1324

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Robust Stochastic Gradient Descent With Student-t
Distribution Based First-Order Momentum

Wendyam Eric Lionel Ilboudo ™, Taisuke Kobayashi™, Member, IEEE, and Kenji Sugimoto™, Member, IEEE

Abstract— Remarkable achievements by deep neural networks
stand on the development of excellent stochastic gradient descent
methods. Deep-learning-based machine learning algorithms, how-
ever, have to find patterns between observations and supervised
signals, even though they may include some noise that hides the
true relationship between them, more or less especially in the
robotics domain. To perform well even with such noise, we expect
them to be able to detect outliers and discard them when needed.
We, therefore, propose a new stochastic gradient optimization
method, whose robustness is directly built in the algorithm, using
the robust student-t distribution as its core idea. We integrate
our method to some of the latest stochastic gradient algorithms,
and in particular, Adam, the popular optimizer, is modified
through our method. The resultant algorithm, called t-Adam,
along with the other stochastic gradient methods integrated with
our core idea is shown to effectively outperform Adam and their
original versions in terms of robustness against noise on diverse
tasks, ranging from regression and classification to reinforcement
learning problems.

Index Terms—Deep neural networks, robust optimization,
stochastic gradient descent (SGD), student-t distribution.

I. INTRODUCTION

HE field of machine learning which aims to find opti-
mal (minimum or maximum) solutions is undoubtedly
dominated by first-order optimization methods based on the
gradient descent algorithm and particularly [1], its stochastic
variant, the stochastic gradient descent (SGD) method [2]. The
popularity of the SGD algorithm comes from its simplicity, its
computational efficiency with respect to second-order meth-
ods, its applicability to online training, and its convergence
rate that is independent of the training data set. In addition,
SGD has a high affinity with deep learning [3], where network
parameters are updated by backpropagation of their gradients,
and is intensively used to train large deep neural networks. In
other words, as a remark, the performance of deep learning
greatly depends on SGD.
Despite such established popularity, a specific trait of SGD
is the inherent noise, coming primarily from sampling training
points and secondly from data drawn from noisy processes. In

Manuscript received March 31, 2020; revised August 28, 2020 and
October 1, 2020; accepted November 25, 2020. Date of publication
December 16, 2020; date of current version March 1, 2022. (Corresponding
author: Wendyam Eric Lionel Ilboudo.)

The authors are with the Division of Information Science,
Nara Institute of Science and Technology, Nara 630-0192, Japan
(e-mail: ilboudo.wendyam_eric.inl @is.naist.jp; kobayashi @is.naist.jp;

kenji @is.naist.jp).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2020.3041755.

Digital Object Identifier 10.1109/TNNLS.2020.3041755

the robotics field, for example, sensory noise is not ignor-
able [4]; automatic annotation would often be wrong [5]; and
control policies optimized by reinforcement learning (RL) [6]
have no accurate supervised signals and the updates are done
toward target values estimated from noisy data. Although
numerous data can eliminate the adverse effects of noise, real
robots have no time to collect them for specific tasks. Hence,
robotics agents, forced to learn from a few noisy samples, best
reveal the adverse effects of noise on SGD.

Many of the new optimizers proposed to improve the
SGD algorithm and tackle complex training scenarios where
gradient descent methods behave poorly also share the same
weakness to aberrant values. Adam (Adaptive moment esti-
mates) [7], one of the most widely used and practical optimiz-
ers for training deep learning models, is no exception, despite
its well-defined convergence proof [8]. This is mainly due to
the insufficient number of samples implicitly involved in its
first-moment evaluation.

Therefore, robust SGD methods have been proposed to solve
this problem. In particular, the work of Holland et al. [9]
comes close to our current proposition, by relying on robust
estimates of the gradients in order to stabilize the training and
deal with heavy-tailed data sets. Their method is based on a
convenient class of M-estimators for the location and scale
parameters and uses two principal steps: a rescale stage to
estimate the standard deviation, and a locate stage to compute
the location gradient based on the previously obtained standard
deviation. However, the parameters are computed based on
arbitrary even functions that must be chosen beforehand to
define the conditions they must fulfill.

In this article, we newly propose robust estimates of the
first-order momentum of the gradients, which is used in
the state-of-the-art SGD methods to stabilize and accelerate
learning. The key idea for such robust estimates is the use
of a student-t distribution, which is a model suitable for the
estimates from a few samples [10]. The conventional way
through which the first-order momentum is estimated, i.e.
the exponential moving average, is regarded as the update
of the location parameter of a normal distribution, which is
sensitive to outliers. Hence, we replace it with the update
of the location of the student-t distribution (let us call it t-
momentum). By simply doing so, the estimates of the first-
order momentum automatically exclude aberrant gradients
computed from outliers, while normal gradients are used as
before.

Three general problems for machine learning, regression,
classification, and RL, are solved to verify our proposal. In

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1518-2519
https://orcid.org/0000-0002-3760-249X
https://orcid.org/0000-0002-5149-5643

ILBOUDO et al.: ROBUST SGD

regression and classification problems, noisy data deteriorate
the performance of the conventional SGD methods while the
new SGD methods with the t-momentum resist the adverse
effects of noise. In addition, although RL with the conventional
SGD methods has to set the learning rate small in order
to avoid wrong updates, RL with t-momentum-used Adam
(named t-Adam) succeeds even with the default learning rate
value which is typically larger.

II. BACKGROUND AND PREVIOUS WORKS
A. Background

1) Stochastic Gradient Descent: Let x, be a random sample
from the data set at iteration ¢, Jy(x;) the objective function
evaluated on data x, with the parameters 0, g, = VypJy(x;)
its gradient, and a the learning rate. The SGD algorithm [2]
updates 6;_; to 6, through the following update rule:

0, =0,_1 —ag. (1

This algorithm yields at least a local minima of J with respect
to 0.

2) Improving SGD: Since its proposition, many ideas have
been developed in order to improve the convergence prop-
erty of the SGD algorithm. This feature heavily connects to
the fluctuations of the gradients during learning and all the
research that aims to accelerate the convergence rate have done
so through several approaches. For instance, they improved
1) the update method of the parameters [11]-[14]; 2) the
adjustment of the learning rate [15]-[18]; and 3) the robustness
to aberrant values from heavy-tailed data [9], [19]-[21]. Those
approaches have culminated into some pretty effective state-
of-the-art first-order optimization methods, going from the
momentum idea to the adaptive learning rate and variance
reduction schemes. Below, we review some of the works
related to 3) the robustness.

B. Previous Works

As stated before, SGD is inherently noisy and susceptible to
produce bad minima estimates when facing aberrant gradient
estimates. A lot of work has therefore been done to propose
more robust methods for efficient machine learning under
noise or data with heavy tails.

In this review, we ignore the general statistical methods
for robust mean estimates [22] such as the median-based
estimations [23]-[25] due to their practical limitations. Three
main approaches are distinguished: 1) methods based on direct
robust estimates of the loss (or risk) function [26]; 2) methods
based on robust estimates of the gradients [9], [27] among
which falls our algorithm; and 3) methods with small learning
rates for wrong gradient estimates [21].

1) Robust Risk Estimation: In this approach, aberrant losses
are directly ignored. Those methods usually require the use of
all the available data in order to produce, for each parameter,
a robust estimate of the loss function to be minimized. A
specific inconvenient trait of this approach is the implicit
definition of the robust estimate, which may introduce some
computational roadblocks. As briefly explained by Holland
et al. [9] since the estimates do not need to be convex even in

1325

the case where the loss function is, the nonlinear optimization
can be both unstable and costly in high dimensions.

2) Robust Gradient Descent: This approach usually relies
on the replacement of the empirical mean (first moment)
gradient estimate with a more robust alternative, and simply
differs in the method used to achieve this objective. Chen
et al. [27] proposed the use of the geometric median of
the gradients mean to aggregate multiple candidates. Using
the same strategy, Prasad er al. [28] proposed a class of
gradient estimator based on the idea that the gradient of a
population loss could be regarded as the mean of a multivariate
distribution, reducing the problem of gradient estimation to
a multivariate mean estimation problem. Very close to our
approach, Holland et al. [9] proposed to carefully reduce the
effect of aberrant values instead of discarding them, which can
also result in unfortunate discards of valuable data.

