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Clustered Federated Learning: Model-Agnostic
Distributed Multitask Optimization

Under Privacy Constraints
Felix Sattler , Klaus-Robert Müller , Member, IEEE, and Wojciech Samek , Member, IEEE

Abstract— Federated learning (FL) is currently the most widely
adopted framework for collaborative training of (deep) machine
learning models under privacy constraints. Albeit its popularity,
it has been observed that FL yields suboptimal results if the
local clients’ data distributions diverge. To address this issue,
we present clustered FL (CFL), a novel federated multitask
learning (FMTL) framework, which exploits geometric properties
of the FL loss surface to group the client population into clusters
with jointly trainable data distributions. In contrast to existing
FMTL approaches, CFL does not require any modifications to the
FL communication protocol to be made, is applicable to general
nonconvex objectives (in particular, deep neural networks), does
not require the number of clusters to be known a priori, and
comes with strong mathematical guarantees on the clustering
quality. CFL is flexible enough to handle client populations that
vary over time and can be implemented in a privacy-preserving
way. As clustering is only performed after FL has converged to a
stationary point, CFL can be viewed as a postprocessing method
that will always achieve greater or equal performance than
conventional FL by allowing clients to arrive at more specialized
models. We verify our theoretical analysis in experiments with
deep convolutional and recurrent neural networks on commonly
used FL data sets.

Index Terms— Clustering, distributed learning, federated
learning, multi-task learning.

I. INTRODUCTION

FEDERATED learning (FL) [1]–[5] is a distributed train-
ing framework, which allows multiple clients (typically,

mobile or the IoT devices) to jointly train a single deep learn-
ing model on their combined data in a communication-efficient
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way, without requiring any of the participants to reveal their
private training data to a centralized entity or to each other.
FL realizes this goal via an iterative three-step protocol
where, in every communication round t , the clients first
synchronize with the server by downloading the latest master
model θt . Every client then proceeds to improve the down-
loaded model by performing multiple iterations of stochastic
gradient descent with minibatches sampled from its local
data Di , resulting in a weight-update vector

�θ t+1
i = SGD(θ t , Di )− θ t , i = 1, . . . , M. (1)

Finally, all clients upload their computed weight-updates to
the server, where they are aggregated by weighted averaging
according to

θ t+1 = θ t +
M�

i=1

|Di |
|D| �θ t+1

i (2)

to create the next master model (see [1]). The procedure is
summarized in Algorithm 2.

FL implicitly makes the assumption that it is possible for
one single model to fit all client’s data generating distributions
ϕi at the same time. Given a model fθ : X → Y parameterized
by θ ∈ � and a loss function l : Y × Y → R≥0, we can
formally state this assumption as follows.

Assumption 1 (FL): There exists a parameter configuration
θ∗ ∈ � that (locally) minimizes the risk on all clients’ data
generating distributions at the same time

Ri(θ
∗) ≤ min

θ
�θ−θ∗�<ε

Ri (θ), i = 1, . . . , M (3)

for some ε > 0. Hereby

Ri (θ) =
�

l( fθ (x), y)dϕi(x, y) (4)

is the risk function associated with distribution ϕi .
It is easy to see that this assumption is not always satisfied.

Concretely, it is violated if either: 1) the model fθ is not
expressive enough to fit all distributions at the same time or
2) clients have disagreeing conditional distributions ϕi(y|x) �=
ϕ j(y|x). Simple counterexamples for both cases are presented
in Fig. 1.

In the following, we will call a set of clients and their data
generating distributions ϕ congruent (with respect to f and l)
if they satisfy Assumption 1 and incongruent if they do not.
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Fig. 1. Two toy cases in which the FL assumption is violated. Blue points belong to clients that follow ϕ1, while orange points belong to clients that follow
ϕ2. Left: FL assumes that a single model can fit all clients’ data distributions at the same time. Middle: federated XOR-problem. An insufficiently complex
model is not capable of fitting all clients’ data distributions at the same time. Right: if different clients’ conditional distributions diverge, no single model can
fit all distributions at the same time. In all cases, however, the data of clients belonging to the same cluster can be easily separated.

