.
In the future, we will further investigate the complex
high-order relationship between the app and library,
and expect to distinguish the degree of contribution
of different neighbor nodes to the central node by
introducing an attention mechanism and graph attention
network. In addition, a feasible direction is to integrate
the feature information of the mobile app and TPL (such
as geographic location, publisher, and type label, etc.)
to further enhance the performance and empower the
interpretability of the recommendation results.

Acknowledgment

This work was supported by the Key Project of Nature
Science Research for Universities of Anhui Province of
China (No. KJ2020A0657), the National Natural Science
Foundation of China (Nos. 62272001, 61872002, and
62276146), and the University Collaborative Innovation
Project of Anhui Province (No. GXXT-2021-087).

784 Tsinghua Science and Technology, August 2023, 28(4): 769–785

References

[1] Y. Zhang, B. Hu, and Y. Zhang, Model-driven open
ecological cloud enterprise resource planning, Int. J. Web
Serv. Res., vol. 18, no. 3, pp. 82–99, 2021.

[2] P. Salza, F. Palomba, D. Di Nucci, A. De Lucia, and F.
Ferrucci, Third-party libraries in mobile apps, Empir. Softw.
Eng., vol. 25, no. 3, pp. 2341–2377, 2020.

[3] M. A. Saied and H. Sahraoui, A cooperative approach for
combining client-based and library-based API usage pattern
mining, in Proc. 24th Int. Conf. Program Comprehension
(ICPC), Austin, TX, USA, 2016, pp. 1–10.

[4] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, Keep
me updated: An empirical study of third-party library
updatability on android, in Proc. 2017 ACM SIGSAC Conf.
Computer and Communications Security, Dallas, TX, USA,
2017, pp. 2187–2200.

[5] Q. He, B. Li, F. Chen, J. Grundy, X. Xia, and Y. Yang,
Diversified third-party library prediction for mobile app
development, IEEE Trans. Softw. Eng., vol. 48, no. 1, pp.
150–165, 2022.

[6] H. Henriques, H. Lourenço, V. Amaral, and M. Goulão,
Improving the developer experience with a low-code
process modelling language, in Proc. 21st ACM/IEEE Int.
Conf. Model Driven Engineering Languages and Systems,
Copenhagen, Denmark, 2018, pp. 200–210.

[7] T. Ki, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek, Mimic:
UI compatibility testing system for android apps, in Proc.
41st Int. Conf. Software Engineering, Montreal, Canada,
2019, pp. 246–256.

[8] F. Thung, D. Lo, and J. Lawall, Automated library
recommendation, in Proc. of the 20th Working Conf.
Reverse Engineering (WCRE), Koblenz, Germany, 2013,
pp. 182–191.

[9] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua,
Neural collaborative filtering, in Proc. 26th Int. Conf. on
World Wide Web, Perth, Australia, 2017, pp. 173–182.

[10] H. Abdollahpouri, M. Mansoury, R. Burke, and B.
Mobasher, The connection between popularity bias,
calibration, and fairness in recommendation, in Proc. 14th

ACM Conf. Recommender Systems, Virtual Event, Brazil,
2020, pp. 726–731.

[11] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization
techniques for recommender systems, Computer, vol. 42,
no. 8, pp. 30–37, 2009.

[12] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng, and
Y. Yang, Covering-based web service quality prediction via
neighborhood-aware matrix factorization, IEEE Trans. Serv.
Comput., vol. 14, no. 5, pp. 1333–1344, 2021.

[13] B. Li, Q. He, F. Chen, X. Xia, L. Li, J. Grundy,
and Y. Yang, Embedding app-library graph for neural
third party library recommendation, in Proc. 29th ACM
Joint Meeting on European Software Engineering Conf.
and Symp. Foundations of Software Engineering, Athens,
Greece, 2021, pp. 466–477.

[14] T. N. Kipf and M. Welling, Semi-supervised classification
with graph convolutional networks, presented at the Int.
Conf. Learning Representations, Toulon, France, 2017.

[15] X. Wang, X. He, M. Wang, F. Feng, and T. S. Chua, Neural
graph collaborative filtering, in Proc. 42nd Int. ACM SIGIR
Conf. Research and Development in Information Retrieval,
Paris, France, 2019, pp. 165–174.

[16] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang,
Revisiting graph based collaborative filtering: A linear
residual graph convolutional network approach, Proc. AAAI
Conf. Artif. Intell., vol. 34, no. 1. pp. 27–34, 2020.

[17] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
LightGCN: Simplifying and powering graph convolution
network for recommendation, in Proc. 43rd Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, Virtual Event, China, 2020, pp. 639–648.

[18] J. Cao, X. Lin, S. Guo, L. Liu, T. Liu, and B.
Wang, Bipartite graph embedding via mutual information
maximization, in Proc. 14th ACM Int. Conf. Web Search
and Data Mining, Virtual Event, Israel, 2021, pp. 635–643.

[19] J. Sun, Y. Zhang, W. Guo, H. Guo, R. Tang, X. He, C.
Ma, and M. Coates, Neighbor interaction aware graph
convolution networks for recommendation, in Proc. 43rd

Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval, Virtual Event, China, 2020, pp. 1289–
1298.

