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Three Dimensional Metal-Surface Processing Parameter Generation
Through Machine Learning-Based Nonlinear Mapping

Min Zhu, Yanjun Dong, Bingqing Shen, Haiyan Yu, Lihong Jiang, and Hongming Cai�

Abstract: The accuracy and efficiency of three-dimensional (3D) surface forming, which directly affects the cycle

and quality of production, is important in manufacturing. In practice, given the uncertainty of metal plate springback,

an error exists between the actual plate and the target surface, which creates a nonlinear mapping from computer

aided design models to bending surfaces. Technicians need to reconfigure parameters and process a surface

multiple times to delicately control springback, which greatly wastes human and material resources. This study

aims to address the springback control problem to improve the efficiency and accuracy of sheet metal forming.

A basic computation approach is proposed based on the DeepFit model to calculate the springback value in

3D surface bending. To address the sample data shortage problem, we put forward an advanced approach by

combining a deep learning model with case-based reasoning (CBR). Next, a multi-model fused bending parameter

generation framework is devised to implement the advanced springback computation approach through surface data

preprocessing, CBR-based model matching, convolution neural network-based machining surface generation, and

bending parameter generation with a series of model transformations. Moreover, the proposed approaches and the

framework are verified by considering saddle surface processing as an example. Overall, this study provides a new

idea to improve the accuracy and efficiency of surface processing.
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1 Introduction

The three-dimensional (3D) plate bending process
is an important procedure in high-end equipment
manufacturing; it modifies the shape of metal plates
with steel or alloy materials. The bending accuracy and
efficiency directly affect the quality of ships. A key
step is a generation of processing parameters through
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the surface development algorithm in computer aided
design (CAD) models. Then, the 3D computer numerical
control (CNC) plate bending machine can form the
ship plate into a specific geometry by multi-point cold
pressing. However, given the uncertainty of springback,
an error exists between the target and actual shapes of
the ship plate[1]. Thus, in practice, technicians have to
reduce the gap with a trial-and-error approach. They
modify configuration parameters and bend the ship plate
multiple times. However, this approach has low efficiency,
costs a huge amount of manpower and material resources,
and still lacks a guaranteed bending accuracy.

For bending accuracy improvement, the most effective
method is the modification of configuration parameters
by considering the springback of the plate[2]. The
bending result can meet the engineering requirement
in geometry shape and forming accuracy. Some
forming parameter optimization approaches have been
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proposed in existing studies. For example, Feng et al.[3]

adopted the sequential approximation multi-objective
optimization method to obtain the optimal variable blank-
holder force in sheet metal forming under the condition
of interval uncertainty. Gao et al.[4] classified surface
morphing into algebraic and free-form morphing and
obtained control points by data mining. Likewise, in the
case of plate bending, we need to calculate the optimal
configuration parameters of processing points from a
CAD model to obtain qualified bending results.

However, the mapping relation from a CAD model
to bending parameters is nonlinear and difficult to
predict because many factors can cause springback
and surface deformation, e.g., material, thickness,
geometry, and a variety of other factors. With these
factors, surface mapping becomes nonlinear, and thus,
the mapping relation with traditional physical and
geometric models is hard to describe. Introducing
machine learning into computational methods is an
important solution to the causal and complex nonlinear
mapping problem. However, two additional challenges
arise in the generation of 3D plate bending parameters.

The first challenge is the training data for
springback computation. In general, high-end equipment
manufacturing (e.g., shipbuilding) has the difficulty of
using a large number of sample types but a small size
of the data sample type, which affects the accuracy of
machine learning results. Therefore, new methods are
necessary to maximize the use of existing samples while
ensuring the accuracy of machine learning results.

The second challenge is the models for bending
parameter generation. To approach a machine learning-
based solution, scientists need to convert CAD models
to machine learning models. However, CAD models are
normally composed of a large number of vertices, edges,
and faces and are thus hard to modify due to the high
storage space cost, low computational efficiency, and low
consistency after deformation. Moreover, CAD models
in practice have different sizes, positions, attitudes,
and point distributions on the surface, increasing the
difficulty of machine learning.

To meet the above challenges, this study uses a point
cloud to represent the CAD model and proposes an
intelligent deep learning method of 3D plate bending
parameter generation based on the point-cloud model.
As a result, the model features can be extracted with case-
similarity calculation, which can improve the accuracy
of model-parameter mapping. Moreover, the feasibility
and practicability of the proposed method are verified by

studying a case of saddle surface bending in shipbuilding.
Overall, this paper has the following contributions.