3) Adaptive Learning Rate: This approach is to reduce the
effect of wrong gradient estimates by reducing the learn-
ing rate. One such approach has been proposed by Haimin
et al. [21]. This method uses an exponential moving average
(EMA) of the absolute value of the ratio between the current
loss I; and the past one /;,_; to scale the learning rate. This
ratio corresponds to a relative prediction error and a large
value implies a suspicious outlier. Haimin et al. [21] therefore
proposed to divide the learning rate by it, so that a large
relative prediction error would lead to a smaller effective
learning rate. However, this strategy allows the outliers to
modify the estimated gradient mean, and then uses the impact
of the deviated mean on the loss function to reduce the effect
on subsequent updates.

4) Our Contribution: As one of the problems in the EMA
scheme, the lack of robustness has been dealt with in [19]
and [20]. In those methods, the exponential decay parameter
of the EMA is increased whenever a value that falls beyond
some boundary is encountered. The common drawback in
this strategy is that all outlier gradients are treated equally
and discretely without consideration of how far they are from
the normal values, and the boundary over which data would
be considered to be an outlier must be set manually before
training.

To the best of our knowledge, our approach, named t-
momentum, is the first to employ the student-t distribution
for the estimates of the first-order momentum, which is
conventionally given through the EMA scheme. The main
advantage of this approach is that it relies on the natural
robustness of the student-t distribution and its ability to deal
with outliers, and can easily be reduced to the conventional
momentum for nonheavy-tailed data. Since the EMA-based
first-order momentum is the key of the state-of-the-art SGD
methods, our t-momentum can be integrated to various meth-
ods like Adam [7], RMSProp [17], VSGD-fd [19], Adase-
cant [20] or Adabound [18]. Specifically, in this article,
we mainly focus on Adam with t-momentum, named t-Adam,
to investigate its theoretical performance.

III. PROPOSAL

Notation: We use ¢ = Vyf(0) to denote the first
derivative (gradient) of the function f(-) with respect to the

1326

vector @. For a vector x, x2 refers to an element-wise square
and the ith element of the vector x, is referred to either as
xti or x; ;. E[-] is used for the expectation, and 6* refers to the
optimal parameters vector. ||x|| is the euclidean norm, while
lx]|, refers to the p-norm. Finally, Z? is used as a shorthand
to Z?zl to denote a sum over j, and we say a set F' has a
bounded diameter Dy if ||Xx — y|loo < D for all x,y € F.

A. Adaptive Moment Estimation: Adam

Before describing our proposal, let us introduce Adam [7],
the baseline of t-Adam, and the most popular EMA-based
momentum method, to make our target clear. Adam is a
popular method that combines the advantages of SGD with
momentum along with those of adaptive learning rate meth-
ods [16], [17]. Its update rule is implemented as follows:

my = pim_1 + (1= p1)g (2)
v = Pav—r + (1= Bo)gr” (3)
iy =m /(1 — ﬁ{),A b =0 /(1 — ﬁé) “4)
0, =6, —a—0Dt (5)

(Vo +¢€)
where m;, is the first-order momentum (i.e., mean of gradients)
and o, is the second-order momentum utilized to adjust
learning rates at time step #. f; and f, are the exponential
decay rates (by default 0.9 and 0.999, respectively). o is the
global learning rate and e (typically 107®) is a small value
added to avoid division by zero.

Although the use of EMAs in (2) and (3) makes the
gradients smooth and reduces the fluctuations inherent to
SGD, they are also sensitive to outliers. In particular, EMA
with a small value like #; (=0.9) implicitly includes a few
samples, hence its momentum m;, is very likely to be pulled
out by outliers and easily deviate from the true average. This
fluctuation makes learning unstable, and therefore, more robust
learning techniques are needed.

B. Overview

Our proposition relies on the fact that the EMA, like (2)
and (3), can be regarded as an incremental update law of
the mean in the normal distribution with a fixed number of
samples. Indeed, given »n i.i.d. random samples x, x2, ..., X,
of dimension d with the assumption that they follow a normal
distribution with unknown mean x and covariance X, the log
likelihood is given by

nd n
log p(x1, ..., Xulp, L) = ——log(2m) — Elog(IEI)

2
1 n
AR
i=1

Taking and solving the derivative with respect to the mean u
equals to zero yields

TN —). (6)

Glogp

Zz<x WE0 @)

- Z(Xi —
i=1

:ixi—nyzo (8)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

0.4
0.4
0.3
0.3
0.2 0.2
0.1 0.1
0.0 0.0
0 10 0 10

Fig. 1. Robustness to outliers: the normal distribution (in green) was pulled
out by outliers; in contrast, the student-t distribution (in red) allowed their
existence and hardly moved.

— ,u:%in.)

Let us denote by u, the estimated mean obtained after seeing
n samples. In that case, the arithmetic mean of (9) can be
converted to an iterative update

- E X = xn t— E X
n—1

ZM—XM—M—WM1UD

fn (10)

1n—1

1
n n nn—l

n—1 n—l
1 - Xn + Hn—1-
n n

If we use the following change of variable, (n — 1/n) = f,
then we can write

tn = (1= B)xn + Brn-

which has the same form as an EMA. In this form, a fixed
value of S uniquely defines a fixed number of samples n, due
to the relation f = (n — 1/n). By analogy to this functional
form, a regular EMA can be seen as an estimated gaussian
mean that employs a fixed number of recent samples (defined
by the decay coefficient £) and in particular, the fact that every
new observation is given the same weight (1 —) is a feature
inherited from the normal distribution (through the arithmetic
mean).

The sensitivity of Adam and other EMA-based momentum
methods to aberrant gradient values is therefore just a feature
inherited from the normal distribution, which is itself also
sensitive to outliers.

In order for the EMA-based momentum to be robust,
the distribution of the gradients must be assumed to come
from a robust probability distribution that can yield a robust
mean estimator. We, therefore, propose to replace the normal
distribution momentum estimator with one drawn from the
student-t distribution, which is well-known to be a robust
probability distribution [10], [29], [30], as shown in Fig. 1,
and a general form of the normal distribution. From the next
section, we describe how the EMA is replaced using the
student-t distribution, and the features of our implementation
are subsequently analyzed. A pseudo-code of the t-momentum
is given in Algorithm 1 and its integration to the popular Adam
optimizer is summarized in Algorithm 2.

(12)

13)

ILBOUDO et al.: ROBUST SGD

1327

Algorithm 1 t-Momentum: Student-t Based Exponential Mov-

ing Average Momentum Algorithm

Input: Gradient g;, Previous t-EMA: m;_;

Input: Previous weight sum: W,_;

Input: Previous variance: atz_l

Require: k: Scale factor for the degrees of freedom

Require: f: EMA decay parameter

1. d < dim[g]

2: v < kd

3: z; < ¢(g;) > Transform according to the desired moment
order, e.g. ¢(u) = u for the first-order momentum, and
¢ () = u? for the second-order momentum

o -1

) d (z—m]_)*

. w[< (U +d)(]) + Z} (0"!‘_1)241,5)

W,_

: 'Bw <~ W,71+]w,

0,2 <~ ,[)’Jil + w,; (1 — B)(z;
variance if needed

72 my < Ppmi— + (1 — Bu)zs

8 W, < zﬂﬁ—_th—l + wy

Output: Updated weight sum: W,

Output: Updated variance: o2
Output: Updated t-EMA: m;,

IS

wn

—my_1)? > Estimate the

a

> Compute the t-EMA

> Only if it is estimated

C. Formulation

To replace the EMA with the student-t distribution, a new
hyperparameter, the degrees of freedom of the student-t dis-
tribution v, is introduced to control the robustness.

We can derive the incremental update law of the first-
order momentum u for the student-t distribution using a
maximum log-likelihood estimator. Given 7 i.i.d. random sam-
ples xi,...,x, of dimension d sampled from a multivariate
student-t distribution p, with mean g, covariance X and
degrees of freedom v, the log-likelihood function of p; is
expressed as

log p; = [nlogl”(i

£) - nioer(3)

nv nd n
-5 10g(V) - = 10g(7r) —3 log(IZ])

(” +d) Zlog(v + D)}

where D; is defined as D; = (x; — u)' ' (x; —). Taking
the gradient with respect to x and setting it equal to 0 gives
us

(14)

0 log p,

v+d

z

" dse
- 2 vEd g (s
1v—i—D

If we solve this equation for x, we get the expression of the
first-order momentum estimate given n samples

it XiWi

n—1
i, = 2oy Xiwi + Xawy
L= =
W, W,_1 + w,

Algorithm 2 t-Adam: The Adam Algorithm Extended by the
t-Momentum; in Typical Setting, f; = 0.9 Is Smaller Than
£> = 0.999; a Good Default Value for the Degrees of Freedom
Is Empirically Found to Be v = d (i.e. kK = 1), Where d =
dim[VyJ (0)].