In this work, we argue that Assumption 1 is frequently
violated in real FL applications, especially given the fact that,
in FL, clients: 1) can hold arbitrary non-i.i.d. data, which
cannot be audited by the centralized server due to privacy
constraints and 2) typically run on limited hardware which puts
restrictions on the model complexity. For illustration, consider
the following practical scenarios.

Varying Preferences: Assume a scenario where every client
holds a local data set of images of human faces and the
goal is to train an “attractiveness” classifier on the joint data
of all clients. Naturally, different clients will have varying
opinions about the attractiveness of certain individuals, which
corresponds to disagreeing conditional distributions on all
clients’ data. Assume, for instance, that one half of the client
population thinks that people wearing glasses are attractive,
while the other half thinks that those people are unattractive.
In this situation, one single model will never be able to
accurately predict the attractiveness of glasses-wearing people
for all clients at the same time (confer also Fig. 1, right).

Limited Model Complexity: Assume that a number of clients
are trying to jointly train a language model for next-word
prediction on private text messages. In this scenario, the sta-
tistics of a client’s text messages will likely vary a lot based
on demographic factors, interests, and so on. For instance,
text messages composed by teenagers will typically exhibit
different statistics than those composed by elderly people.
An insufficiently expressive model will not be able to fit the
data of all clients at the same time (see Fig. 1, middle).

Presence of Adversaries: A special case of incongruence
is given if a subset of the client population behaves in an
adversarial manner. In this scenario, the adversaries could
deliberately alter their local data distribution in order to encode
arbitrary behavior into the jointly trained model, thus affecting
the model decisions on all other clients and causing potential
harm [6].

Federated Multitask Learning: The goal in federated mul-
titask learning (FMTL) is to provide every client with a
model that optimally fits its local data distribution. In all
the above-described situations, the ordinary FL framework,

in which all clients are treated equally and only one single
global model is learned, is not capable of achieving this goal.

In order to incorporate the above-presented problems with
incongruent data generating distributions, we suggest general-
izing the conventional FL assumption.

Assumption 2 (CFL): There exists a partitioning
C = {c1, . . . , cK }, �̇K

k=1ck = {1, . . . , M} of the client
population, such that every subset of clients c ∈ C satisfies
the conventional FL assumption.

In this work, we present clustered FL (CFL), a novel algo-
rithmic framework that is able to deal with FMTL problems
that satisfy Assumption 2. By identifying the hidden cluster-
ing structure, CFL allows clients with similar data to profit
from one another while minimizing the harmful interference
between clients with dissimilar data. Our main contributions
are given as follows.

Contributions:
1) We highlight an important practical limitation of conven-

tional FL, namely, incongruent client data distributions
(see Section I).

2) We derive a computationally efficient tool based on the
cosine similarity between the clients’ gradient updates
that provably allows us to infer whether two members
of the client population have different data generating
distributions, thus making it possible for us to infer the
clustering structure C (see Section II-A).

3) We address the question of when to cluster and derive
a criterion that ensures that clustering only takes place
in the incongruent case, where benefits can be expected
(see Section II-B).

4) Based on these theoretical insights, we present the CFL
algorithm (see Section II-C).

5) We investigate several practical concerns (varying client
populations, training with formal privacy guarantees, and
communication of weight-updates instead of gradients)
and demonstrate that CFL can seamlessly adapt to these
conditions/constraints (see Section IV).

6) We evaluate our theoretical findings on large-scale
deep neural networks and demonstrate vast performance
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TABLE I

SUMMARY OF SYMBOLS

improvements over the conventional FL algorithm when
optimizing over incongruent clients (see Section V).

A summary of the most important symbols used throughout
this article is provided in Table I. We additionally refer the
reader to Table II, which gives a detailed comparison between
our proposed method and the related methods for FMTL.