(1) It proposes a deep learning-based intelligent
approach for 3D plate bending parameter prediction by
leveraging the spatial features of point-cloud to establish
a nonlinear mapping from a CAD model to bending
parameters.

(2) It proposes a case-based reasoning (CBR) based
model matching algorithm to improve the mapping
accuracy with multi-type small-sized samples.

(3) It devises a multi-model fused bending parameter
generation (MMFBPG) framework to apply the proposed
approach to real production with data preprocessing and
parameter generation methods.

(4) It provides a case study on ship plate bending
to show the feasibility and efficiency of the proposed
approach and the devised framework.

The paper is organized as follows. Section 2
introduces the related work. Section 3 briefly introduces
the 3D CNC plate bending process and proposes a 3D
processing parameter generation framework. Section 4
devises the MMFBPG approach. Section 5 provides
a case study and Section 6 compares the proposed
approach with existing ones. Finally, Section 7 concludes
the study.

2 Related Work

The related research for point-cloud-based curved plate
transformation can be divided into model construction
and enhancement, model matching, and transformation.

2.1 Model construction and enhancement

Model construction and enhancement based on point-
cloud aim at standardizing the point-cloud model
with the predefined rules for subsequent processing.
In general, it is applied to point-cloud surface
reconstruction. At present, three main classes of point-
cloud surface reconstruction approaches, including
mesh-based point-cloud reconstruction, implicit surface
reconstruction, and parametric surface reconstruction,
are available.

Mesh-based point-cloud reconstruction uses mesh
approximation instead of surfaces. Hou and Gu[5] studied
the triangular mesh generation of scattered points in
space and realized uniform mesh reconstruction using a
micro incremental method. Wang et al.[6] used the angle
condition of adjacent triangles and the disjoint condition
of triangles to generate surfaces from a triangular
mesh. The mesh model has strong flexibility and good
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adaptability to the surface boundary, but it also has
many shortcomings, including a large number of mesh
patches, large memory resources, and low reconstruction
accuracy.

Implicit surface reconstruction relies on implicit
functions. In this class, polynomial and radial functions
have been used to describe the point-cloud surface.
Qin et al.[7] weighted the curvature of the surface
reconstructed by the Poisson function and smoothed
the surface by setting the curvature threshold. Implicit
surface reconstruction can well preserve surface details,
but it is easily disturbed by the noise of point-cloud
data. In addition, the reconstructed surface edge is easily
deformed.

In parametric surface reconstruction, B-spline
surface[8] and non-uniform rational B-spline (NURBS)
surface[7] are the most representative methods for
parametric surface fitting. A B-spline surface has good
smoothness and stable geometric topology information
for fitting object surfaces, but it needs to be based
on a rectangular mesh topology. NURBS introduces
a weight factor to improve the precision of surface
expression and analysis. NURBS surface fitting usually
adopts a rectangular parameter domain, which has an
evident quadrilateral boundary in the target model, when
the contour lines in point-cloud data are orderly and
regularly distributed. The NURBS technology has been
successfully applied to plate surface design for the
generation of feature lines and plate surfaces. Thus,
NURBS is suitable for our surface reconstruction.

2.2 Model matching and transforming

Point-cloud is a geometric data structure with four
characteristics. First, the underlying shape is not affected
by the arrangement order of points in the point cloud
(irregularity). Second, a point-cloud model contains
spatial information in which the characteristics of each
point are closely related to its adjacent points (domain
correlation). Third, the object represented by point-
cloud data after spatial transformation (e.g., rotation
and translation) is invariable (invariance). Last, the
distribution of points is often uneven when the point
cloud describes the actual object (uneven distribution).
Given the above characteristics, the point-cloud model
matching approaches, including convolution neural
network (CNN) based and PointNet-based approaches,
show different performances.

Deep neural networks exhibit good performance in
image recognition and classification[9]. Zhou et al.[10]

adopted CNNs for feature extraction and classification
of 3D images. However, different from images, CNNs
cannot obtain the spatial position information of the
point cloud due to their irregularity and invariance
characteristics, leading to inaccurate convolution results
in the point-cloud model. To solve this problem,
scientists use most of the existing methods to convert
the point-cloud model into regular image sets[11] or
voxelization[12]. Then, the deep learning models for
image processing can be applied to point-cloud data.
However, these methods cannot fully learn the spatial
information of the point cloud. Meanwhile, owing to
a large number of points, the amount of calculation for
point-cloud models is considerably larger than that in
image processing.