Require: o: Learning rate

Require: S, p» € [0,1): Exponential decay rates

Require: ¢: Small term added to the denominator

Require: v: Degrees of freedom

Require: Jy(x,): Objective function with parameters 6
Require: 6;: Initial parameters

1: mog < 0, vo «~0,r <0

2: Wy <«

/3
3: while 6, not converged or t < T do
4: t<—t+1
500 X < Xy
6: & < Voly(x) B
7: — @W+d|v+ Zd (g' _m’ i > We use

_1te
Adam’s second moment v; as the variance
W,_
8: ﬁw < Wr—l"!‘lwr
9: my <= Bpmi— + (1 — fu,)8&:
0: W, <« 2w, 4w,
1: v < Poo 4+ (1= po)g?
12: iy < m /(1= By), 0 <0, /(1 = B)
13: Gy <6 —a—2

(Vo +
14: end while 9
15: return 6,
Wn—l Wy
= — An_ + — Xy 16
anl"f'wnlu : Wn 1+wn ()

where w; = (v +d)/(v+ D;) and W, = X", w;.

By assuming a diagonal distribution and fixing the number
of samples (i.e., by decaying W, with a decay rate y), we can
derive the (17) as the t-momentum

my = ﬁwmz—l + (1 - ﬁw)gt a7
where
Wiy
= — 18
ﬂ Wi—1 + w, (18)
v+d
= 19
Wy v+ D, (19)
W, = yW,_1 +w, (20)
d J_ T \2
D, = Z M 1)

(6]) +e

where € is a small number introduced to avoid division by
0 and (¢/)> are the diagonal elements of the covariance
matrix X. In the remaining of this article, we note S, =
(Wi—1 /W1 + w,) so that (w,/W,_; + w,;) =1—p,,. Note that
D, corresponds to the squared Mahalanobis distance between
the gradient of the parameter 6/, g, , and the corresponding
previous estimate of the mean, m’ ,, with respect to the
previous variance estimate (0,71)2

In the implementation of t-Adam (Algorithm 2), due to the
high value of f, (i.e., f2 = 0.999 about 1000 samples) with

1328

respect to By (i.e., 1 = 0.9 about ten samples), the second-
order momentum is less sensitive to outliers. Therefore, only
the first-order momentum in (2) is replaced by the previous
rule of (17). This allows us to avoid estimating both the
variance of the gradients and the squared gradients, by using
the unmodified second momentum estimate coming from (3)
as the variance for the first-order momentum, i.e., af = v;.
Note that, ultimately, the gradients converge to zero, and
therefore, the second momentum would be consistent with the
variance of the gradients.

Equations (2)—(5) of the Adam algorithm presents a com-
putational complexity of roughly 13d = O(d) floating point
operations (flops). For t-Adam, (2) of Adam is expanded by
(17)—(21), with (17) having the same flops as (2). Counting
again the number of operations, we obtain 13d+ (5d —1)+7 =
18d+6 = O(d) flops. The computational complexity of the t-
Adam algorithm therefore remains linear with respect to the
gradients’ dimension d.

The power of the t-EMA based momentum or, in short, the t-
momentum, update rule is two folds: the outliers detection and
the robustness control. The details are explained below.

D. Outliers Detection

The adaptive weight w, plays the role of a filtering para-
meter to reject (w; >~ 0) or accept (w, > 0) the gradients
in the momentum [see (17)]. Again, we can notice that w;,
depends on the Mahalanobis distance D, (and also on v and
d). Hence, outlying gradient values are down-weighted since
their Mahalanobis distances are larger than for normal values,
D, > d, and their contribution to the momentum update is
therefore automatically dampened. On the contrary, the normal
gradients are up-weighted ultimately by 1 + d/v due to zero
Mahalanobis distances, although m is kept in that case since
m;—; = g;. In short, the t-momentum automatically and
continuously reduces only the adverse effects of the outlier
gradients.

The t-momentum can be implemented in several versions
according to the size of the subsets considered, i.e. according
to the dimension value d: 1) if d is one, then the t-momentum
is a parameter-wise estimates; 2) if instead d is the number
of parameters in subsets (e.g. in layers of deep learning),
then we have block-wise estimates; and 3) if d is the total
number of all parameters (all subsets considered at once),
then the t-momentum is used for whole estimates. Intuitively,
if only one component of the gradient is aberrant, the version
1) updates the other parameters normally, even though their
corresponding gradients are also more likely to have been
computed from an outlier. On the other hand, the version 3)
may tend to underestimate that aberrant value since d in w
is extremely large and D, will hardly go beyond d. Hence,
we expect that the version 2), the block-wise t-momentum
estimates, would have the best balance. To test that hypothesis,
we investigate their performances in Section IV-Al.

E. Robustness Control

The student-t distribution has controllable robustness and
the nice property of being similar to the normal distribution

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

when the degrees of freedom grows larger. The same feature
is left in the t-momentum, as can be seen in (19). Namely,
when v — 0o, we have

14+d/oo

lim w, = —— =1

1+ D, /oo 22)

In this case, the t-momentum loses its robustness to outliers.
To ensure that the t-momentum is an extended version of
the standard EMA-based momentum and reduces exactly to it
in the limit of v — o0, the decay rule in (20) is designed to
fulfill some requirements. Specifically, if v — oo, the decay
rate f3,, derived from W,_; and w, in (17) must be consistent
with f; at any time. Since w; is constant and equal to 1 as
shown in 22, we therefore demand that W, be defined by

b
11—/
To satisfy such a constant W, if the decay rule is expressed

as W, < yW,_| + wy, then the decay rate y in (20) can be
derived as follows:

vt > 0.

Wi =W = (23)

W, —w, 2B —1
1//: = .

Wi i3

By the above derivation, the t-momentum defined by (17)-
(20) is proved to be the extended version of the EMA-based
momentum defined by (2).

A different approach, however, would be to simply con-
sider a constant W, without any decay, i.e. W, = W, =
(f1/1 — p1),¥t > 0. In that case, although computing and
storing W, can be ignored, it would certainly be less robust
than the proposed version, where W, can become larger than
Wy when w, is larger than 1 (i.e., g, is a nonaberrant gra-
dient), thereby making the t-momentum more discriminative
and more likely to reduce the effects of outliers. These two
versions are compared in Section IV-Al.

In practice, since the dimension of the gradients d =
dim(g,) can be arbitrarily large in deep learning neural net-
works, we design the degrees of freedom in terms of its relative
importance with respect to d and set it to be a multiple of the
gradients’ dimension, that is,

(24)

v=4kd k>0. (25)

By doing so, we can easily and consistently define the degree
of robustness of the algorithm through the scale factor k,
without a heavy dependence on the structure of the neural
network.

FE. Regret Bound and t-Adam’s Convergence

Since it would be rather difficult to study the convergence
of all optimization methods augmented with the t-momentum,
here, we only focus on Adam with the t-momentum, i.e., t-
Adam, and investigate its convergence property in terms of
the regret. This study (Theorem 1) hints to the fact that if
the regret bound of a given baseline optimization algorithm
is expressed as a function of the momentum decay parameter
f, i.e. Ry < f(f), then the corresponding t-algorithm (the
algorithm extended with the t-momentum) can be expressed

ILBOUDO et al.: ROBUST SGD

with the same function in terms of the upper bound of the
expected value of f,, i.e. Ry < f(maxE[S,]).

Indeed, the convergence of the t-Adam algorithm is assured
by the following two theorems, whose proofs can be found in
the Appendix.

Theorem 1: Given {6;}{ and {v,}!, the sequences obtained
from the t-Adam algorithm, o, = (a//1), f1: = Pu, E[fw] <
Bo < 1and y = (B,/(f2)"?) < 1. If F has a bounded
diameter D, and if [|g/]lcc = Vo, J (@)oo < G for all
t € [T] and 6, € F, then for 6, generated using t-Adam (with
the AMSGrad [8] scheme), we have the following upper bound
on the regret:

2 d

T
D 1/2 D} Pud,;

RT S 700_ 6 i + %.S -
207 (1= fu) &1 (1= Bu)? Z, IZ o

=1 i=1
d
o1+1logT
= S lguralz (26)
i=1

AT B TR W, (5 P4

where 0, is the bias-corrected second raw moment estimate,
ie. o, =ov,/(1 — Bh).