II. CLUSTERED FEDERATED LEARNING

In this section, we address the question of how to solve
distributed learning problems that satisfy Assumption 2 (which
generalizes the FL Assumption 1). This will require us to
identify the correct partitioning C, which, at first glance, seems
like a daunting task, as, under the FL paradigm, the server
does not have access to the clients’ data, their data generating
distributions, or any meta information thereof.

A. Cosine Similarity-Based Bipartitioning

An easier task than trying to directly infer the entire
clustering structure C is to find a correct bipartitioning in the
sense of the following definition.

Definition 1: Let M ≥ K ≥ 2 and

I : {1, . . . , M} → {1, . . . , K }, i 	→ I (i) (5)

be the mapping that assigns a client i to its data generating
distribution ϕI (i). Then, we call a bipartitioning c1∪̇c2 =
{1, . . . , M} with c1 �= ∅ and c2 �= ∅ correct if and only if

I (i) �= I ( j) ∀i ∈ c1, j ∈ c2. (6)

In other words, we call a bipartitioning correct if clients with
the same data generating distribution end up in the same
cluster. It is easy to see that the clustering C = {c1, . . . , ck}
can be obtained after exactly K − 1 correct bipartitions.

In the following, we will demonstrate that there exists an
explicit criterion based on which a correct bipartitioning can be
inferred. To see this, let us first look at the following simplified
FL setting with M clients, in which the data on every client
were sampled from one of two data generating distributions
ϕ1 and ϕ2 such that

Di ∼ ϕI (i)(x, y). (7)

Every client is associated with an empirical risk function

ri (θ) =
�

(x,y)∈Di

lθ ( f (x), y) (8)

which approximates the true risk arbitrarily well if the number
of data points on every client is sufficiently large

ri (θ) ≈ RI (i)(θ). (9)

For demonstration purposes, let us first assume equality in (9).
Then, the FL objective becomes

F(θ) :=
M�

i=1

|Di |
|D| ri (θ) = a1 R1(θ)+ a2 R2(θ) (10)

with a1 = �
i,I (i)=1 |Di |/|D|, a2 = �

i,I (i)=2 |Di |/|D|, and
D = �

i=1,...,M Di . Under standard assumptions, it has been
shown [7], [8] that the FL optimization protocol described
in (1) and (2) converges to a stationary point θ∗ of the FL
objective. In this point, it holds that

0 = ∇F(θ∗) = a1∇R1(θ
∗)+ a2∇R2(θ

∗). (11)

Now, we are in one of the two situations. Either it holds that
∇R1(θ

∗) = ∇R2(θ
∗) = 0; in that case, we have simultane-

ously minimized the risk of all clients. This means that ϕ1 and
ϕ2 are congruent, and we have solved the distributed learning
problem, or, otherwise, it has to hold

∇R1(θ
∗) = −a2

a1
∇R2(θ

∗) �= 0 (12)

and ϕ1 and ϕ2 are incongruent. In this situation, the cosine
similarity between the gradient updates of any two clients is
given by

αi, j : = α(∇ri (θ
∗),∇r j (θ

∗)) := �∇ri (θ
∗),∇r j (θ

∗)�
�∇ri (θ∗)��∇r j (θ∗)�

= �∇RI (i)(θ
∗),∇RI ( j)(θ

∗)�
�∇RI (i)(θ∗)��∇RI ( j)(θ∗)�

=
�

1, if I (i) = I ( j)

−1, if I (i) �= I ( j).
(13)

Consequently, a correct bipartitioning is given by

c1 = {i |αi,0 = 1}, c2 = {i |αi,0 = −1}. (14)

This consideration provides us with the insight that, in a
stationary solution of the FL objective θ∗, we can distinguish
clients based on their hidden data generating distribution by
inspecting the cosine similarity between their gradient updates.
For a visual illustration of the result, we refer to Fig. 2.

If we drop the equality assumption in (9) and allow for an
arbitrary number of data generating distributions K , we obtain
the following generalized version of the result (13).