On the other hand, Qi et al.[13] proposed a deep
learning framework for point-cloud, called PointNet,
which can be directly applied to point-cloud data and has
achieved good performance in model classification and
segmentation. To better learn local features, Qi et al.[14]

proposed the PointNet++ framework. PointNet++ can
extract local features of point-cloud data through point
sampling and clustering. Then, it continuously learns the
local features of point-cloud data and, finally, the deep
features. PointNet and PointNet++ have been applied
to 3D object detection[15] and semantic segmentation[16]

with good results. Wang et al.[17] proposed the dynamic
graph CNN (DGCNN) model, which has a similar
network structure to PointNet. DGCNN uses Edge-Conv
to obtain global and local features of point-cloud data,
which distinguishes it from PointNet.

In short, although AI methods are commonly used for
image and video disposal, the intelligent method related
to point-cloud disposal still needs considerable work for
manufacturing applications.

3 Background and Framework

3.1 Overview of 3D CNC plate bending

Multi-point forming technology is widely used in
bending plate processing. The 3D CNC plate bending
machine has upper and lower dies, and both contain
multiple discretely arranged indentors[18]. By adjusting
the height of indentors in the upper and lower dies,
the 3D CNC plate bending machine forms an envelope
surface corresponding to the target curved surface shape
and bends the plate through a multi-point press forming
method. In practice, after one bending, the height of the
indentors in the upper and lower die must be adjusted
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based on the measured error of the bent plate to form a
new envelope surface and perform another bending to
approach the target shape.

Springback is inevitable in the process of plate
bending. When the external pressure from the indentors
of a plate bending machine disappears, elastic
deformation will recover, resulting in a deformation
opposite to the bending direction. The extent of
deformation is determined by the amount of springback.
Springback is closely related to many factors, such as
shape forming and material characteristics. Thus, the
influence of springback on plate bending is difficult to
predict.

3.2 Framework

To implement the intelligent computation of springback
control, we propose an MMFBPG framework to
address the nonlinear mapping problem of bending
processing parameter generation in 3D plate bending.
As shown in Fig. 1, the overall framework contains four
steps, including data preprocessing, CBR-based model
matching, machine learning-based machining surface
generation, and bending machine processing parameter
generation.

In the MMFBPG framework, the process of CBR-
based model matching and machine learning-based
machining surface generation collectively implements
the springback computation approach (multi-model
fusion). In addition to the multi-model fusion process,
we add rule-based data preprocessing and bending
machine processing parameter generation to meet the
needs in practice. In rule-based data preprocessing,
the CAD model of the plate to bend is exported to the

point-cloud model and processed to obtain the uniform
spatial constraint to facilitate the subsequent model
matching and machine learning. In bending machine
parameter generation, the machining surface of a plate
is configured, and the manufactured surface is generated
based on the position of the upper and lower dies in a 3D
CNC bending machine. With the MMFBPG framework,
the generated processing parameters can be directly
applied to the 3D CNC bending machine.

4 MMFBPG Approach

Adjusting the shape of dies is the most effective way to
control processing parameters, and it can be achieved by
adding an appropriate amount in the opposite direction
of springback. To resolve this issue, in this section, we
introduce a springback calculation method based on deep
neural networks and improve its accuracy with CBR.

4.1 Data preprocessing for 3D surfaces

In practice, the models of different designs may
differ in size, spatial state (position and attitude),
and point distribution on the surface, but they may
describe similar shapes. Thus, to ensure machine
learning accuracy, scientists need data preprocessing
to generate a uniform model for CBR in terms of
coordinates and point distribution. We proposed a rule-
based model enhancement approach, which includes
coordinate transformation, surface reconstruction, and
point collection, for 3D surface data preprocessing to
establish a uniform spatial constraint.

After exporting a CAD model to a point-cloud model,
the coordinate transformation function translates, rotates,
and zooms the point-cloud model to generate a uniform

Fig. 1 Diagram of multi-model fused bending parameter generation framework.
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point-cloud model as a processed design model (PDM).
Specifically, first, the oriented bounding box (OBB) of
the point-cloud model is calculated to describe the spatial
position and attitude of the model, and based on the eight
vertices on the bounding box, we can redefine the surface
coordinates shown in Fig. 2.

Specifically, based on the surface area of the bounding
box, we select the face with the largest area and close
to the xy plane as the x0y0 plane to ensure that the z
values of all points on the point cloud are non-negative.
We connect the midpoints on both sides as the x0 axis.
Accordingly, we re-select the z0 and y0 axes. After the
coordinate transformation, the point cloud is enlarged or
reduced in proportion. As a result, the surface projection
on the X 0Y 0 plane is within a specified range, in which
the longitudinal projection length is between 1600 mm
and 3200 mm.