Corollary 1: Given the regret bound R(T) as defined in
Theorem 1, t-Adam achieves the following guarantee, for all
T >1:

R(T) 1
Eier...r[Ji(6) — J:(0%)] = — = O(ﬁ) (27)
and in terms of iteration complexity, the maximum number
of iterations (or steps) ¢ required to achieve a fixed expected
optimization error of at most €, for convex objective functions

Ji, is of order
1
or—).
(ﬁ)

Theorem 2: With respect to the central limit theorem, let us
assume that the gradients g, ultimately follow an asymptotic
normal distribution g, € RY ~ A as t — oo. Then,
the expected value of the adaptive decay parameter S, =
(W,_1/W,_1 + w,) is constrained, for #; < 1, by the following
relation:

(28)

E[Bu] < p1. (29)

We can see that the difference between the upper bound of
t-Adam and Adam lies in the value of j,,, which corresponds
to the upper bound of the expected value of the adaptive expo-
nential decay parameter £, = (W,_;/W;_; + w,). Theorem 2
tells us that, if the gradients are normally distributed, this value
is bounded above by S, so that we can recover the same upper
bound for t-Adam and Adam. Even if the aberrant gradients
are given from outliers (i.e., B, # fB1), t-Adam still has the
theoretical upper bound on the regret derived in theorem 1,
since f,, € (0, 1). Note that, if we know the exact value of
the expected value, a more precise upper bound for the regret
can be obtained.

Corollary 1 is obtained by using [|g1.7.ill2 < Goon/T and it
shows that t-Adam preserves the same order of the iteration
complexity of the Adam optimizer.

1329

IV. EXPERIMENTS

To assess the robustness of the t-momentum against noisy
and/or heavy-tailed data, we conducted three types of exper-
iments spanning the main machine learning frameworks,
i.e., supervised learning (regression and classification) and RL.
We compare t-Adam mainly with Adam, but also with another
robust gradient descent algorithm, such as RoAdam [21], and
also present the comparison between some popular or recent
optimization methods (in majority, variants of Adam, i.e.
AdaBound [18], AdamW [31], DiffGrad [32], RAdam [33],
PAdam [34], Yogi [35], and LaProp [36]) and their t-versions. !
Note that we are not exhaustive in our selection and that
the t-momentum can be integrated in other momentum-based
optimization methods.

A. Robust Supervised Learning

It has been shown [37] that training standard supervised
learning algorithms with noisy data resulted in bad perfor-
mance and accuracy of the resulting models. In real robotic
tasks, for example, it is often unrealistic to assume that the
true state is completely observable and noise-free, and perfect
supervised signals are difficult to obtain. In the following
experiments, t-Adam reveals to be useful in increasing the
accuracy of the models, even when facing noisy inputs.

1) Robust Regression:

a) Experimental settings: We define a ground truth func-
tion: a simple sinusoidal function f(x) = sin(2zx) or a more
complex function f(x) = x>4In(x+1)+sin(27z x)xcos(27 x).
The observations are sampled from the true function with
noise, ¢, as follows:

y=fx)+¢ (30)
p

¢ ~ St(v,. 0, l;)Bern(m), p=0,10,20,...,100 (31)

where St(v;, 0, A-) designates a student-t distribution with
degrees of freedom v;, 0 location, and scale 4. Bern(p/100)
is a Bernoulli distribution with the probability p as its para-
meter. A thousand samples for the simple sinusoidal function
and 4000 samples for the more complex function are sampled
as observations.

A fully connected neural network with five linear layers,
each composed of 50 neurons, approximates it from scattered
observations y. The ReLU activation function [38] is used for
all the hidden layers, while the loss function for the network
is the mean squared error (MSE).

b) Experimental results: The results of the final training
loss values for a noise presence probability p of 0% and
100%, on the regression task, are depicted in Fig. 2. Note
that 50 trials with different random seeds are conducted for
each noise probability p and each optimization method, and
that the logarithmic scale is used for the loss axis. As it
can be seen, the t-momentum improves the robustness of the
baseline algorithms and is able to reach almost the same lowest
point loss even when the noise probability is at its maximum
[Fig. 2(b) and (d)]. Even though the loss of the t-AdaBound
method was higher compared to AdaBound for the noise

Al codes are available on https://github.com/Mahoumaru/TAdam

1330

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

- without tmomentum With tmomentum = Roadam = without tmomentum. With Lmomentum = Rodam

Adam AdaBound DifiGrad LaProp RAdam PAdam Yogi
Method

Adam AdaBound DifiGrad LaProp RAdem PAdam Yogi
Method

(@) (b)

Fig. 2.

Adam AdaBound DifiGrad LaProp RAdem PAdam Yogi
Method

(©)

Adam AdaBound DifiGrad LaProp RAdam PAdam Yogi
Method

()

Results of the regression task (Sine function): the figures illustrate the loss for different noise settings with respect to the extreme probabilities

p € {0.0, 100.0}; in all settings, the t-momentum improved the robustness of the baseline algorithm and for almost all methods, it also improved the stability
across multiple trials (with a thinner standard deviation). (a) (v, A-) = (1.0, 0.05) with Probability p = 0.0. (b) (vs, 4-) = (1.0, 0.05) with Probability
p = 100.0. (¢) (vz, A-) = (2.0, 0.03) with Probability p = 0.0. (d) (v;,) = (2.0, 0.03) with Probability p = 100.0.

le=2

3.0 Method 1.00 y= Method
—— Whi-t-Adam 075 / —— Whit-Adam
25 Elt+-Adam / Elt-t-Adam
—— cstW-t-Adam 0.50 —— cstW-t-Adam
20 tAdam 025 tAdam

——————— Ground truth

Prediction
o
8

Method Method

—— Whi-t-Adam = 150 | —— Whit-Adam /
Elt-t-Adam Elt-t-Adam /
4| — cstW-t-Adam 1.25| —— cstW-t-Adam /\ /
t-Adam - t-Adam / N\ /
3 g 100 | e Ground truth \a/

; ; /
/ /
\ /) 2 / /
10 \ 0.50
-0.50 \ P \
0.5 1 025/ \ /
- -075 P~ / \//
00— — -1.00 ~— ol 0.00
0 20 40 60 80 100 00 02 04 06 08 10 0 20 40 60 80 100 00 02 04 06 08 10
Probability Input Probability Input
(@) () © (@

Fig. 3.

Comparison between different versions of t-Adam: 1) the parameter or element-wise version (Elt-t-Adam d = 1); 2) the block-wise version (t-Adam

d = dim(g)); and 3) the whole estimate version (Whl-t-Adam). The version where W; is kept constant is called cstW-t-Adam. (b) and (d) Form of the ground
truth function with the predictions of the models trained with noise probability p = 0.0% (no noise). (a) (v-, ;) = (1.0, 0.05). (b) (v;, A-) = (1.0, 0.05). (c)

(> Ag) = (1.0,0.05). (d) (v, 2;) = (1.0,0.05).

Final Epoch Train Accuracy for ResNet on CIFAR-100 Final Epoch Test Accuracy for ResNet on CIFAR-100

Final Epoch Train Accuracy for ResNet on CIFAR-100 Final Epoch Test Accuracy for ResNet on CIFAR-100

Laprop RN

Adamw
Adamw
Yogi

P

DiffGrad

Final Train Accuracy %
T

A
AMSGrad
RAdam
PAdam.

(@) (b)

Final Train Accuracy %

Adam

$
¢
H

AMSBou

Fig. 4. Training and test accuracy (noise-free and noise-included) for ResNet-34 on CIFAR-100. (a) Noise-free training accuracy. (b) Noise-free test accuracy.

(c) Noisy data training accuracy. (d) Noisy data test accuracy.

distribution (vs, A-) = (2.0,0.03), we can see that the loss
value is barely affected by the noise in the data from Fig. 2(c)
and (d). The high value for the loss can however be explained
by the fact that the baseline algorithms’ hyperparameters were
not optimized and the default values were employed both for
the methods with and without the t-momentum. Note that
only the robustness was of interest in the experiments, and
it was important to have the same parameters for each one of
the baseline algorithms and their corresponding t-momentum
version. It is however obvious that the optimal hyperparameter
values, such as the optimal learning rate, will be different
between the baseline optimizer and its t-momentum-based
version.

We also compare, in Fig. 3, different versions of Algo-
rithm 2 depending on 1) the value of d, Elt-t-Adam and
Whi-t-Adam, as suggested in the Section III-D; and 2) on
whether or not the quantity W, is kept constant, cstW-t-
Adam: W, = f,/(1 — B;) = const. (see the Section III-E).