Theorem 1 (Separation Theorem): Let D1, . . . , DM be the
local training data of M different clients, each data set
sampled from one of K different data generating distributions
ϕ1, . . . , ϕK such that Di ∼ ϕI (i)(x, y). Let the empirical risk
on every client approximate the true risk at every stationary
solution of the FL objective θ∗ subject to

�∇RI (i)(θ
∗)� > �∇RI (i)(θ

∗)− ∇ri(θ
∗)� (15)
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Fig. 2. Left: optimization path of FL with four clients, belonging to
two different clusters with incongruent data distributions. FL converges to a
stationary solution of the FL objective θ∗ where the gradients of the two clients
are of the positive norm and point into opposite directions (13). While the
cosine similarity between gradient updates from the same cluster stays more
or less constant throughout the federated training process, the cosine similarity
between the gradient updates from different clusters quickly decreases.

and define

γi := �∇RI (i)(θ
∗)− ∇ri (θ

∗)�
�∇RI (i)(θ∗)� ∈ [0, 1). (16)

Then, there exists a bipartitioning c∗1∪̇c∗2 = {1, . . . , M} of the
client population such that the maximum similarity between
the updates from any two clients from different clusters can
be bounded from above according to

αmax
cross : = min

c1∪̇c2={1,...,M}
max

i∈c1, j∈c2

α(∇ri (θ
∗),∇r j (θ

∗))

= max
i∈c∗1 , j∈c∗2

α(∇ri (θ
∗),∇r j (θ

∗))

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos

�
π

K − 1

�
Hi, j+sin

�
π

K − 1

�
1−H 2

i, j

if H ≥ cos

�
π

K − 1

�
1 else

(17)

with

Hi, j = −γiγ j +


1− γ 2
i


1− γ 2

j ∈ (−1, 1]. (18)

At the same time, the similarity between the updates from
clients that share the same data generating distribution can be
bounded from below by

αmin
intra := min

i, j
I (i)=I ( j )

α(∇θri (θ
∗),∇θr j (θ

∗)) ≥ min
i, j

I (i)=I ( j )

Hi, j . (19)

Proof of Theorem 1 can be found in the Appendix.
Remark 1: In the case with two data generating distribu-

tions (K = 2), the result simplifies to

αmax
cross = max

i∈c∗1 , j∈c∗2
α(∇θri (θ

∗),∇θr j (θ
∗)) ≤ max

i∈c∗1, j∈c∗2
−Hi, j

(20)

for a certain partitioning, respective

αmin
intra = min

i, j
I (i)=I ( j )

α(∇θri (θ
∗),∇θr j (θ

∗)) ≥ min
i, j

I (i)=I ( j )

Hi, j (21)

Fig. 3. Clustering quality as a function of the number of data generating
distributions K and the relative approximation noise γ. For all values of K
and γ in the green area, CFL will always correctly separate the clients (by
Theorem 1). For all values of K and γ in the blue area, we find empirically
that CFL will correctly separate the clients with probability close to 1.

for two clients from the same cluster. If additionally γi = 0
for all i = 1, . . . , M , then Hi, j = 1, and we retain result (13).
From Theorem 1, we can directly deduce a correct separation
rule.

Corollary 1: If, in Theorem 1, K and γi , i = 1, . . . , M , are
in such a way that

αmin
intra > αmax

cross (22)

then the partitioning

c1, c2 ← arg min
c1∪̇c2=c

�
max

i∈c1, j∈c2

αi, j

�
(23)

is always correct in the sense of Definition 1.
Proof: Set

c1, c2 ← arg min
c1∪̇c2=c

�
max

i∈c1, j∈c2

αi, j

�
(24)

and let i ∈ c1 and j ∈ c2; then

αi, j ≤ αmax
cross < αmin

intra = min
i, j

I (i)=I ( j )

αi, j (25)

and hence, i and j cannot have the same data generating
distribution.

This consideration leads us to the notion of the separation
gap.

