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Abstract— The performance of a classifier in a brain–computer
interface (BCI) system is highly dependent on the quality and
quantity of training data. Typically, the training data are collected
in a laboratory where the users perform tasks in a controlled
environment. However, users’ attention may be diverted in real-
life BCI applications and this may decrease the performance
of the classifier. To improve the robustness of the classifier,
additional data can be acquired in such conditions, but it is not
practical to record electroencephalogram (EEG) data over several
long calibration sessions. A potentially time- and cost-efficient
solution is artificial data generation. Hence, in this study, we pro-
posed a framework based on the deep convolutional generative
adversarial networks (DCGANs) for generating artificial EEG to
augment the training set in order to improve the performance of a
BCI classifier. To make a comparative investigation, we designed
a motor task experiment with diverted and focused attention
conditions. We used an end-to-end deep convolutional neural
network for classification between movement intention and rest
using the data from 14 subjects. The results from the leave-
one subject-out (LOO) classification yielded baseline accuracies
of 73.04% for diverted attention and 80.09% for focused attention
without data augmentation. Using the proposed DCGANs-based
framework for augmentation, the results yielded a significant
improvement of 7.32% for diverted attention ( p < 0.01) and
5.45% for focused attention ( p < 0.01). In addition, we imple-
mented the method on the data set IVa from BCI competition
III to distinguish different motor imagery tasks. The proposed
method increased the accuracy by 3.57% ( p < 0.02). This study
shows that using GANs for EEG augmentation can significantly
improve BCI performance, especially in real-life applications,
whereby users’ attention may be diverted.
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I. INTRODUCTION

CLASSIFICATION algorithms are designed to deal with
the decoding of information from a wide range of real-

world data. However, there are situations where the classifiers
fail to maintain their performance due to data-related problems
such as corruption and/or insufficiency of training data.
An active research area that is seriously affected by these prob-
lems is the brain–computer interfacing (BCI). The BCI aims at
connecting the brain to an external device like a computer or a
prosthesis with applications in motor rehabilitation, cognitive
training, entertainment, and so on [1]–[3]. Since the brain
signal is nonstationary in the context of STFT and varies from
subject to subject and session to session [4], a large amount
of data is required to effectively train a robust classifier.
However, it is not feasible to run long calibration sessions
especially when the BCI users are patients, children, or elderly.
Moreover, the collected data are not always fully utilizable
because data acquisition is usually prone to technical errors
such as noise and/or human muscle artifacts such as blinking.
In such situations, the need for generating artificial data,
to resemble and augment the real data, arises. Generative
methods with an emphasis on data generation rather than
distribution estimation are the potential answer to this need. In
computer vision, geometric transformation is commonly used
to generate artificial images [5]. These transformations mainly
include scaling to account for distance variations and rotation
to account for angle variations. Although these kinds of
transformation are irrelevant in the context of bio-signals such
as EEG, they have inspired several researchers. Sakai et al.
[6] shifted EEG trials in time and amplified the amplitude to
generate artificial EEG for augmentation. The results showed
that their augmentation method improved the classification
when the size of training set was as low as 20 but it made
no difference for larger sizes of training set. In another work,
artificial EEG trials were generated by segmentation and
recombination (S&R) in time and frequency domains [7] and
the results were more convincing. Other studies have used
more advanced techniques such as variational auto-encoders
(VAE) [8] and generative adversarial networks (GANs) [9].
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These existing works have had some signs of success but
also several limitations that could be mitigated by lever-
aging data and techniques more effectively. In this article,
therefore, we introduce a novel framework based on GANs
for artificial EEG generation powered by a subject-specific
conditioning vector and modified objective and loss functions.
We also compare the performance of the novel method with
the existing approaches in literature, namely, S&R and VAE
methods. Importantly, the assessment was conducted in a
realistic BCI scenario that included both focused and diverted
attention conditions. The results showed that the augmentation
with our proposed framework yielded improved performance,
especially under the diverted condition. We have shown that
the proposed method underwent stable training and did not
face mode collapse [10] and, finally, we have analyzed the
temporal, spatial, and frequency characteristics of the artificial
samples to demonstrate that they were realistic and diverse.
Overall, the comprehensive assessment of the novel method
shows that it is a promising approach to generate subject-
specific artificial EEG by learning from subject-independent
data to reduce calibration time in EEG-based BCI applications.

II. RELATED WORK

In this section, we review the important GANs-based
studies.

A. Generative Adversarial Networks (GANs)

GANs comprise two competing networks including the
generator and the discriminator whose competition eventually
leads to the generation of the artificial data of high quality.
After its emergence, the method of GANs showed promising
results in image generation as well as the potential for further
improvement and applications in different domains.

Several researchers have contributed to solving the issues
related to the first version of GANs. Mirza and Osindero
introduced conditional GANs [11], where the idea was to feed
conditioning data into both networks. They conditioned the
generator and the discriminator on class labels and reported
that conditional GANs trained on the MNIST data set gener-
ated images of superior quality than the regular GANs. Later,
Salimon and colleagues [12] proposed techniques to enhance
GANs training by investigating a range of training procedures
and architectures. They put forward that the inception score
(IS) is a proper metric for model comparison.