The vanilla t-Adam is taken to be the block-wise algorithm
where the dimension d is the number of parameters in each
layer of the neural network (the weights and biases from
the same layer are also treated as separate subsets). In the
Elt-t-Adam version, however, w, and W; are calculated for
each component of the gradient vectors, and therefore, each
component has its own weight f,. In complete contrast,
in Whi-t-Adam, the dimension d is set to be equal to the
number of all the parameters in the model, and the scalar
weight w,, along with its weighted sum W,, yields one value
computed for all of them.

For the parameter-wise version (Elt-t-Adam), we can see
that it can perform better than the vanilla t-Adam depending
on the conditions [Fig. 3(c)], but can also be unstable. Elt-t-
Adam is similar to a univariate t-distribution applied to each
component with degrees of freedom v =d = 1. Even though
it can be viewed as a Cauchy distribution that normally has no
defined moment, it can also be viewed as a very robust version

ILBOUDO et al.: ROBUST SGD

Methods
—— adam 3e-04
—— t-adam 3e-04

Methods
- adam 1e-03
-+ t-adam 1e-03

Methods
—— adam 3e-04
—— t-adam 3e-04

Methods
- adam 1e-03
-+ t-adam 1e-03

Methods
—— adam 3e-04
—— t-adam 3e-04

Methods
- adam 1e-03
-+ t-adam 1e-03

1331

2000 2000
2000
[[(o)
? 81500 g 1000
g g g
< < 1000 < 0
£ 1000 c c
2 2 2
[} [} J5}
i @ 50 & -1000
0 : 0 ;
0 1000 2000 3000 0 200 400 600 800 1000 0 200 400 600 800 1000
thousand steps thousand steps thousand steps
(@ (b) ©
Methods Methods Methods Methods Methods Methods
—— adam 3e-04 --- adam 1e-03 —— adam 3e-04 --- adam 1e-03 —— adam 3e-04 -+ adam 1e-03
—— t-adam 3e-04 -+ t-adam 1e-03 —— t-adam 3e-04 -+ t-adam 1e-03 —— t-adam 3e-04 -+ t-adam 1e-03
8000 10
() WL [} (o]
T 1000
& 6000 g g 0
[o [
> > > -10
< 4000 < <
§ § 500 § 20
& 2000 K &
= - |, -30
0 it O 0 Y
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

thousand steps

(d)

thousand steps

thousand steps

© ®

Fig. 5. Training curves for PPO agents with different learning rates (3e-4 or le-3) and t-Adam or Adam; Adam with large learning rate (le-3) often failed to
learn tasks due to wrong updates; in contrast, t-Adam basically succeeded in acquiring tasks thanks to conservative updates. (a) Pybullet Ant-v0. (b) Pybullet
Hopper-v0. (c) Pybullet HalfCheetah-v0. (d) Pybullet InvertedDoublePendulum-v0. (e) Pybullet Walker2D-v0. (f) Pybullet Reacher-v0.

of the t-distribution. This can explain why for lower noise
probability p, this version failed to output a small loss, going
furthermore to be unstable, producing imperfect models [as
shown in Fig. 3(b) and (d)], while for higher noise probability
values, it can perform similarly or slightly better than the
vanilla t-Adam.

On the other hand, the whole estimate version (Whl-t-
Adam) performs very well. Since noise in observations or
target values simultaneously affects the gradient of every
parameters, regardless of the layer, a general weight S, assures
that such gradients are uniformly accepted or rejected in the
exponential moving average across the whole model. We argue
that this uniform update contributes to making the network
more stable and constitutes the main reason for its good
performance compared to the vanilla algorithm. However, this
t-Adam version requires a more complicated implementation
(to flatten and concatenate all the parameters once) and com-
putational cost than the blockwise t-Adam.

Finally, the results of cstW-t-Adam, which keeps W, con-
stant, instead of updating it through the weighted sum of
the weights w, are analyzed. Indeed, this version does not,
theoretically, change the upper bound of S, and therefore
constitutes a legitimate candidate that could produce a more
computationally efficient algorithm. In the results, however,
we can see that this algorithm is the less robust one of all
four proposed versions. This can be explained by the fact that
the expected value of w, is larger than 1 (see the Appendix),
which leads to W; > W, in the case of decaying W;, and
further reduces the adverse effects of noise.

In summary, the variants of t-Adam possess their own draw-
backs, and therefore, the vanilla version, i.e., the one using
block (or subset)-wise updates with decaying W,, provides the

best overall performance. That is, it is able to perform well in
all cases while presenting a good overall computational cost.
The block (or subset)-wise t-momentum is, therefore, the one
we use in the subsequent experiments.

2) Robust Classification:

a) Experimental settings: Here, we use the same experi-
mental settings described in [18] and compare, Adam, AMS-
Grad, Adabound, RAdam, PAdam, AdamW, Yogi, and LaProp
to their t-momentum-used versions, on an image classification
task on the standard CIFAR-100 data sets. RoAdam is also
included to compare its robustness with respect to Adam and
t-Adam.

The architecture of the convolutional network involved in
the described experiments is the ResNet-34 [39]. A fixed
budget of 200 epochs are used throughout the training, and
the learning rates are reduced by 10 after 150 epochs.

The optimizers are launched with following hyperparameter
values shown in Table I (where the y refers to the bound
functions timestep weights (1 — f) of the AdaBound meth-
ods [18]). All t-momentum-used algorithms use the default
degrees of freedom {degrees of freedom = dimension of the
gradients}, i.e. k = 1. The third beta value of RoAdam is
also set to 0.999, and the default values for hyperparameters
different from the basic ones of Adam and AdaBound are
used (for PAdam, the partial P = 1/4, and AdamW, the
warmup = 0). Note that this experiment is not designed to
compare the optimizers among them, but rather to compare
each method with its t-momentum augmented version.

b) Experimental results: We first launched a simulation
using directly the unmodified and uncorrupted data set. The
results for that simulation are found in Fig. 4(a) and (b) for
the CIFAR-100. We can see that the t-momentum improves

1332

TABLE I
SETTINGS FOR THE CLASSIFICATION EXPERIMENTS

Optimizers a B1 B2

Adam, AMSGrad,
t-Adam, t-AMSGrad
RoAdam
RAdam, PAdam
t-RAdam, t-PAdam
Yogi, LaProp
t-Yogi, t-LaProp
DiffGrad, AdamW
t-DiffGrad, t-AdamW
AdaBound, AMSBound
t-AdaBound, t-AMSBound

Final o1

0.001 | 0.99 | 0.999 N.A. N.A.

0.001 0.9 | 0.999 0.1 0.001

the generalization ability of almost all base methods, and
t-AMSGrad is even able to reach the same level of gener-
alization as the AdaBound methods. This result points out the
fact that t-AMSGrad builds on the combined improvement of
the first moment (t-Adam) and second moment (AMSGrad)
in order to provide a more stable algorithm with a standout
performance.

Next, we applied, with a probability of 25%, a color jittering
effect on the CIFAR-100 training data set and replaced 20%
of the original training data points with fake ones, in order
to test the ability of the optimizers to extract the most useful
information from corrupted data sets. The results can be seen
in Fig. 4(c) and (d).

The benefits of the t-momentum are again highlighted. Even
though the value of f; is larger (0.99 instead of default
0.9), Adam and most of the other base algorithms remain
sensitive to outliers, and in most of the latest optimizers, the t-
momentum improved the robustness. In particular, we can
see that t-Adam, t-AMSGrad, t-AdamW, and t-Yogi highly
improve the performance of the base algorithms against aber-
rant values in corrupted data sets, and achieve similar perfor-
mance as with the original data set. However, for some of
the optimization methods (t-AMSBound, t-RAdam, t-PAdam,
and t-Diffgrad), the t-momentum could not keep, against the
corrupted data set, the test accuracy from dropping almost by
the same amount the accuracy of the base optimizer (with
regular EMA momentum) dropped. Despite that, we notice
that the accuracy of the t-algorithm remained higher than
the base algorithm. Finally, for the last two optimizers, i.e.
Adabound and LaProp, the t-momentum failed to improve the
accuracy of the baselines.