Next, the point-cloud model is reconstructed from
a series of points as a smooth surface. We adopt the
NURBS surface reconstruction method[19], in which
points are selected interactively to reconstruct NURBS
curves.

As the input of the neural network for springback
computation requires the same scale of point-cloud
models, the points must be recollected to ensure the
same number of points on each point cloud. Meanwhile,
the points are retrieved uniformly from the surface to
avoid ignoring the information on the surface during
point collection. Thus, in the last step, we project the
surface described by the point cloud onto the xy plane,

Fig. 2 Schematic diagram of the coordinate transformation
from xyz to x0y0z0.

collect 100 equal parts in the x- and y-axis directions,
and collect the corresponding points on the surface to
form a 100-point � 100-point point-cloud model.

4.2 CBR-based model matching

Although deep neural networks can be used to describe
nonlinear mapping, their accuracy is affected by
the training data. To improve the reliability and
interpretability of deep learning results, we proposed
a CBR-based model matching method to obtain similar
cases.

We used the PointNet++ and OBB-based feature
extraction models to extract the feature of the point-
cloud model (feature selection), calculated the feature
similarity of the two models (feature similarity
calculation), matched models based on similarity
(similar model matching), and obtained all informations
related to springback calculation of similar models
(model feature exaction).

A large number of features on the shape of a
surface prevent the traditional feature selection from
extracting complete shape information. Therefore, in
feature extraction, we used PointNet++ and OBB-based
feature extraction models to extract the feature vector
of the point-cloud model. Notably, feature extraction is
performed on the point-cloud model.

Based on the OBB model, we obtain the ratio of length,
width, and height as the characteristic attribute of the
point-cloud model and give height the value of 1 to
calculate the ratio of length and width to height.

Based on the PointNet++ model, we can extract the
local and global features of the point-cloud model, which
contains the shape information of the surface. Z-score
standardization (Eq. (1)) was used to preprocess the
coordinates of points in the point-cloud model.

x� D
x � �

�
(1)

where x and x� represent the coordinate values before
and after standardization, respectively, � is the mean of
the original coordinates, and � is the standard deviation
of the original coordinates.

The PointNet++ model samples and clusters the point-
cloud model based on the coordinate position and carries
out hierarchical feature extraction. In the PointNet++
model, each feature layer will extract the corresponding
attributes based on the clustering of point coordinates.

The last layer extracts the feature attributes from the
feature layer and inputs them into the full connection
layer for classification. We used the penultimate layer of
the last fully connected layer to calculate the similarity of
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bending cases. In our PointNet++ model, the dimension
of the penultimate layer is 256.

Thus far, we have obtained two feature vectors to
measure similarity. Next, based on the feature vectors,
similarity-based model matching can be performed.
For the length-to-width-to-height ratio, we can directly
obtain the similarity between models by the Euclidean
distance formula d.u1, u2/, sim(u1, u2/ D 1=.1Cd.u1,
u2//, with any eigenvalue of u1 and u2. For the multi-
dimensional feature vector, the cosine distance of the
feature vector in Eq. (2) is used to obtain the feature
similarity through weighted average:

sim.u1; u2/ D
mX

kD1

sim.u1�mk ;u2�mk/
num =nCsimcos.u1�w; u2�w/ (2)

We then calculated the average of the two feature
similarities to obtain the final feature similarity C .
As the surface type is a known quantity in practice,
when searching for similar cases, we only searched
for them within the same category of surfaces to
improve the accuracy. Specifically, we searched the
k nearest neighbors to retrieve the k most similar cases.
After finding similar cases, the corresponding actual
springback S can be obtained.

4.3 Machining surface generation

4.3.1 CNN-based parameter calculation
To address the nonlinear mapping problem, this work
proposes a deep learning method for calculating the
springback in 3D plate bending by fitting the nonlinear
mapping relationship between the point-cloud model of
various surfaces and their springback values.

We adopted the improved model of DeepFit[20] to
achieve nonlinear mapping. DeepFit uses PointNet to
extract features and a multi-layer perceptron model to

predict the weight of points in the fitting. The springback
at a point in the point cloud is closely related to the
shape of the surface around the point, and it can be
determined by the coordinates of neighbors. Thus, based
on the weight extraction of DeepFit, we adopted a more
efficient way by changing the learning goal to learn the
springback of every point. Figure 3 shows the design
of the improved DeepFit model. Through the improved
DeepFit model, we can input the point-cloud model to
obtain the springback of each point. In the improved
DeepFit model, theK nearest neighbor points (Si / of the
point-cloud model are inputted to the PointNet network,
which outputs the global point-cloud representation
tt(Si /. In addition, the local representation of each
point Pj 2 Si is extracted from the middle layer to yield
g.Pj /.