In other studies, a new version of GANs was presented
[10], [13]–[15]. A very first modification to the original GANs
was deep convolutional GANs (DCGANs) that used deep
convolutional neural networks (CNN) for both the generator
and the discriminator for a better training [13]. Mao et al. [14]
introduced the method of least squares generative adversarial
networks (LSGANs) which replaced the sigmoid loss function
in the discriminator with a least square loss function. Based
on their experiments, LSGANs performed better than regular
GANs in terms of learning stability and image quality [14].
The method of Wasserstein GANs proposed by Arjovsky and
colleagues is another version that is gaining more attention
recently [10], [15]. The authors’ concern was the problem

of vanishing gradients caused by minimizing the Jensen–
Shannon divergence between the real and the generated
data distributions in the original GANs. They showed that
Wasserstein distance is a better choice than Jensen–Shannon
divergence [10], [15]. Other attempts to improve the networks
architecture, training stability, and image quality are presented
in [16]–[19].

B. GANs for EEG

Although the GANs method was originally introduced for
image generation, it can be extended to other types of data.
For example, in [20], GANs have been implemented for
synthesizing audio. In this article, we use GANs for electroen-
cephalogram (EEG) signal which is the electrical activity of
the brain recorded using electrodes placed on the surface of the
scalp. Due to its noninvasiveness, EEG is a popular recording
modality in BCI [21].

There are a few studies on the use of GANs for
EEG [22]–[27]. In [22], GANs were conditioned on EEG
features in order to improve image generation. The EEG data
were first recorded, while the person was looking at target
images. Then, EEG features were extracted using a recurrent
neural network (RNN)-based encoder and fed as conditioning
data to the generator and the discriminator networks [22].
Their main objective was image generation and EEG was
used only as an auxiliary input. In another study, Wasserstein
GANs were used to augment EEG differential entropy (DE)
features in order to boost the classification of emotion [24].
The networks were conditioned on class labels and DE features
were imported to the discriminator as real data. They applied
the support vector machine (SVM) as the classifier, and
the results showed that the classification benefited from the
inclusion of the generated DE features in the training set [24].
Hartmann et al. [27] used GANs to generate single-channel
EEG. They showed that GANs have potential applications
in EEG generation and suggested that multichannel EEG
generation should be explored as future work. Although only
a handful of studies have applied GANs on EEG so far, their
results suggest that GANs-based methods are a promising
approach to deal with the issues associated with EEG.

III. MATERIALS AND METHODS

In this study, we use conditional GANs for artificial gen-
eration of raw EEG in order to augment the classification.
The task is the detection of subject’s movement intention
(MI). The traditional methods that were used for MI detec-
tion are readiness potentials [28], [29] and common spatial
patterns [30]–[32]. These methods are suitable for subject-
specific classification rather than subject-independent clas-
sification, which is in the focus of this article. To evalu-
ate the proposed approach in a more realistic scenario, we
designed an experiment in which subjects performed a motor
task under two conditions: 1) focused attention condition
and 2) diverted attention condition. The first condition is
commonly used in BCI studies; however, the performance
of BCI under the second condition is not studied that well.
This is a more realistic scenario, as the subject is likely
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to be exposed to many distractions during a real-life BCI,
and this might affect the EEG patterns [33]. The general
hypothesis is that with attention diversion, the classification
performance would decrease [34]. We first test this hypothesis
and then use the proposed method for augmentation to improve
the classification. For comparative analysis, we implement a
few existing methods for artificial EEG generation. Moreover,
we implement the proposed method on a public data set to
evaluate its generalizability.

A. Participants

Fourteen individuals with the age range between 21 and
29 years old (24.71 ± 2.49, six males and eight females)
participated in the experiment. All participants were healthy,
right-handed, and without any hearing or vision abnormalities.
The experiment was approved by the local ethical committee
and the participants signed an informed consent form. They
all could fluently speak English and understand the instruc-
tions. The experiment was performed at the Brain–Computer
Interface Laboratory of the Department of Health, Science,
and Technology, Aalborg University, Denmark.

B. Protocol and Data

Many BCI experiments rely on a controlled condition in
which the subject is instructed to fully focus on the main
task. This is different from what normally happens in real-
life situations where various internal and external factors can
make it difficult to stay focused on the task. By bringing the
BCI system from the laboratory to home (or clinics), these
factors can impair the classifier performance and BCI system
efficacy. In this experiment, we considered both scenarios by
including conditions with focused and diverted attention.

The main task was right hand movement (opening and
closing). In both conditions, the subjects were seated in a
comfortable chair, placed 1 m away from the screen, with their
right hand on the desk, as can be seen in Fig. 1(a). In each
condition, subjects performed 40 trials; ten hand openings
followed by ten closings, 15 s of rest, and then ten openings
and ten closing trials [Fig. 1(b)]. Every trial consisted of five
phases including focus, preparation, execution, hold, and rest.
Fig. 1(c) shows the experiment flow. This was a cue-based,
nonrandomized paradigm in which the subjects were told when
and what type of movement to execute.

In the focus phase, the subjects were instructed to focus on
the screen and avoid blinking or moving. In the preparation
phase, the type of movement was indicated to the subjects.
The cue prompted the subjects to execute the movement.
After the movement execution, they maintained the movement
(hand opened/closed) during the hold phase. In the rest phase,
the subjects relaxed.