The result of the Adabound methods can be explained by
their fast convergence property. Indeed, as pointed out by
Hardt et al. [40], fast training time by itself is sufficient
to prevent overfitting. Because the algorithm prevents itself
from overfitting, it is also less sensitive to the presence of
outliers in the data set. This allows it to quickly converge to a
suboptimal point regardless of the aberrant values. However,
fast convergence is not a reliable source of robustness to avoid
being affected by corrupted data sets. In fact, compared with
the result of t-AMSGrad, we see that a method that takes time
to extract general and dominant trends from the data set instead
of keeping itself from overfitting is a more efficient strategy.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

TABLE 11
SETTINGS FOR THE RL EXPERIMENTS

Value loss coef. 1
Entropy loss coef. 0
GAE parameter A 0.95

Num. Epochs 10

Ratio clipping € 0.2

Horizon T 2048
Minibatch size 64
t-Adam d.o.f. v dim(g)

As for LaProp, the method itself, as explained by the
authors in the original article [36], is designed so that more
importance is given to the momentum, bounding the effect of
outliers (mainly large gradients) on the exponential average.
The proposition 1 in their article states that the magnitude
of the updates (therefore of the momentum) has an upper
bound that only depends on f,, the decay factor of the second
moment. According to this, we hypothesize that in order to
further improve the robustness of the LaProp method, it is
necessary to integrate the t-EMA, not only to the first moment,
but also to the second moment. This hypothesis is consistent
with the suggestion made by the LaProp authors about varying
the value of the decay factor S, for noisy or complex tasks,
which the t-EMA can automatically perform.

B. Robust Reinforcement Learning

Whether it comes from sensors, from bad estimates during
learning, or different feedbacks of different human instructors
(e.g., nontechnical users in real-world robotics situations),
noisiness is inseparable from robotics RL. Especially for
reducing the effects of bad estimates, the latest RL algorithms
carefully update the value and policy functions by modifying
their optimization targets [41]-[43]. In order to test the robust-
ness properties of t-Adam in RL tasks, we conducted some
simulations on six different Pybullet gym environments [44].

1) Experimental Settings: The algorithm employed in this
article is the proximal policy optimization (PPO) [41], from
the Berkley artificial intelligence research implementation,
rlpyt [45], with hyperparameters summarized in Table II. The
simulations involved two different learning rates: the widely
used and fine-tuned value for Adam on RL, 3 x 107*, and
the defined default for supervised learning, yet larger value
for RL, 1 x 1073, Searching for the optimal learning rate
is commonly known to be a tedious and serious problem in
SGD based algorithms, and high learning rates (particularly
the default Adam step value 1 x 1073) are usually not used
in RL due to the amount of noise coming from the early
bootstrapping stage, but also to avoid the agent from reaching
an early deterministic policy.

Here, as a remark, no gradient norm clipping was used
throughout the simulations, since the property at test is the
robustness of the optimizers to aberrant gradient values and
their ability to produce good policies. Gradient norm clip-
ping introduces a manually defined heuristic threshold, which
depends on the task and various conditions, and moreover,
is used for the norm of all gradients larger than its value.

ILBOUDO et al.: ROBUST SGD

Such a trick would therefore introduce some undesirable bias
in the results.

2) Experimental Results: The results, which were gained
from four trials with different random seeds on each envi-
ronment with each condition, are summarized in Fig. 5. As
displayed by the results in Fig. 5, a high learning rate causes
Adam to suffer from both these problems and makes it unable
to converge to a good policy. On the other hand, t-Adam
proves to be robust enough to sustain different learning rates
and learns the tasks with both given hyperparameter values.
Thanks to its careful updates of the agent, t-Adam can still
reach a suboptimal policy that may even be better than the
one reached with smaller learning rates [see Fig. 5(c) and (f)].
This feature offered by t-Adam not only allows for the use of
higher learning rates in order to accelerate the learning process
[see Fig. 5(b) and (d)], but also reduces the difficulties related
to the tuning of the learning rate since the default learning rate
can be directly used.

In addition, as stated in the experimental settings section,
no gradient norm clipping was used during the simulations.
Without this trick, we can see that Adam fails altogether on
the inverted double pendulum task, while t-Adam naturally and
automatically ignores or reduces the effect of large gradients,
keeping the gradient (momentum) from overshooting during
learning and making the gradient norm clipping stratagem
unnecessary.

V. DISCUSSION

The above experiments and simulations showed the robust-
ness of our proposition with respect to the existing approaches.
Indeed, t-Adam proves to be robust on supervised tasks (see
Figs. 2 and 4), and also on RL problems (see Fig. 5). However,
we have to discuss its limitations as below.

A. Additional Computational Cost

Our proposal, the t-momentum, requires new computations
for deriving the weights (see 17-20). In general, as presented
by Luo et al. [18], adaptive methods such as Adam usually
display generalization abilities that are worse than the non-
adaptive optimization methods. This fact is widely attributed
to unstable and extreme learning rates, and even AMSGrad [8]
was failing to significantly improve the generalization abil-
ity of Adam on unseen data, leading to the proposition of
methods such as AdaBound [18], which requires heuristic
design, and RAdam [33]. However, as shown by the results
on the classification tasks, t-AMSGrad proves to be able to
achieve the same level of generalization as the AdaBound
methods, while also displaying faster progress than Adam
and AMSGrad during the early stage of training. Therefore,
we conclude that the additional computational cost for the t-
momentum is undeniable to improve optimizers.

B. Necessity of Variance

One condition for the integration of our method to existing
algorithms is the requirement of a variance estimate. In Adam
and its variants, the second moment is already available and

1333

TAdam's Test Final Accuracy for ResNet on CIFAR-100

Test Accuracy %

Q Q Qo

A N N Z AOT Q0T o®
W (s (s W % % Z P o
% W P

Fig. 6. Comparison between different values of the degrees of freedom
v = kxdim(g): v seems to be unimodal, namely, it has an optimal value (i.e.,
not too small and too large).

provided by the method itself, but this is not always the case.
In practice, if the variance is not estimated, the easiest way is
to set it to a constant value (for example, 1). But of course,
this still yields the danger to produce bad estimates if the true
variance is smaller (it may not be enough robust) or greater
(in that case, it may be too robust). Hence, our t-momentum
works better when the variance is estimated along with the
first moment, although that requires further computations. The
variance estimator can, similar to the mean, be obtained using
the log maximum likelihood of the student-t distribution.

C. Optimal Degrees of Freedom

We must also address the choice of the degrees of freedom
parameter, which controls the robustness of the t-momentum.
Fig. 6 shows the effect of different degrees of freedom v =
k % dim(g) on the classification task. We can see that for this
particular case, t-Adam performs well for a wide range of
values, as long as the factor k is not too large (which would
bring back the t-Adam to Adam). The unimodality of the bar
chart also reveals an interesting trend. Indeed, it shows that
when the degrees of freedom v are too small, the algorithm
is too robust (i.e. conservative) preventing efficient updates,
and when it is too large, the algorithm becomes too sensitive
to outliers. During our experiments, we found that setting the
degrees of freedom to be equal to the dimension size d (i.e.
k = 1) worked well in most cases, so we propose it as a
default value. However, this result highlights the fact that the
optimal value is task-dependent, and therefore, v should be
optimized according to the presence or absence of outliers.
Currently, a typical hyperparameter optimization method can
be employed to tune the degrees of freedom. For example,
a grid search can be applied to k in the subset [0.4,4.] U
{10, oo} where the oo case corresponds to simply using the
regular momentum (with fixed f;). Alternatively, if the data
set is available before training, a Student-t distribution can be
used to try to fit it (for example, in python, the scipy library
provides a fit function) and in this case, the estimated data set
degrees of freedom, which will depend on whether the data
set contains many or few outliers, can be employed.

VI. CONCLUSION

In this article, we proposed the t-momentum, a new estimate
of the first-order momentum of gradients for SGD, inspired by

1334

the student-t distribution. It makes the Adam and other EMA-
based algorithms much more robust and provides a way to
produce stable and efficient machine learning applications. t-
Adam based on this robust estimate is specifically described
as an extended version of Adam. We verified that t-Adam
outperformed Adam in terms of robustness on supervised
learning (regression and classification) tasks, and RL tasks. In
addition, the other SGD methods with the t-momentum also
showed the robustness in the classification task.

In this work, the t-momentum used a fixed degree of
freedom v which is based on the dimension of the gradients
and therefore has fixed robustness. As mentioned in the discus-
sion, a straightforward improvement is therefore to design a
mechanism that automatically updates the parameter v during
the learning process, according to the presence or absence of
outliers. Furthermore, the second moment in Adam and in its
variants can also be modified with a t-EMA to both reduce the
variance of the second moment and improve its robustness.
It would be interesting, particularly when integrated into
the LaProp method, to analyze the performance of such an
approach. Finally, since our proposal is potentially suitable
for robotics applications, it will be applied for robot learning,
like the imitation of human demonstrations.