Definition 2 (Separation Gap): Given a cosine-similarity
matrix α and a mapping from client to data generating
distribution I , we define the notion of a separation gap

g(α) : = αmin
intra − αmax

cross (26)

= min
i, j

I (i)=I ( j )

αi, j − min
c1∪̇c2=c

�
max

i∈c1, j∈c2

αi, j

�
. (27)

Remark 2: By Corollary 1, the bipartitioning (23) will be
correct in the sense of Definition 1 if the separation gap g(α)
is greater than zero.

Theorem 1 gives an estimate for the similarities in the
absolute worst case. In practice, αmin

intra typically will be much
larger, and αmax

cross typically will be much smaller, especially if
the parameter dimension d := dim(�) is large. For instance,
if we set d = 102 (which is still many orders of magnitude
smaller than typical modern neural networks), M = 3K , and
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assume ∇RI (i)(θ
∗) and ∇RI (i)(θ

∗) − ∇ri (θ
∗) to be normally

distributed for all i = 1, . . . , M; then, experimentally, we find
(see Fig. 3) that

P[“Correct Clustering”] ≥ P[g(α) > 0] ≈ 1 (28)

even for large values of K > 10 and

γmax := max
i=1,...,M

γi > 1. (29)

This suggests that using the cosine similarity criterion (23),
we can readily find a correct bipartitioning c1, c2 even if
the number of data generating distributions is high, and the
empirical risk on every client’s data is only a very loose
approximation of the true risk.

B. Distinguishing Congruent and Incongruent Clients

In order to appropriately generalize the classical FL setting,
we need to make sure to only split up clients with incon-
gruent data distributions. In the classical congruent non-i.i.d.
FL setting described in [1] where one single model can be
learned, performance will typically degrade if clients with
varying distributions are separated into different clusters due to
the restricted knowledge transfer between clients in different
clusters. Luckily, we have a criterion at hand to distinguish
the two cases. To realize this, we have to inspect the gradients
computed by the clients at a stationary point θ∗. When client
distributions are incongruent, the stationary solution of the FL
objective by definition cannot be stationary for the individual
clients. Hence, the norm of the clients’ gradients has to be
strictly greater than zero. If, conversely, the client distributions
are congruent, federated optimization will be able to jointly
optimize all clients’ local risk functions, and hence, the norm
of the clients’ gradients will tend toward zero as we are
approaching the stationary point. Based on this observation,
we can formulate the following criteria that allow us to make
the decision whether to split or not: Splitting should only take
place if it holds that both: 1) we are close to a stationary point
of the FL objective

0 ≤
�����

�
i=1,...,M

Di

|D|∇θri (θ
∗)

����� < ε1 (30)

and 2) the individual clients are far from a stationary point of
their local empirical risk

max
i=1,...,M

�∇θri (θ
∗)� > ε2 > 0. (31)

We will also experimentally verify the clustering criteria (30)
and (31) and give recommendations for the selection of the
hyperparameters ε1 and ε2 in Section V-B.

In practice, we have another viable option to distinguish
the congruent from the incongruent case. As splitting is only
performed after FL has converged to a stationary point θ∗,
the conventional FL solution is always computed as part
of CFL. This means that if, after splitting up the clients,
a degradation in the model performance is observed, it is
always possible to fall back to the FL solution. In this sense,
CFL will always improve the FL performance (or perform
equally well at worst).

Algorithm 1 Optimal Bipartition

1 input: Similarity Matrix α ∈ [−1, 1]M,M

2 outout: bipartitioning c1, c2 satisfying (23)
3 · s ← argsort(−α[:]) ∈ N

M2

4 · C ← {{i}|i = 1, . . . , M}
5 for i = 1, . . . , M2 do
6 · i1 ← si div M; i2 ← si mod M
7 · ctmp ← {}
8 for c ∈ C do
9 if i1 ∈ c or i2 ∈ c then

10 · ctmp ← ctmp ∪ c
11 · C← C \ c
12 end
13 end
14 · C ← C ∪ {ctmp}
15 if |C| = 2 then
16 return C
17 end
18 end