In the focused condition, there was no distraction, while
during the diverted condition, a random sequence of beeps was
played. The beeps were of different frequencies with a duration
of 0.5 s and a random interstimulus interval of 1–2 s. In this
way, the subjects’ attention was diverted by the external noise.
Importantly, we wanted to assure that the participants could
not simply ignore the auditory stimulus while fully focusing

Fig. 1. (a) Demonstration of the experimental settings including EEG and
EMG electrodes, (b) protocol, (c) experiment flow, and (d) segmentation dia-
gram: movement intention and rest are the two classes for binary classification.

on the task (as in focused condition). Therefore, we asked
them to count the number of times each tone (beep of a
certain frequency) was repeated over ten consecutive trials.
After every block of ten trials, the subjects were asked to
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report how many tones of each frequency they have heard
[see Fig. 1(b)]. The task difficulty was gradually increased over
blocks by starting from only 2 tones (500 and 1000 Hz) played
over block 1, 3 tones (500, 750, and 1000 Hz) over block 2,
and 4 tones (250, 500, 750, and 1000 Hz) over blocks 3 and
4. Based on the feedback we received from the participants,
their attention was indeed diverted with this oddball paradigm.

The EEG signals were recorded using a g.HIamp-research
amplifier and 62 gel-based active electrodes placed in a
g.Gamma cap. The recorded EEG channels were Fp1, Fp2,
Fpz, AF3, AF4, AF7, AF8, F1-8, Fz, FC1-6, FCz, FT7, FT8,
C1-6, Cz, T7, T8, CP1-6, CPz, TP7-10, P1-8, Pz, PO3, PO4,
PO7, PO8, POz, O1, O2, and Oz, and they were referenced
to the right earlobe. AFz channel was used as the ground.
Moreover, 2 bi-polar electromyography (EMG) channels (four
EMG electrodes) were used to detect the movement onset.
They were placed on the hand flexor and extensor muscles that
were located using palpation [see Fig. 1(a)]. Before placing the
electrodes, the skin was cleaned using an alcohol swab. The
data were recorded at 1200 Hz by g.Recorder (gtec bio-signal
recording software).

C. Data Preparation

Raw EEG can be contaminated by several artifacts including
eye movements and muscle activity [35]. Hence, the data
were bandpass filtered at 0.01–100 Hz by g.Recorder during
acquisition to remove artifacts and a notch filter was applied
to remove the line frequency of 50 Hz. Moreover, independent
component analysis (ICA) and artifact subspace reconstruction
(ASR) were applied to remove electrooculogram (EOG) and
EMG artifacts, and the data were high-pass filtered with
the cutoff at 0.5 Hz. These methods were implemented in
MATLAB R2013b using EEGLab [36].

After pre-processing, the data were segmented. First, the
exact movement onset was determined from the EMG signals
by thresholding based on the instantaneous power of EMG.
The power was computed by high-pass filtering of the recorded
signals (2nd order Butterworth, cutoff at 80 Hz), squaring and
applying a moving average filter (25 samples). The movement
executions were clearly visible as the bursts in the power
signal. For each participant, the EMG threshold was set to
the minimum power burst during movement execution. In this
way, the intentional movements that have a power above this
threshold were determined and the unintentional hand tremors
were filtered out. The threshold was set based on the first
half of trials (training set) and applied to the second half of
trials (test set). Then, the EEG signals were segmented into
MI and rest samples. The MI samples comprised 2 s of the
EEG before the movement onset. The rest samples comprised
2 s of the EEG starting 1 s after the rest onset. As described in
section III.B, the subjects were asked to hold their hand open
(or close) during the hold phase and then release it when the
rest cue was shown. Therefore, we assumed that the rest EEG
segments started from 1 s after the rest onset to make sure
that the subjects have indeed finished the movement. Fig. 1(d)
shows the segmentation and marks the time intervals under
analysis. Moreover, we checked the recorded EMG signals to

assure that there was no visible muscle activity in the time
periods corresponding to both classes.

After the segmentation, the data were down-sampled to
250 Hz. In total, each subject performed 40 trials in each
condition. Therefore, there were 40 samples per class per
condition for each subject. The EEG data for each subject
in each condition was thus a matrix of the size 80 × 500 ×
62, i.e., 80 samples (40 MI and 40 rest), 500 time points per
sample, and 62 EEG channels.

D. Nonaugmented Classification

We implemented two methods for nonaugmented classifi-
cation to compare the results with the proposed augmented
classification method.

1) Slow Cortical Potentials-LDA: We implemented the
method used in [28] where they employed slow cortical
potential (SCP) to discriminate MI from rest. In this method,
SCP is computed by filtering the EEG within the band of 0.1–
1 Hz from 6 pre-defined channels, namely, C1, C2, Cz, CP1,
CP2, and CPz. The EEG is divided into 500-ms segments;
the MI segment contains [−750 −250] ms of EEG before the
movement onset and the rest segment contains 500 ms of EEG
starting 1 s after the rest onset. By down-sampling to 8 Hz,
4 features per channel from 500-ms segments are extracted
(8 Hz × 0.5 s). Thus, 24 features are extracted from each
sample (6 channels × 4 features). In total, each subject has
80 samples in each condition. The first 40 samples forming a
40 × 24 feature matrix are used for training the classifier and
the last 40 samples are used for testing. A linear discriminant
analysis (LDA) is used for subject-specific classification as in
[28].