APPENDIX A
PROOFS OF UPPER BOUND ON REGRET

In the following proofs, the following notation rule is used:
(x, y) corresponds to the inner product between the vectors x
and y, [lx| is the euclidean norm, while || x|, refers to the p-
norm (in particular, || X; || will be used to express the /,-norm
(euclidean) of the i row of the matrix X).

A. Proof of Theorem 1

Proof: First, we start by noticing that the basic bound of
the regret from the convergence proof by Reddi ef al. [8] also
holds for t-Adam, that is,

T T
Rr =" Ji0) — J,(0") < D (&, (6, —07))
t=1 t=1

<gl’ (61‘ - 0*)> =< Rll + R2t + Ré[(32)
where
Ry, = IO = 09I = 1V G = 0)I?
! 2at(1 - ,Blt)
o _ @V
T 200 - B
RS, _ _ﬁlz(mz—l,ez - 9*>
1 —pu
- ﬁlt(mt—la 01‘ - 0*>
- 1—pu
_ Buad Ve m P pull V6 — 001
- 2(1 - ﬂlt) 205t(1 - ﬂlt)
y1/4 N
V.70, — 0
N ML Al
2at(1 - ,Blt)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

= R2t + R3z~

So that

T
Ry < D (Ri +2Ry + Ry)).

t=1

(33)

However, to further refine this upper bound, we need to
redefine the Lemma 2 used in the proof of Reddi et al. [8],
since B, = B = (Wi—1/W;_1 + w;) does not satisfy f,, < f
anymore for all time step 7. For this purpose, we give the
explicit upper bound of the expected value of S, E[f,] <
B, < 1. Note that B, < 1 is obvious since B, € (0, 1).
Now, following the same process as Reddi et al. [8], defines
a similar expression to their Lemma 2 in the case of t-Adam.
Indeed, we can write that

1/4
Zafnv B =

T-1
Zafnv Yim? 4+

where
d
C=ery
i=1

{ZJ T 4 = Bra—ien) Pra— k+1)g,z}2
JTU =) ST I

n
(ZJT-zl | ﬂl(r—km) (Z}T‘:l | ﬁl(r—k+1>g,2~,i)
\/T(l —p2) Z,T'—l ﬁzTij g?,i
(S s) (Zmbis)

< =C;.
\/T(l DNV A
Back to C
d
CgaZC_‘
LY ATHN 5 S
_(1_ﬁwm1111 gjl

R 5%
T (=BT =B

Zd:i(%y Jlgj,i|~

Since f,, < 1, we can further bound the previous inequality

d

a .
C _ .
- (l—ﬁw)mzzy 18,1

i=1 j=I1

where y = B, /(f>)"/?. It is worth noting that this is also less
than 1, just as the ratio £,/(82)"/%.

By using a similar upper bound for all time steps, we can
write that

T T d —j
S a0 < 3 L2 217 sl
t 1 —= D N
—1 ' =1 (1 _ﬁw)\/t(l _ﬁZ)

ILBOUDO et al.: ROBUST SGD

Then, following the same process as in Reddi et al. [8],
we get the equivalent expression of the Lemma 2 in the case

of t-Adam
ia 1042 < & T+TogT X0, llgir.illa
t t = —)
=1 t (1- :Bw)(l -7) (1-— 2)

Based on this new lemma, the remaining steps are com-
pletely identical to the proof of Reddi et al. [8]

(34)

T
Rr < Z(Rn + 2Ry + R3)

t=1
)

_ Z(th + Ra) + Z “’”‘1/_ 5

t=1

T ~—1/4
ST v
1 - ﬁw

(ay/TF1ogT) 3L, lgrrill2
(1= Bu)>(1 —)T = o)

mz||2

= Z(th + R3) +

~

< D (R +Ry) +
=1

I
M'\]

(Rir + Ry) + R». (35)

t=1

With K = (2(1 — f,))~", we can derive
T T ol o2 o l/4 a2
ZRIISKZH‘/I O =N =1V, (O — Ol
Oy
=1 -
174 .
-t —er
a
T >y 1/4 — n*\ 12 Vl/4 () o* 2
+KZ IV, " @ —0911° | O — 0l
= Ot Or—1
- Z?:l Vo1,i (01 —67)
B 20(1(1 _Bw)
Z; QZ, 1(9” _9)2(Dtla \/61_1,1‘0:1)
2(1 — Bu)
_ D% > /o
o 2051(1_,Bw)
n DY 2 (VoaT = o)

2(1 - Bw)
Using a simple telescopic sum on the right side of the
inequality, we get

T
ZR“— DL YL, \for — R,
=1

2a7(1 /f.u) (36)

Next, we have

ZszSKZﬁ”“V (<9r]k

PullV 0, — 6097
_Z (1_1811))2

t=1

1335
< ZrT=1 Z?=1 B0 —67) 5t,iaf1
B (1= Bu)?
DZ, ZtT—l 24—1 Bii/Oria!
= — = ’ (37)

B (1 - ,B_w)2
By bringing together the relations expressed by (36), (35),
and (37), the final regret bound of t-Adam is given by

Rr < Ri+Ry,+R3

Dgo d A1/2 T d 1[}\3{2
e 2 o
ay/T+logT
i 38
(l_ﬁw)z(l—y)MZ”ng . (38)
O

B. Proof of Theorem 2

Proof: With respect to the central limit theorem, let us
assume that the gradients g, ultimately follow an asymptotic
normal distribution g, € RY ~ N(u, £) as t — oo. Then we
know that the Mahalanobis distance follows the chi-squared
distribution with d the degrees of freedom, (g, — u)" X!
(g: — 1) ~ x*(d). Applying this to the Mahalanobis distance
in t-Adam, we have

d 2
o m
D, = Z (gj,t it 1) -

Vjt—1

72(d). (39)

J

Now, we know that its expected value is E[D,] = d. We
can therefore define

|: 1 :| - 1 1

D,+v |~ E[D]+v d+v

This inequality comes from the Jensen’s inequality. The
expected value of the weights w;, is derived as

d
E[w,]:E[V+ }21.
v+ D,

With a = (2, — 1)/f1, we can then infer the mean of the
weighted sum W,

W, = 1 ﬁ tl—}-Zwa 1—i

(40)

l_ﬁl i=1
ﬁ t—1
E[W,] = - _lﬁlE[a’_l] +]E[w,]]E|:Za’_l_i:|
i=1
ﬁl —1 ﬁl =1
1_[311['3[61]+]E[wt]1_ﬁ1E[(l a”=)]
- A = {Bla’™)+ Bl (1 Bla'™ "))
— Pl
i3
< 7o Blw) (41)

The last inequality comes from E[w,] > 1 and 0 < a < 1,
ie., 1—=E[w,])E[a'"""+E[w,] < E[w,]. Now, since E[W,] >
0, we have

Elw,] - 1—p

42
E[W.] = B “2)

1336

We move on to express the upper bound for E[f,,] where
L = W;_1/(W,_1 +w;,). For this purpose, we make use of the
Hartley and Ross unbiased estimator for the mean of the ratio
between two random variables [46], [47]. Indeed, considering
two random variables R and S, where S has no mass at 0, and
G = g(R/S) = R/S; the Hartley and Ross identity states that

_ER T R
BLGT= 56~ i) COV(S’S)

where Cov(-, -) is the covariance between two variables. This
relation is easily derived from the covariance formula, and
furthermore, we can prove that, in our case, it is positive as
derived below

Cov(f(S), $) = E[Sf($)] — E[SIELf ()]
= E[(S — E[S]) f($)]
= E[(S — E[SD(f(S) — fELSD)]

where E[(S — E[S]) f(E[S])] is zero. So that if the function
f(S) is an increasing one, the above equation, i.e., the covari-
ance, will always be positive. For the t-momentum, R = W,_;
and S = W,_|4w;,. In that time, f(S) = (S—w;)/S =1—w,/S
with w, > 0 is an increasing function of S.

Based on the fact that the covariance between W,_; and
W,_14w;, is positive, we can define an upper bound for E[G =
Puwl, as follows:

E(f,] = E Wi E[W;—]
v Wi +w,] — E[W1 4+ w]
1
T 1+ E[wEW,_ (]!
1
P —— b 43
O

REFERENCES

[1] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT. Berlin, Germany: Springer-Verlag, 2010,
pp. 177-186.