These representations are fed into the multi-layer
perceptron. The output of this network is the weight
of each point. After obtaining the weight matrix W, the
springback compensation (dz/ is calculated by dz D
W �Z, in whichZ is the set of coordinate z values in the
k neighbors. The loss function is the mean square loss
function between dz and the springback of the center
point (dzt /, as shown in Eq. (3).

loss.dz; dzt / D .dz � dzt /2 (3)

4.3.2 Parameter correction
In Section 4.2, we propose a CBR-based model matching
method to obtain similar models and their corresponding
springback S . Based on these models, we modify the
fitting results Z of the target case and evaluate the
confidence in this section.

We predicted the springback of similar cases (S0 D
.S 01; S

0
2; : : :; S

0
k
// and the target case (Ztc/ separately.

With the known surface types in practice, we trained an
improved DeepFit model for each type to improve the

Fig. 3 Diagram of improved DeepFit model.
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accuracy. Then, we inputed the point-cloud models of
the target case and similar cases into the improved model
to obtain the springback prediction results.

The predicted springback of the target case Ztc can
be revised on the basis of similar cases. Algorithm 1
describes the process of springback correction.

In the algorithm, we first compared the prediction result
S 0with the actual springback of the point-cloud model
in similar cases (recorded as S D .S1; S2; : : :; Sk// to
calculate the springback error of each point (Line 2).

After obtaining the error of springback of similar
cases, we calculated the adjustment value E of the
springback using the similarity between similar cases
and the target case (Eq. (4)):

E D

kX
iD1

sim .Ci ;TargetCase/ � ei=k (4)

Algorithm 1 Parameter correction
Input: Prediction springback of target case Ztc, prediction

springback of similar cases S 0, actual springback of similar
cases S , and similarity of target case and similar cases C I

Output: Corrected springback of target case ZtI

1: for i in S do
2: ei  .Si � S

0
i
/2I

3: end for
4: E  adjustment value of springback based on ei and C I
5: CD the confidence base on CI
6: if CD > 0:8 then
7: Zt  Ztc CEI

8: else
9: Zt  ZtcI

10: end if
11: return Zt

where C is a similar case. Meanwhile, we calculated
the confidence CD based on the similarity using Eq. (5),
which can be used to measure the reliability of the deep
learning model in springback prediction.

CD D
kX

iD1

sim.Ci ;TargetCase/=k (5)

Particularly, if the CD value is above 0.8, similar cases
are highly accurate and have a high reference value.
Therefore, the adjustment value E is added to Ztc to
obtain the final springback Zt . If the reliability is below
0.8, then the prediction result of the case is insufficient
and cannot be applied to the prediction result of the
target case. Therefore, when the accuracy of the neural
network is high, Ztc is directly considered as the final
springback Zt . With the increase in data and equipment
types, the management of heterogeneous and various
data has become important[21] . Therefore, we needed
to build a unified case library before CBR-based model
matching and CNN-based surface generation.

The most important knowledge of a historical bending
case includes the type, thickness, and material of a plate
because they are closely related to the springback of
bending. Meanwhile, the feature vectors of historical
plate data are calculated in advance for fast retrieval. The
above knowledge is converted to data and stored in the
case library. Figure 4 shows the case library structure.

Currently, a bending case includes the original design
model (ODM), PDM, machining surface, manufactured
surface, and measured surface. The ODM includes the
point-cloud model exported from the CAD model, and
it describes the target surface shape of a curved plate

Fig. 4 Diagram of the structure of the case library.
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and the basic parameters. The PDM describes the data
after a spatial coordinate transformation, feature vector,
and parameters of rotation and scaling. The machining
surface contains the surface data with springback
correction. The manufactured surface comprises the
actual processing parameters used by the 3D CNC
bending machine. The measured surface consists of
the actual surface after bending.

Moreover, a DeepFit model is trained for each type
of plate, and a PointNet++ model is trained for all plate
types. The DeepFit models and a PointNet++ model are
stored separately outside the case library. We can use a
different DeepFit model based on the plate type.

4.4 Bending parameter generation

After calculating the springback value of a 3D model,
bending parameters can be generated for 3D CNC
bending machine control.

As the 3D surface data have been converted to a
uniform point-cloud model in rule-based 3D surface data
preprocessing, the machining surface must be restored
to its original scale by enlargement and reduction in
proportion based on the scale stored in the case library.