2) End-to-End DCNN: We used the modified end-to-end
DCNN as proposed in [37]. Two intersubject classification
strategies were implemented: leave-one subject-out (LOO) and
subject adaptation, hereafter called adaptive. In the adaptive
method, the LOO models were updated based on the first half
of the target subject’s data and were tested on the second half.

Performing LOO with a total of 14 subjects formed a
training set of 1040 samples (13 × 80) and a test set of 80
samples. In the adaptive method, the first half of the target
subject’s data was used to update the LOO model. Hence,
size of the training and test sets changed to 1080 and 40,
respectively.

The end-to-end DCNN takes the EEG segments as input
and passes them through three convolution layers. The first
layer is followed by a max-pooling of size 2. In these layers,
convolution is done with a 1-D kernel over time [37]–[39]
with 60, 40, and 20 filters, kernel sizes of 10, 8, and 6
with stride sizes of 2, 1, and 1, respectively. After the last
convolution layer, the features are flattened and then sent to
a fully connected layer of 100 nodes. The output is then sent
to the last fully connected layer with a sigmoid activation
function for the classification. In all other layers, ReLU is
used as the activation function. Two dropout layers with the
probability of 0.2 and 0.3 are inserted respectively before
and after the first fully connected layer to avoid over-fitting.
We added batch-normalization layers after the convolution
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and max-pooling layers. We used Adam method [40] with a
learning rate of 0.001 and beta1 of 0.9 for optimization and a
batch size of 20 for training.

E. Baseline Methods for Artificial EEG Generation

In addition to the proposed method, we implemented other
generative methods for augmentation to serve as the bench-
mark.

1) Variational Auto-Encoders: We used VAE inspired in
[8] where VAE was employed for artificial steady-state visual
evoked potential (SSVEP) generation. The encoder consisted
of a 1-D-convolution layer, batch normalization, and a max-
pooling layer, and the decoder consisted of three 1-D-transpose
convolution layers. Leaky ReLU with the slope of 0.2 was
used as the activation function except in the last layer of the
decoder where the hyperbolic tangent was used. The method
of Adam with a learning rate of 0.0001, beta 1 of 0.1, and
beta 2 of 0.999 was used for optimization [8].

2) Segmentation and Recombination (S&R): We also imple-
mented EEG generation using S&R methods presented in [7]
to minimize the calibration time. The authors developed three
methods: 1) S&R in the time domain; 2) S&R in the time-
frequency domain; and 3) generation based on signals analogy.
They reported that S&R methods significantly outperformed
the analogy method. Thus, we implemented these two S&R
methods for benchmarking.

In the time domain S&R, EEG trials were divided into
several segments and the artificial samples were generated by
concatenating random segments from randomized trials of the
same class. We divided the 2-s EEG trials into eight segments,
as suggested in [7]. In the time-frequency domain S&R, short-
time Fourier transform (STFT) of each trial was first computed
and then the STFT windows from randomized trials of the
same class were concatenated to form the STFT of the artificial
trial. Finally, the artificial EEG trial was computed by taking
the inverse STFT. For STFT calculation, we used a 250-ms
Hamming window with a 50% shift, as it was suggested in
[7].

F. Proposed Method for Artificial EEG Generation

In this article, we propose a novel approach based on
the conditional DCGANs to generate subject-specific artificial
EEG by learning from subject-independent data.

1) Conditional DCGANs: GANs include two neural net-
works: a generator G and a discriminator D. In an analogy,
these networks can be considered as counterfeiter and police,
respectively, where the counterfeiter tries to deceive the police
with fake money. In GANs, G generates the artificial samples
and D identifies which samples are real and which are
generated. The training target for G is to eventually generate
the samples that are no longer distinguishable from the real
samples by the discriminator D. At this point, the generated
samples closely resemble the real samples. Two opposing net-
works are simultaneously being trained to maximize log(D(x))
and minimize log(1-D(G(z)). This adversarial training proce-

dure is formulized as a minimax problem [9]

min
G

max
D

V (G, D) = Ex∼px

[
log(D(x))

]
+ Ez∼pz

[
log(1 − D(G(z)))

]
(1)

where E denotes the expectation operator, D(x) is the proba-
bility of x belonging to the real data, and G(z) is the generated
sample produced by G from a random noise input z

xg = G(z). (2)

The cross-entropy loss is used to calculate the discriminator
loss and the generator loss as formulated in the following
equations, respectively:

LossD = − log D(xr ) − log
(
1 − D

(
xg

))
(3)

LossG = − log D
(
xg

)
. (4)

In this article, we use conditional GANs. In this type, the
networks are conditioned on some information, for instance,
class labels [11]. Since the objective is to generate samples
for a target subject, we conditioned the networks on a feature
vector extracted from a subset of the target subject’s data.
In this way, the generated samples will not only resemble
the training set (other subjects’ data) but also inherit the
specific characteristics of the target subject’s data. Given the
conditioning vector y, (1)–(4) change to (5)–(8), respectively

min
G

max
D

V (G, D) = Ex∼px

[
log(D(x |y))

]
+ Ez∼pz

[
log(1 − D(G(z, y)|y))

]
(5)

xg = G(z, y) (6)

LossD = − log D(xr |y) − log
(
1 − D

(
xg|y

))
(7)

LossG = − log D
(
xg|y

)
. (8)

To improve the performance of GANs, we used one-sided
label smoothing which replaces the 0 and 1 labels (fake and
real, respectively) for the discriminator with smoothed values
[12]. Thus, the discriminator loss is modified as follows:

LossD = −α log D(xr |y) − (1 − α) log(1 − D(xr |y))

− log
(
1 − D

(
xg|y

))
. (9)

We followed [12] to set the smoothed values to 0.9 and 0.1
(i.e., α = 0.9 in the above formula).