[20] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K.
Weinberger, Simplifying graph convolutional networks, in
Proc. 36th Int. Conf. on Machine Learning, Long Beach,
CA, USA, 2019, pp. 6861–6871.

[21] S. Kabbur, X. Ning, and G. Karypis, FISM: Factored item
similarity models for top-N recommender systems, in Proc.
19th ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining, Chicago, IL, USA, 2013, pp. 659–667.

[22] S. Rendle, Factorization machines with libFM, ACM Trans.
Intell. Syst. Technol., vol. 3, no. 3, p. 57, 2012.

[23] W. Chen, F. Cai, H. Chen, and M. De Rijke, Joint neural
collaborative filtering for recommender systems, ACM
Trans. Inform. Syst., vol. 37, no. 4, p. 39, 2019.

[24] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, Graph convolutional neural networks
for web-scale recommender systems, in Proc. 24th ACM
SIGKDD Int. Conf. Knowledge Discovery & Data Mining,
London, UK, 2018, pp. 974–983.

[25] D. Zhang, J. Yin, X. Zhu, and C. Zhang, Network
representation learning: A survey, IEEE Trans. Big Data,
vol. 6, no. 1, pp. 3–28, 2020.

[26] C. K. Hsieh, L. Yang, Y. Cui, T. Y. Lin, S. Belongie, and
D. Estrin, Collaborative metric learning, in Proc. 26th Int.
Conf. World Wide Web, Perth, Australia, 2017, pp. 193–201.

[27] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme, BPR: Bayesian personalized ranking from implicit
feedback, in Proc. 25th Conf. Uncertainty in Artificial
Intelligence, Montreal, Canada, 2009, pp. 452–461.

[28] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv: 1412.6980, 2017.

[29] X. Glorot and Y. Bengio, Understanding the difficulty of
training deep feedforward neural networks, in Proc. 13th

Int. Conf. Artificial Intelligence and Statistics, Sardinia,
Italy, 2010, pp. 249–256.

[30] M. Liu, H. Gao, and S. Ji, Towards deeper graph

Ying Jin et al.: Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation 785

neural networks, in Proc. 26th ACM SIGKDD Int. Conf.
Knowledge Discovery & Data Mining, Virtual Event, CA,
USA, 2020, pp. 338–348.

[31] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, Simple
and deep graph convolutional networks, in Proc. 37th Int.
Conf. Machine Learning, Vivtual Event, Austria, 2020, pp.
1725–1735.

[32] W. Zheng, Q. Zhang, and M. Lyu, Cross-library API
recommendation using web search engines, in Proc. 19th

ACM SIGSOFT Symp. and the 13th European Conf.
Foundations of Software Engineering, Szeged, Hungary,
2011, pp. 480–483.

[33] A. Narayanan, L. Chen, and C. K. Chan, AdDetect:
Automated detection of android ad libraries using semantic
analysis, in Proc. 9th Int. Conf. on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP),
Singapore, 2014, pp. 1–6.

[34] B. Liu, B. Liu, H. Jin, and R. Govindan, Efficient privilege
de-escalation for ad libraries in mobile apps, in Proc. 13th

Annu. Int. Conf. Mobile Systems, Applications, and Services,
Florence, Italy, 2015, pp. 89–103.

[35] F. Thung, S. Wang, D. Lo, and J. Lawall, Automatic
recommendation of API methods from feature requests,
in Proc 28th IEEE/ACM Int. Conf. Automated Software
Engineering (ASE), Silicon Valley, CA, USA, 2013, pp.

290–300.
[36] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue,

and D. Lo, Improving reusability of software libraries
through usage pattern mining, J. Syst. Softw., vol. 145, pp.
164–179, 2018.

[37] M. Backes, S. Bugiel, and E. Derr, Reliable third-party
library detection in android and its security applications,
in Proc. 2016 ACM SIGSAC Conf. Computer and
Communications Security, Vienna, Austria, 2016, pp. 356–
367.

[38] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang,
and H. Chen, Detecting third-party libraries in android
applications with high precision and recall, in Proc. 25th

Int. Conf. Software Analysis, Evolution and Reengineering
(SANER), Campobasso, Italy, 2018, pp. 141–152.

[39] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, A
survey on accuracy-oriented neural recommendation:
From collaborative filtering to information-rich
recommendation, IEEE Trans. Knowl. Data Eng., doi:
10.1109/TKDE.2022.3145690.

[40] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di
Penta, CrossRec: Supporting software developers by
recommending third-party libraries, J. Syst. Softw., vol. 161,
p. 110460, 2020.

Ying Jin received the MEng degree from
Hefei University of Technology, China in
2009. She is an associate professor at
the School of Artificial Intelligence and
Big Data, Hefei University. Her research
interests include service computing, data
mining, and web service.

Yi Zhang received the BEng degree in
computer science and technology from
Anhui University, China in 2020, where he
is currently a master student at the School of
Computer Science and Technology, Anhui
University. His current research interests
include graph learning, recommender
system, and service computing.

Yiwen Zhang received the PhD degree
in management science and engineering
from Hefei University of Technology, China
in 2013. He is currently a professor at
the School of Computer Science and
Technology, Anhui University. His research
interests include service computing, cloud
computing, and big data analysis. Please

see more information on http://bigdata.ahu.edu.cn/.