Based on the position of the upper and lower dies,
four types of bending parameters need to be generated.
These parameters include the row and column where
the indentor is located, the height of the indentor in
the lower die, and the deviation between the heights
of the indentors in the lower and upper dies. After
reconstructing the surface, we converted the calculated XY
value of the 3D CNC plate to the processing parameter
of a bending machine by collecting the points from the
generated surface based on the position of indentors.

Finally, by saving the obtained processing parameters

to a configuration file with a required format, it can
be directly imported into the 3D CNC plate bending
machine for surface forming. After machining, the
system collects the shape information of the actually
formed surface through measurement and saves it
into the case base as the measured data for future
computation.

5 Case Study

5.1 Study on ship plate bending

This section studies the case of the 3D bending
of saddle ship plates to show the feasibility of
the proposed MMFBPG framework in 3D bending
parameter generation.

Based on the proposed method, we first built a case
library by obtaining the data of multiple types of ship
plates from the shipyard. Figure 5 shows the GUI of our
developed case library, which contains the information
on a bending case history.

Based on the quantity and distribution of each type, we
select the six main types of ship plate data and categorize
them into cylindrical, conical, sail, saddle, transverse
bending and twisting, and transverse wave bending
plates. The rest are classified into other categories. As
each category contains 200 copies of ship plate data,
we obtain 1400 copies of ship plate data overall. Each
copy of ship plate data includes the corresponding CAD
model and processing parameters of the ship plate. The
CAD model is exported as data in point-cloud format.
Figure 6 illustrates the ODM of the six types of ship
plate surfaces.

Then, the ODM and processing parameters are
respectively converted to the PDM and machining

Fig. 5 Software GUI of the case library.
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(a) Cylindrical plate (b) Conical plate

(c) Sail plate (d) Saddle plate

(e) Lateral bending and twisting (f) Transverse wave bending

Fig. 6 Six typical ship plate models.
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surface through data preprocessing, which are then
stored in the case library for the training of the
PointNet++ model and the DeepFit models.

In this paper, the effectiveness of the proposed method
is verified by the 3D saddle parts and the curved parts
of a hull curved outer plate, which is commonly used in
production. The selected saddle parts have the following
features. The longitudinal projection length is 3200 mm;
the transverse projection length is 1600 mm. And the
plate thickness is 25 mm.

The selected curved parts have the following features.
The longitudinal radius of the curvature is 8000 mm, and
the bending direction is positive. The transverse radius
of the curvature is 4000 mm, and the bending direction
is negative. We used the CAD models of saddle ship
plates as the input data and carried out the MMFBPG
process with the following steps.

Step (1) Data preprocessing
The CAD model was exported as the ODM in point-

cloud format. After extracting the OBB of the point-
cloud model, the central axis of the bounding box
was extracted based on predefined rules to determine a
new coordinate system. Within the new coordination
system, the coordinate transformation function and
the proportional scaling function were carried out
to generate the OBB of the point-cloud model with
unified spatial constraints (Fig. 7). The length of
the long rectangular side was between 1600 nm and
3200 mm. Then, the NURBS reconstruction method was
used to reconstruct the point-cloud model, and points
were evenly obtained on the reconstructed surface to
form a 100 � 100 lattice. As a result, we acquired the
design data of the saddle ship plate (Fig. 8).

Step (2) Model matching
In this step, we inputed the PDM into the PointNet++

model to obtain the feature vector, calculated the length-

Fig. 7 Coordinate transformation based on the central axis.

Fig. 8 Non-uniform rational B-spline-based surface
reconstruction and regular point selection.

width-height ratio, and obtained the feature value after
synthesizing both feature vectors. For model matching,
we calculated the similarity with the design data from the
case library and obtained ten similar design data of the
saddle ship plate. The maximum, minimum, and average
similarities with the target cases are 0.865, 0.795, and
0.827, respectively. Figure 9 shows the cas comparison
with the highest similarity.

Step (3) Machining surface generation
To measure the reliability of similar cases, we first

calculated their confidence based on their similarity. The
confidence of similar cases is 0.827, which shows that
similar cases are accurate and have a high reference value
for target cases. Therefore, we inputed the PDMs of the
target case and similar cases into the DeepFit model for
the saddle ship plate to obtain the springback prediction
results, namely, Ztc and St . Then, we compared the
actual (S/ and predicted springback (St / to obtain the
springback adjustment value E (Fig. 10). Finally, E
was added to Ztc to obtain the final springback to revise
the design data of the machining surface (Fig. 11).