The recent successful implementations of CNN
in GANs [13], [22], [25], [41] and EEG applica-
tions [37]–[39], [42]–[46] motivated us to use CNN
architecture for discriminator and generator. The generator
network starts with two fully connected layers followed by a
batch-normalization layer. Then, the output is first reshaped
to (1, 100, 62) and then up-sampled with a size of 5. The
output is then passed through two convolution layers with a
kernel size of 5 and 62 filters. Please note that as suggested
by the original DCGAN work [13], we used convolution
layers for the generator, not deconvolution layers that were
used by some studies [22], [41]. Eventually, the output of the
generator (artificial EEG) has the same shape as the real EEG
(500 time points, 62 channels). The discriminator consisted
of a convolution layer with a kernel size of 5 and 62 filters
followed by a max-pooling of size 2, another convolution
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Fig. 2. Augmented classification with the conditional DCGANs. The generator takes a random noise and the subject-specific feature vector as inputs and
generates some artificial samples. The discriminator takes these generated samples, train samples (real), and the feature vector as inputs and detects whether
its input samples are real or generated. Through back-propagation, the generator learns to generate the samples that highly resemble the train samples so that
the discriminator can no longer distinguish them from the real samples. After reaching training stability, the generated samples are appended to the first half
of the target subject’s samples and the pretrained LOO model is adapted based on this augmented set.

layer with a kernel size of 5 and 128 filters followed by a
max-pooling of size 2, a flattening layer, a fully connected
layer of size 400, and finally a fully connected layer of size 1.
The hyperbolic tangent activation function is used in both
networks except in the last layer of the discriminator where
a sigmoid activation function was used for classification
(real or fake). For optimization, we used Adam [40] with
learning rate and beta1 parameters initialized at 0.0001 and
0.2, respectively. The hyper-parameters were selected by trial
and error [47].

2) Artificial EEG Generation with Conditional DCGANs:
Fig. 2 shows the conditional DCGANs framework. The GANs
are trained on the other subjects’ data (training samples)
while conditioned on the subject-specific feature vector to
generate the artificial EEG from a random noise input. Thus,
the inputs to the generator are noise and the subject-specific
feature vector, which are concatenated, and the inputs to the
discriminator are the train samples, the subject-specific feature
vector, and the generated samples. The output of the first
fully connected layer in the discriminator (400 features) is
concatenated with the subject-specific feature vector and the
result is passed to the final fully connected layer to assign a
label (real or fake) to its input samples. Noise was sampled
from a normal distribution with mean 0 and standard deviation
1 following the approach in other studies [10], [15]. The
training samples include data from all subjects excluding
the target subject (subject-to-subject transfer learning). Thus,
the training set for each class is of size (520, 500, 62) where
520 is the number of samples per class (13 × 40), 500 is the
number of time points, and 62 is the number of EEG channels.
After training, any number of the artificial EEG trials with the
same shape as the real EEG can be generated by the trained
generator.

3) Extracting the Subject-Specific Feature Vector for Condi-
tioning: As mentioned above, a subject-specific feature vector
is used as conditioning vector. To extract this vector, we use
the pretrained LOO models as described in Section III-D2.

The first half of the target subject’s samples are passed to
the LOO model and the output of the first fully connected
layer (of size 100) based on which the classification is done
is extracted. Given 40 samples per class per subject, taking
the first half of the samples produced a feature matrix of size
20 × 100 per class per subject. This matrix is then averaged
across samples to produce the final feature vector of size 1 ×
100 per class per subject. A separate DCGANs is trained for
each condition using the features extracted from that condition
(focused or diverted). Please note that the subset of samples
used for feature extraction is excluded from the test set for
classification.

G. Augmented Classification

The overall framework of the augmented classification with
the conditional DCGANs is depicted in Fig. 2. A subject-
independent DCGANs conditioned on the subject-specific
feature vector are trained for the target subject. In this way,
the training set is the other subjects’ data, the conditioning
vector is extracted from the first half of the target subject’s
data, and the second half which is not seen is used as the
test set for classification. After reaching training stability,
the generator is used to generate the artificial EEG samples
with the same number of samples as in the training set
(13 × 40 = 520 samples per class). These generated samples
are then appended to the first half of the target subject’s sam-
ples and the LOO models are updated based on this augmented
set. Therefore, we refer to this classification as augmented
adaptive. The test set is the same as in adaptive classification.
Since the augmented training set is larger, we increase the
batch size to 40 for training.

Similarly, the augmented classification with VAE or S&R
used the samples generated by VAE or S&R for augmentation.
Fig. 3 plots the flow diagram of the different classification
approaches: LOO, adaptive, and augmented adaptive.
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Fig. 3. Diagram of LOO, adaptive, and augmented adaptive classification
approaches. In this diagram, X L denotes EEG samples from all subjects
excluding target subject (LOO), Xt denotes target subject’s samples, Xh1
and Xh2, respectively, denote the first and second half of Xt , and Xg
denotes the generated EEG samples. The rectangles show the process and the
parallelograms show the output of the process or input to the next process.