C. Algorithm

CFL recursively bipartitions the client population in a
top–down way: starting from an initial set of clients c =
{1, . . . , M} and a parameter initialization θ0, CFL performs
FL according to Algorithm 2 in order to obtain a stationary
solution θ∗ of the FL objective. After FL has converged,
the stopping criterion

0 ≤ max
i∈c
�∇θri (θ

∗)� < ε2 (32)

is evaluated. If criterion (32) is satisfied, we know that
all clients are sufficiently close to a stationary solution of
their local risk and, consequently, CFL terminates, returning
the FL solution θ∗. If, on the other hand, criterion (32) is
violated, this means that the clients are incongruent, and the
server computes the pairwise cosine similarities α between
the clients’ latest transmitted updates according to (13). Next,
the server separates the clients into two clusters in such a way
that the maximum similarity between clients from different
clusters is minimized

c1, c2 ← arg min
c1∪̇c2=c

�
max

i∈c1, j∈c2

αi, j

�
. (33)

This optimal bipartitioning problem at the core of CFL can
be solved in O(M3) using Algorithm 1. Since, in FL, it is
assumed that the server has far greater computational power
than the clients, the overhead of clustering will typically be
negligible.

As derived in Section II-A, a correct bipartitioning can
always be ensured if it holds that

αmin
intra > αmax

cross.

While the optimal cross-cluster similarity αmax
cross can be easily

computed in practice, computation of the intra cluster similar-
ity requires knowledge of the clustering structure, and hence,
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Algorithm 2 FL

1 Input: initial parameters θ , set of clients c, ε1 > 0
2 repeat
3 for i ∈ c in parallel do
4 · θi ← θ
5 · �θi ← SGD(θi , Di )− θi

6 end
7 · θ ← θ +�

i∈c
|Di |
|Dc|�θi

8 until ��i∈c
|Di |
|Dc|�θi� < ε1

9 return θ

Algorithm 3 CFL

1 Input: initial parameters θ , set of clients c, γmax ∈ [0, 1],
ε2 > 0

2 · θ∗ ← FederatedLearning(θ, c)
3 · αi, j ← �∇ri (θ

∗),∇r j (θ
∗)�

�∇ri (θ∗)��∇r j (θ∗)� , i, j ∈ c

4 · c1, c2 ← arg minc1∪̇c2=c(maxi∈c1, j∈c2 αi, j )
5 · αmax

cross ← maxi∈c1, j∈c2 αi, j

6 if maxi∈c �∇ri (θ
∗)� ≥ ε2 and


1−αmax

cross
2 > γmax then

7 · θ∗i , i ∈ c1 ← ClusteredFederatedLearning(θ∗, c1)
8 · θ∗i , i ∈ c2 ← ClusteredFederatedLearning(θ∗, c2)
9 else

10 · θ∗i ← θ∗, i ∈ c
11 end
12 return θ∗i , i ∈ c

αmin
intra can only be estimated using Theorem 1 according to

αmin
intra ≥ min

i, j
I (i)=I ( j )

−γiγ j +


1− γ 2
i


1− γ 2

j (34)

≥ 1− 2γ 2
max. (35)

Consequently, we know that the bipartitioning will be correct
if

γmax <

�
1− αmax

cross

2
(36)

independent of the number of data generating distributions K .
This criterion allows us to reject bipartitionings, based on our
assumptions on the approximation noise γmax (which is an
interpretable hyperparameter).

If criterion (36) is satisfied, CFL is recursively reapplied to
each of the two separate groups starting from the stationary
solution θ∗. Splitting recursively continues on until (after at
most K−1 recursions) none of the subclusters violate the stop-
ping criterion anymore; at that point, all groups of mutually
congruent clients C = {c1, . . . , cK } have been identified, and
the CFL problem characterized by Assumption 2 is solved. The
communication burden of CFL, thus, increases at most linearly
with the number of splits only after the FL solution is reached.
The entire recursive procedure is presented in Algorithm 3.
A schematic illustration is given in Fig. 4.