Step (4) Bending parameter generation
The size and distribution of the mold group for

Fig. 9 Comparison of similar cases.
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Fig. 10 Springback adjustment values at each point of the
curved surface.

Fig. 11 Diagram of the machined surface.

different types of 3D CNC bending machines vary. Thus,
the correct processing configuration file needs to be
created from the generated machining surface for a
specific bending machine.

First, the machining surface was reconstructed.
According to the 20 � 20 mold group position, the
coordinates of surface points were collected from
the point-cloud model. Specifically, the height of the
lower mold was obtained as the lower mold processing
parameter (Fig. 12). Then, the corresponding upper mold
parameters and other command information were added
to the configuration file (Fig. 13).

Fig. 12 Regular points of machined surface to form the
mold group.

After the above four steps, we obtained the processing
configuration file, which was consistent with the format
required by our 3D CNC plate bending machines for
ships. In addition, our method does not affect the use
of existing CAD systems and 3D CNC plate bending
machines in production. Our proposed approach can be
integrated well into the existing production environment.
Thus, the cost of updating the production system is very
small.

5.2 Experiment result

In this section, we conduct an experiment to compare
the CBR-based springback calculation approach with
the basic one to quantitatively study their performance.

The data set for testing is the ship plate data of six
categories with 20 copies for each category. The case
library constructed in Section 4.3 does not contain the
testing data but those of similar cases. To evaluate the
accuracy of both methods, we calculated the error rate
for each ship plate with Eq. (6).

e D

kX
iD1

ˇ̌
Si � S

0
i

ˇ̌
Si

.
k � 100% (6)

where S 0 is the prediction results, and S is the actual
springback. Then, we calculated the average value of
the error rate by category. The experiment computes the

Fig. 13 Process parameters of the mold group adapted to equipment formation.
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average error rate of each category with the CBR-based
springback computation approach (i.e., with CBR) and
the one with the basic springback computation approach
(i.e., without CBR). Table 1 and Fig. 14 present the
experimental results.

Table 1 Average error rate with and without CBR in
different 3D model types.

3D model type
Average error rate (%)

Without CBR With CBR
Cylindrical 5.086 63 2.997 85

Conical 20.806 30 16.855 35
Sail 23.955 33 22.158 55

Saddle 17.314 06 13.378 13
Transverse bending

and twisting 9.977 32 8.126 98

Transverse
wave bending 18.940 12 5.722 22

Fig. 14 Comparison of average error rate with and without
CBR preprocessing.

Table 1 shows that the average error rate in all
categories with CBR is lower than those without.
Moreover, no evident relationship exists between the
average error rate without CBR and its decline with
CBR (Fig. 14). The experimental result indicates that
CBR can improve the accuracy, and the optimization
effect is independent of the improved DeepFit model
performance. Therefore, CBR is effective and thus
necessary in springback calculation.

6 Comparison and Discussion

We compare the methods described in this paper with
the existing springback control approaches from eight
aspects, including business needs, model representation,
model matching and mapping, adaptability, expansibility,
interpretability, and accuracy. Table 2 lists their
differences and comparison results.

We first differentiated the approaches from their
business needs, model representation, and modeled
matching and mapping. The numerical simulation
approach was used to predict springback and simulate
the multi-point forming and unloading process of the
hull-surface outer plate by constructing the finite element
model. In this approach, the surface after springback
was obtained, and the compensation was calculated by
the normal correction method. The theoretical approach
studied the springback compensation prediction for
single curvature surfaces and used the theory of
mechanics to deduct the curvature relationship of plate

Table 2 Purpose, method, and performance comparison of related approaches.

Criteria Numerical
simulation[22]

Theoretical
calculation[23] Machine learning[24] Hybrid[25, 26] Our method

Business needs
Springback
prediction

Springback
compensation
prediction for single
curvature surface

3D shape recognition,
feature capture and
classification

Springback
prediction

Springback
compensation
prediction for multiple
types of surfaces

Model
representation

Finite element
model

Discrete points and
microelements

2D projection view Discrete points Point cloud model

Model matching
& mapping

Finite element
method-based
simulation

Curvature relationship
deduction

Neural network Neural network
CBR + Neural
network

Adaptability
Low due to low
model reusability

Low due to theoretical
difficulty

High through model
transformation

Medium due to
highly demanded
feature and sample
size selection

High due to case
reusability

Expansibility
Low from manual
model creation

High from model reuse High from model reuse
High from model
reuse

High from model
reuse

Interpretability High High Low Low High

Accuracy
Medium due to
simplified working
condition

Low due to limited
factors

Low due to
information loss

Medium, affected by
parameter types

High due to
comprehensive
information extraction
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springback based on the model of discrete points
and microelements. The machine learning approach
transforms CAD modeled into multi-angle images and
uses the neural network of image processing to obtain
the model characteristics. This approach was mostly
used for classifying and recognizing CAD models. The
hybrid approach combined theoretical calculation with
machine learning results by considering the theoretical
factors of springback as a neural network input to fit
the springback based on the model of discrete points.
These theoretical factors are usually obtained through
sensitivity experiments.