H. Evaluating Quality of the Generated Samples

It is important to ensure that the generated samples are of
high quality; in other words, they are realistic and diverse.
Lack of diversity among the generated samples is an indicator
of mode collapse [10], [15], meaning that the generator has
collapsed into generating only limited modes of the real
data. In this study, we use several qualitative and quantitative
measures to evaluate the quality of the samples generated by
the conditional DCGANs in terms of diversity and similarity
with the real samples.

1) GAN-Test: We train a classifier on the real samples
(defined as X L in Fig. 3) and test the trained model on
the generated samples. The obtained classification accuracy
is named GAN-test, as it is called in [48]. A high value of the
GAN-test denotes that the test set, i.e., generated, is similar
to the train set, i.e., real. The end-to-end DCNN is used for
classification.

2) KL Divergence: We also calculate the Kullback–Leibler
(KL) divergence to investigate the mode collapse. We follow
the instruction given in [49] to obtain the KL divergence
for EEG. There, band-passed EEG trials were represented by
a Gaussian distribution with mean μ (∼ 0) and covariance
matrix�. The KL divergence between Eμ1,�1 and Eμ2,�2 was
then formulated as

KLD
(
Eμ1,�1 , Eμ2,�2

)
= 1

2

[
(μ2−μ1)

T �−1
2 (μ2−μ1)+tr

(
�−1

2 �1
)−ln

(
δ(�1)

δ(�2)

)
−d

]

(10)

where tr denotes the trace, δ denotes the determinant, and d
denotes the dimensionality. We calculate the KL divergence
using this equation. In successful GANs training, the KL
divergence between the generated samples should be close to
the KL divergence between the real samples.

3) Visualization: Furthermore, we visually inspect the qual-
ity of the artificial samples by mapping the generated and
real samples into two dimensions using t-distributed stochastic
neighbor embedding (t-SNE), spectrogram plots, and temporal
distribution.

I. Evaluating Generalizability of the Proposed Method

We implement the proposed method on the data set IVa
from Berlin BCI competition III [50] to evaluate the general-
izability of the method. The data set includes EEG recorded by
118 channels from five subjects during two classes of motor
imagery: right hand and foot. There were 140 trials per class
per subject. Each trial had a length of 3 s with a sampling
frequency of 100 Hz that was down-sampled from 1000 Hz.

IV. RESULTS

The input data preparation including the artifact removal
and segmentation, SCP-LDA, and EEG generation with S&R
methods was implemented in MATLAB R2013b. The end-
to-end DCNN, VAE, and the conditional DCGANs were
implemented in Python 3.6 with Keras 2.1.2 and Tensorflow
1.2.1. The reported p-values were obtained using Wilcoxon
signed-rank tests. In this text, the terms “artificial samples”
and “generated samples” are used interchangeably. The main
results are presented in Tables I and II.

A. Nonaugmented Classification

Table I shows the results of nonaugmented classification.
When performing subject-specific classification using SCP-
LDA [28], as a traditional method, the accuracy in the focused
condition was 75.71% which dropped significantly to 66.07%
in the diverted condition (−9.64%, p-value = 0.01). Four
subjects out of 14 had less than 70% accuracy in the focused
condition. This number increased to 6 in the diverted condi-
tion.

Performing LOO with DCNN, the accuracy in the focused
condition was 80.09% which dropped significantly to 73.04%
in the diverted condition (−7.05%, p-value < 0.01). Only
1 subject out of 14 had less than 70% accuracy in the
focused condition. This number increased to 4 in the diverted
condition.

Similarly, with adaptive classification, the accuracy
decreased from 82.32% in the focused condition to 76.43%
in the diverted condition, and this decrease was statistically
significant (−5.89%, p-value < 0.01). None of the subjects
had less than 70% accuracy in the focused condition, while for
3 of 14, the accuracy was below 70% in the diverted condition.

The adaptive classification significantly outperformed LOO
in the focused condition (+2.23%, p < 0.05), while the
observed difference was not statistically significant in the
diverted condition (p-value > 0.05). These observations
denote that classification in the diverted attention condition
was more challenging so that the adaptation did not help.

To provide a fair comparison with the adaptive classifica-
tion, we evaluated the performance of LOO on the second
half of the test subject’s data. The accuracy in the focused
condition was 80.89 (SD: 9.07) and in the diverted condition
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TABLE I

BASELINE CLASSIFICATION ACCURACIES (%)

TABLE II

AUGMENTED ADAPTIVE CLASSIFICATION ACCURACIES (%)

was 71.43 (SD: 8.47). There was no statistically significant
difference between these results and the results of LOO tested
on the full test data (p-value > 0.05). Hence, the results hold
independently of the test set.

B. Augmented Classification

The difference between adaptive and augmented adaptive
classification is in the data that were used for adapting the
LOO model—in the adaptive approach, a subset of target
subject’s data was used for adaptation, while in the augmented
adaptive approach, this subset was augmented with the gen-
erated samples. Note that the same test set was used in both
methods. Thus, the baseline here is the adaptive method which
is denoted as DCNN-adaptive in Table I. The results of the
augmented adaptive classification using different generative
methods are presented in Table II.