[2] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 1, pp. 400407, Sep. 1951.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.
[4] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto, “Robot learning in

homes: Improving generalization and reducing dataset bias,” in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 9094-9104.

[5] M. Suchi, T. Patten, D. Fischinger, and M. Vincze, “EasyLabel:

A semi-automatic pixel-wise object annotation tool for creating robotic

RGB-D datasets,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,

pp. 6678-6684.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.

[7]1 D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[81 S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of
adam and beyond,” 2019, arXiv:1904.09237. [Online]. Available:
http://arxiv.org/abs/1904.09237

[91 M. J. Holland and K. Ikeda, “Efficient learning with robust gradient
descent,” Mach. Learn., vol. 108, nos. 8-9, pp. 1523-1560, Sep. 2019.

[10] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[6

=

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

[11] B.T. Polyak, “Some methods of speeding up the convergence of iteration
methods,” USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1-17,
Jan. 1964.

[12] Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence O (1/ k%), in Proc. Doklady, vol. 269, 1983,
pp. 543-547.

[13] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient method
with an exponential convergence _rate for finite training sets,” in Proc.
Adv. Neural Inf. Process. Syst., 2012, pp. 2663-2671.

[14] R.Johnson and T. Zhang, “Accelerating stochastic gradient descent using
predictive variance reduction,” in Proc. Adv. Neural Inf. Process. Syst.,
2013, pp. 315-323.

[15] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121-2159, Feb. 2011.

[16] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” 2012,
arXiv:1212.5701. [Online]. Available: http://arxiv.org/abs/1212.5701

[17] T. Tieleman and G. Hinton, “Lecture 6.5-RMSPROP: Divide the gradient
by a running average of its recent magnitude,” Neural Netw. Mach.
Learn., vol. 4, no. 2, pp. 26-31, 2012.

[18] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods with
dynamic bound of learning rate,” 2019, arXiv:1902.09843. [Online].
Available: http://arxiv.org/abs/1902.09843

[19] T. Schaul and Y. LeCun, “Adaptive learning rates and parallelization
for stochastic, sparse, non-smooth gradients,” 2013, arXiv:1301.3764.
[Online]. Available: http://arxiv.org/abs/1301.3764

[20] C. Gulcehre, J. Sotelo, M. Moczulski, and Y. Bengio, “A robust adaptive
stochastic gradient method for deep learning,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 125-132.

[21] Y. Haimin, P. Zhisong, and T. Qing, “Robust and adaptive online
time series prediction with long short-term memory,” Comput. Intell.
Neurosci., vol. 2017, Dec. 2017, Art. no. 9478952.

[22] M. Lerasle and R. I. Oliveira, “Robust empirical mean estima-
tors,” 2011, arXiv:1112.3914. [Online]. Available: http://arxiv.org/
abs/1112.3914

[23] S. Minsker, “Geometric median and robust estimation in Banach spaces,”
Bernoulli, vol. 21, no. 4, pp. 2308-2335, Nov. 2015.

[24] G. Lugosi and S. Mendelson, “Risk minimization by median-of-
means tournaments,” 2016, arXiv:1608.00757. [Online]. Available:
http://arxiv.org/abs/1608.00757

[25] D. Hsu and S. Sabato, “Loss minimization and parameter estimation
with heavy tails,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 543-582,
2016.

[26] C. Brownlees et al., “Empirical risk minimization for heavy-
tailed losses,” The Ann. Statist., vol. 43, no. 6, pp. 2507-2536,
2015.

[27] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 46, no. 1, p. 96, 2019.

[28] A. Prasad, A. Sai Suggala, S. Balakrishnan, and P. Ravikumar, “Robust
estimation via robust gradient estimation,” 2018, arXiv:1802.06485.
[Online]. Available: http://arxiv.org/abs/1802.06485

[29] O. Arslan, P. D. Constable, and J. T. Kent, “Convergence behavior of
the em algorithm for the multivariate t-distribution,” Commun. Statist.-
Theory Methods, vol. 24, no. 12, pp. 2981-3000, 1995.

[30] F. Z. Dodru, Y. M. Bulut, and O. Arslan, “Doubly reweighted
estimators for the parameters of the multivariate t-distribution,”
Commun. Statist.-Theory Methods, vol. 47, no. 19, pp. 4751-4771,
Oct. 2018.

[31] 1. Loshchilov and F. Hutter, “Decoupled weight decay regular-
ization,” 2017, arXiv:1711.05101. [Online]. Available: http://arxiv.
org/abs/1711.05101

[32] S. Ram Dubey, S. Chakraborty, S. Kumar Roy, S. Mukherjee, S. Kumar
Singh, and B. Baran Chaudhuri, “DiffGrad: An optimization method for
convolutional neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 11, pp. 4500-4511, Nov. 2020.

[33] L. Liu et al., “On the variance of the adaptive learning rate and
beyond,” 2019, arXiv:1908.03265. [Online]. Available: http://arxiv.
org/abs/1908.03265

[34] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu, “Clos-
ing the generalization gap of adaptive gradient methods in training
deep neural networks,” 2018, arXiv:1806.06763. [Online]. Available:
http://arxiv.org/abs/1806.06763

[35] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adaptive
methods for nonconvex optimization,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 9793-9803.

ILBOUDO et al.: ROBUST SGD

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

L. Ziyin, Z. T. Wang, and M. Ueda, “LaProp: Separating momentum
and adaptivity in adam,” 2020, arXiv:2002.04839. [Online]. Available:
http://arxiv.org/abs/2002.04839

D. F. Nettleton, A. Orriols-Puig, and A. Fornells, “A study of the
effect of different types of noise on the precision of supervised
learning techniques,” Artif. Intell. Rev., vol. 33, no. 4, pp. 275-306,
2010.

W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understand-
ing and improving convolutional neural networks via concatenated
rectified linear units,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2217-2225.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Sta-
bility of stochastic gradient descent,” 2015, arXiv:1509.01240. [Online].
Available: http://arxiv.org/abs/1509.01240

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.
[Online]. Available: http://arxiv.org/abs/1707.06347

S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxima-
tion error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587-1596.

Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, “Deep
reinforcement learning with smooth policy update: Application to
robotic cloth manipulation,” Robot. Auto. Syst., vol. 112, pp. 72-83,
Feb. 2019.

E. Coumans and Y. Bai. (2016). Pybullet, a Python Module for Physics
Simulation for Games, Robotics and Machine Learning. [Online]. Avail-
able: http://pybullet.org

A. Stooke and P. Abbeel, “Rlpyt: A research code base for deep
reinforcement learning in PyTorch,” 2019, arXiv:1909.01500. [Online].
Available: http://arxiv.org/abs/1909.01500

H. O. Hartley and A. Ross, “Unbiased ratio estimators,” Nature, vol. 174,
no. 4423, pp. 270-271, Aug. 1954.

L. A. Goodman and H. O. Hartley, “The precision of unbiased ratio-
type estimators,” J. Amer. Stat. Assoc., vol. 53, no. 282, pp. 491-508,
Jun. 1958.

1337

Wendyam Eric Lionel Ilboudo received the bach-
elor’s degree in electronics and automation from
New Dawn University, Burkina Faso, in 2016. He is
currently pursuing the master’s degree with the Nara
Institute of Science and Technology, Nara, Japan.

His current research interest includes robust opti-
mization methods for machine learning, and rein-
forcement learning applied to robotics.

Mr. Ilboudo received a MEXT Scholarship from
the Japanese Government in 2018.

Taisuke Kobayashi (Member, IEEE) received the
B.E., M.E,, and Ph.D. degrees in engineering from
Nagoya University, Aichi, Japan, in 2012, 2014, and
2016, respectively.

He is currently an Assistant Professor with the
Graduate School of Information Science, Nara Insti-
tute of Science and Technology (NAIST), Nara,
Japan. His research interests include locomotion
control, nonlilnear dynamics, and autonomous sys-
tems.

Kenji Sugimoto (Member, IEEE) received the M.S.
and Ph.D. degrees from Kyoto University, Kyoto,
Japan, in 1982 and 1989, respectively.

He was with Mitsubishi Electric Corporation,
Japan. He became an Assistant Professor with Kyoto
University, in 1985. He was an Associate Professor
with Okayama University, Japan and Nagoya Uni-
versity, Japan. Since 1999, he has been a Professor
with the Nara Institute of Science and Technology,
Nara, Japan. His current research interests include
control theory and system science.

Dr. Sugimoto is a member of SICE and ISCIE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