From the perspective of adaptability, the numerical
simulation needs to establish different finite element
models for each plate when calculating the springback.
Theoretical calculations can be used to obtain a better
curvature surface. However, the construction of the
quantitative relationship of complex surfaces, such
as a hyperbolic surface, is difficult. In terms of
feature extraction, different CAD models, which exhibit
high adaptability, can be projected to form images
for processing. The hybrid method requires different
sensitivity experiments for various types of plates.
However, in the case of the same plate type, after
selecting the influencing factors as input, the hybrid
method also exhibits high adaptability. The method
proposed in this paper combines CBR and machine
learning and constructs rules for transforming the CAD
model into a unified point-cloud model. This method
has high adaptability to ship plates with different shapes
and design rules and 3D CNC plate bending machines
with various processing rules.

From the perspective of expansibility, a new finite
element model needs to be constructed every time in
the theoretical calculation, indicating a low expansibility.
After constructing the corresponding formula or network
for a certain kind of ship plate surface, theoretical
calculation, machine learning, hybrid method, and the
method proposed in this paper can be used to process a
large number of ship plate data efficiently and with high
interpretability.

From the perspective of interpretability, numerical
simulation and theoretical calculation are in white-
box processing modes. When users use these two
methods, they gain a clear understanding of the influence
mechanism of springback and its strong interpretability.
The network used by machine learning and hybrid
methods is complex and with poor interpretability. This
paper combines CBR to find similar cases to provide

a basis for the results of machine learning fitting and
enhance the interpretability of the method.

From the perspective of accuracy, although the
numerical simulation simulates the whole process of
multi-point pressure and unloading, it still simplifies the
working conditions of processing. When calculating the
springback of single curvature surfaces in the theoretical
calculation, the influencing factors of springback are
limited, the quantitative relationship is difficult to
use when describing the springback process, and the
accuracy of the final result is limited. Machine learning
methods can only be used in the classification and
recognition of CAD models. The accuracy of the hybrid
method depends on the selected input factors and the
number of data samples. However, many factors affect
the springback, and the number of existing ship plates is
small. Therefore, the accuracy still needs to be improved.
In this paper, a point cloud is used to represent the ship
plate surface, and the machine learning method for the
point cloud is used to calculate springback. Considering
the shape of the surface, combined with the CBR method,
point-cloud can deal with the problem of small samples,
ensure the reliability of results, and enhance the accuracy
of machine learning methods.

Overall, numerical simulations and theoretical
calculations are traditional springback computation
approaches with strong theoretical support. However,
given the complex factors of springback, these methods
generally cannot meet the accuracy requirements and
cannot be applied to complex surfaces. Machine learning
and hybrid methods can achieve the mapping of
nonlinear relationships better than neural networks.
However, they are faced with the problem of incomplete
feature selection and an insufficient number of samples,
which result in the low accuracy of springback
computation. By contrast, our approach combines
machine learning with CBR as a comprehensive method
for shape information extraction. This approach can
ensure the accuracy and reliability of the method when
the number of samples is small, as usually observed in
ship plate processing.

7 Conclusion

In the process of 3D surface bending, the uncertainty
of springback affects the efficiency and accuracy,
resulting in the wastage of human and material
resources. In this research, we proposed a springback
computation approach based on the point cloud.
This approach combines the CBR-based and machine
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learning methods for point-cloud model matching and
springback prediction. To implement the approach,
we devised the MMFBPG framework for automated
3D CNC plate bending-machine parameter generation.
Based on the framework, we presented a case study on
ship-saddle plate bending to show the feasibility of the
solution. Meanwhile, we show the advantage of the
proposed approach with CBR-based model matching by
comparing it with an approach of deep learning model
through experiments. The experimental results showed
that the CBR-based approach can achieve a substantially
higher computation accuracy than the machine learning-
based approach. In summary, this work provides a new
idea for the nonlinear mapping of 3D surfaces.

In future works, we will further study the influence
on bending results based on the thickness, material,
and other characteristics of 3D plates. In addition, our
method can fully consider environmental factors, such
as temperature and humidity to improve the accuracy
and efficiency of 3D bending.
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