In the focused condition, augmented classification with the
conditional DCGANs significantly outperformed the baseline
with 3.22% improvement (p-value = 0.01), while augmen-

tation with other generative methods did not make a signifi-
cant improvement over the baseline. Nonetheless, performing
ANOVA showed that none of the methods including condi-
tional DCGANs were significantly better than the other one.
In fact, the results were comparable.

In the diverted condition, performing ANOVA showed that
there is a statistically significant difference between the meth-
ods. Pairwise comparisons followed by Benjamini–Hochberg
FDR procedure for multiple tests correction revealed that the
conditional DCGANs outperformed the other methods (cor-
rected p-value < 0.05). There was no statistically significant
difference between the other methods.

The results show that both conditions benefited from the
augmentation with the samples generated by the proposed
method. Applying the novel method resulted in several
improvements in the focused condition. The classification
accuracy increased by 5.45% compared with LOO ( p-value
< 0.01) and 3.22% compared with adaptive ( p-value =
0.01). In addition, the accuracy in all subjects increased to
above 70%. Table III summarizes the confusion matrix. The
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TABLE III

CONFUSION MATRIX

false-positive rate (FPR) decreased to as low as 12.14%, and
the true-positive rate (TPR) increased to as high as 83.21%.
Note that in the focused condition, the results of other gener-
ative methods were comparable with the results of DCGANs.
VAE achieved the highest TPR (86.79%) and conditional
DCGANs achieved the highest specificity (87.86%); however,
these differences were not statistically significant.

The proposed method also enhanced the classification per-
formance in the diverted condition. There was a statistically
significant improvement of 7.32% in classification accuracy
compared with LOO ( p-value < 0.01) and 3.93% compared
with adaptive (p-value = 0.02). The method achieved the
classification accuracy higher or equal to 70% for all subjects.
The TPR was as high as 76.43% and the FPR, 15.71%, was the
lowest among all the discussed methods. Note that although
VAE achieved the highest TPR (85.71%) in the diverted
condition, this method had the lowest specificity (67.14%).

Overall, the results showed that augmentation with condi-
tional DCGANs improved the classification. It is interesting to
see how augmentation has changed the accuracy of each sub-
ject compared with the baseline. Fig. 4 shows the scatter plot
for this comparison. Each circle represents one subject. The
vertical axis is the classification accuracy of the augmented
adaptive with the conditional DCGANs and the horizontal
axis is the accuracy of the baseline (DCNN-adaptive). In the
focused condition, the accuracy for eight subjects increased
and for four subjects did not change. In the diverted condition,
the accuracy for 12 subjects out of 14 increased. Overall,

Fig. 4. Augmented adaptive with the conditional DCGANs versus adaptive.
The abbreviation “acc” stands for accuracy. The augmented adaptive increases
the accuracy for most of the subjects. Note that the number of circles in the
left plot is 12 and in the right plot is 13 instead of 14. This is because some
subjects had the same pair of accuracies in 2 methods and thus their circles
fully overlap (subject pairs of (1, 5) and (6, 13) in condition 1, and (8, 14)
in condition 2).

Fig. 5. Generator and discriminator losses over training. Both losses converge
after approximately 300 iterations.

in both conditions, augmented adaptive achieved a better
performance than adaptive for the majority of the subjects.

C. Adversarial Networks’ Training

In training GANs, achieving the training stability is impor-
tant. The networks’ loss over the iterations is a good indicator
of how the training proceeds. Fig. 5 plots the generator and the
discriminator loss for one randomly selected subject over 1000
iterations. In successful training, it is expected to see a gradual
drop in the generator loss and convergence to constant values
for both networks. These criteria can be seen in Fig. 5; the
generator loss gradually decreases and both losses converge to
constant values after approximately 300 iterations. The same
trend exists in other subjects’ results. A careful choice for
the type and order of the layers, input preparation, single-side
label smoothing for the discriminator loss, and so on yielded
a stable training.

D. Quality of the Generated EEG

Here, the results of the quantitative and qualitative evalua-
tion measures defined in Section III-H to assess the validity
of the artificially generated samples are presented.
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TABLE IV

QUANTITATIVE MEASURES FOR QUALITY EVALUATION

Fig. 6. T-SNE embedding of real and generated samples. Abbreviation “gen”
in the legend stands for “generated.”

1) GAN-Test: The results are reported in Table IV. The
GAN-test was 99.16% in the focused condition and 97.87%
in the diverted condition, and this indicates that the generated
samples are similar to the real samples.

2) KL divergence: The results are presented in Table IV.
In both conditions, the KL divergence between the generated
samples is fairly close to the KL divergence between the real
samples, indicating thereby that the generated samples are as
diverse as the real samples.

3) Visualization: T-SNE is applied to map the high dimen-
sional real (training) and generated EEG samples into 2-D
space. Fig. 6 shows the results. It can be seen that t-SNE
embedding of real MI and generated MI is similar. In addition,
real and generated rest samples have similar distributions.

Besides comparing the generated samples with the training
samples, it is interesting to compare them with the test

Fig. 7. Average spectrogram of the train, test, and generated samples in MI
class. Time 0 shows the movement onset.

samples. In fact, the similarity between the generated and
the test samples will explain the classification improvement
made by the augmentation. For this purpose, the average
spectrogram of the training, generated, and test samples in
channels C5, Cz, and C6 for a random subject is depicted
in Fig. 7. The training set includes the samples from all
subjects excluding the target subject, the generated set includes
the generated samples for the target subject, and the test set
includes the second half of the target subject’s samples that
were not seen during training. Thus, no overlap between the
training, test, and generated sets exists.

There are many similarities between the spectrograms of
the training and generated samples in both conditions. This
is in fact in line with the result of t-SNE in Fig. 6. For
example, in C5 and C6, there is a higher power across low
frequencies around 2 s before the movement (time -2) in the
spectrograms of both training and generated data. There are
also some similarities between the spectrograms of the test
and generated samples. Nevertheless, these are the results of
one subject and the spectrograms may vary across subjects.
Note that since the training set for different subjects varies
only in 40 samples out of 520, this will not substantially
affect the average spectrogram and thus the spectrogram of
training samples for other subjects are similar to that shown
in Fig. 7.

An interesting point is that unlike the focused condition
where the spectrograms of test and training data are similar,
in the diverted condition, they are different. This suggests
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Fig. 8. Temporal distribution of the test samples (real) and samples generated
by the conditional DCGANs. The plots are for the diverted condition, channel
Cz, and class MI. Solid lines show the mean and faded colors show the
standard deviation from the mean.

that the intersubject nonstationarity in the diverted condi-
tion is higher than in the focused condition. The generated
spectrogram in the diverted condition inherits some features
from the test. For example, in C5, it shows relatively high
power above 8 Hz, which is more similar to the test than the
training. To further inspect the generated against the test in this
condition, the temporal distribution of the test and generated
samples in channel Cz is plotted in Fig. 8.

E. Generalizability of the Proposed Method

Augmentation of data set IVa from Berlin BCI competi-
tion III with the proposed method significantly improved the
classification between right hand and foot from 67.57% at
baseline (adaptive) to 71.14% (p-value = 0.01). Note that
since the classifier was not optimized specifically for this data
set, the obtained accuracy may not be high. Nevertheless,
the augmentation with the proposed method improves the
classification. This suggests that the proposed method for EEG
generation is not data-dependent.

V. DISCUSSION

In this article, we have developed a framework based on
DCGANs to generate artificial EEG data from the recorded
examples. The generated data can be used to supplement
the training set for a BCI classifier and, indeed, we have
demonstrated that the enhanced training significantly improved
the performance of detection in challenging conditions. To the
best of our knowledge, this study is among pioneers pre-
senting a method to generate artificial EEG data for BCI
applications. Previously, Lotte [7] explored several generative

methods based on S&R in time and time-frequency domain
and employed them to generate artificial EEG to reduce the
time for the calibration of a BCI system. They reported
that the S&R methods performed better than the generative
method based on analogy. Here, we showed that the condi-
tional DCGANs outperformed the S&R methods, especially
in the diverted condition. Furthermore, we implemented VAE,
which is known as a powerful generative method. The results
showed that the proposed conditional DCGANs significantly
outperformed VAE in the diverted condition.

The artificial samples generated by conditional DCGANs
improved the detection performance because they were gener-
ated specifically to contribute new information about unseen
samples into the train set. To this aim, the GANs were
conditioned on a feature vector learned through DCNN from a
subset of samples. We used several quantitative and qualitative
measures including GAN-test, KL divergence, 2D visualiza-
tion using t-SNE, spectrogram, and temporal distribution to
evaluate the quality of the generated samples. The results
verified that the generated samples were indeed realistic and
diverse.

A common problem associated with GANs is the training
instability [17], [18]. However, the proposed GANs did not
suffer from this problem and both networks gradually con-
verged. Each training iteration on a CPU [Intel(R) Xeon(R)
CPU E5-1650 v2 at 3.5 GHz] took approximately 0.58 s,
and the generation of 520 samples took about 1.24 s. These
numbers slightly varied in each run. Once the networks are
trained, DCGANs can be used to easily generate hundreds
of samples within a few seconds. Importantly, collecting
the same amount of data experimentally would take over
an hour. In addition, the experimental data collection would
require additional work and cognitive burden on the subject.
Another challenge that GANs usually face is the low quality
of the generated samples [18]. In this work, by conditioning
GANs on subject-specific features, the quality of the generated
samples improved.

This article should be considered in the context of some lim-
itations. The proposed framework can be further improved by
applying automatic hyper-parameter selection methods, such
as the one presented in [51]. Moreover, simultaneous opti-
mization of DCNN and conditional DCGANs could improve
the integrity of the framework. It is also worth investigating
to see how the inclusion of the generated samples changes the
features that the classifier learns and whether these changes are
meaningful. Moreover, a deeper analysis could provide a better
understanding of why augmentation with GANs improved the
classification in the diverted condition.

VI. CONCLUSION

This article demonstrated that the proposed GANs-based
approach was able to generate realistic EEG samples for a
specific subject by learning from a pool of other subjects
(intersubject transfer learning). Augmentation of the training
set with these artificially generated samples significantly ben-
efitted the classification tasks, which are known to be chal-
lenging in BCI systems (e.g., classification with distractions).
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The proposed framework can be further extended to other
applications such as restoration of the corrupted EEG and to
online BCI designs.
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