Fig. 4. Schematic overview over the CFL algorithm. By recursively
bipartitioning the client population into subgroups of maximum dissimilarity,
CFL produces a hierarchy of models of increasing specificity.

III. RELATED WORK

FL [1], [2], [4], [5], [11], [12] is currently the dominant
framework for distributed training of machine learning models
under communication and privacy constraints. FL assumes
the clients to be congruent, i.e., that one central model
can fit all client’s distributions at the same time. Different
authors have investigated the convergence properties of FL
in congruent i.i.d. and non-i.i.d. scenarios: Lin et al. [13],
Sattler et al. [14], [15], and Zhao et al. [16] performd an
empirical investigation and Li et al. [7], Sahu et al. [8], Jiang
and Agrawal [17], and Yu et al. [18] proved convergence
guarantees. As argued in Section I, conventional FL is not able
to deal with the challenges of incongruent data distributions.
Other distributed training frameworks [19]–[22] are facing the
same issues.

The natural framework for dealing with incongruent data is
multitask learning [23]–[25]. An overview of recent techniques
for multitask learning in deep neural networks can be found
in [26]. However, all of these techniques are applied in a
centralized setting in which all data reside at one location
and the server has full control over and knowledge about
the optimization process. Smith et al. [9] presented MOCHA
that extends the multitask learning approach to the FL set-
ting, by explicitly modeling client similarity via a correlation
matrix. However, their method relies on alternating biconvex
optimization and is, thus, only applicable to convex objective
functions and limited in its ability to scale to massive client
populations. Corinzia and Buhmann [27] modeled the con-
nectivity structure between clients and server as a Bayesian
network and performed variational inference during learning.
Although their method can handle nonconvex models, it is
expensive to generalize to large federated networks as the
client models are refined sequentially.

Finally, Ghosh et al. [10] proposed a clustering approach,
similar to the one presented in this article. However, their
method differs from ours in the following key aspects: most
significantly, they use l2-distance instead of cosine similarity
to determine the distribution similarity of the clients. This
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TABLE II

QUALITATIVE COMPARISON BETWEEN THE METHODS FOR FMTL

approach has the severe limitation that it only works if
the client’s risk functions are convex and the minima of
different clusters are well separated. Their method also is
not able to distinguish congruent from incongruent settings.
This means that the method will incorrectly split up clients in
the conventional congruent non-i.i.d. setting described in [1].
Furthermore, their approach is not adaptive in the sense that
the decision of whether to cluster or not is made already after
the first communication round. In contrast, our method can be
applied to arbitrary FL problems with nonconvex objective
functions. We also note that we have provided theoretical
considerations that allow a systematic understanding of the
novel CFL framework. For a detailed qualitative comparison
between FMTL methods, we refer to Table II.

IV. IMPLEMENTATION CONSIDERATIONS

In this section, we consider the practical implementation
details of our method. Concretely, we will demonstrate that
CFL can be implemented without making modifications to the
FL communication protocol and without compromising the
privacy of the participating clients. We will also demonstrate
that our method is flexible enough to handle client populations
that vary over time.

A. Weight-Updates as Generalized Gradients

Theorem 1 makes a statement about the cosine similarity
between the gradients of the empirical risk function. In FL,
however, due to constraints on the communication budged
of the client devices, instead, commonly weight-updates,
as defined in (1), are computed and communicated [1]. In order
to deviate as little as possible from the classical FL algorithm,
it would, hence, be desirable to generalize result 1 to weight-
updates. It is commonly conjectured (see [28]) that accumu-
lated minibatch gradients approximate the full-batch gradient
of the objective function. Indeed, for a sufficiently smooth loss
function and low learning rate, a weight-update computed over
one epoch approximates the direction of the true gradient by
the Taylor expansion. Given a split�

τ=0,...,nb−1

Dτ = D (37)

of a clients’ data D into nb disjoint batches, we have, after
one epoch of SGD

�θ = SGD(θ0, D) − θ0

= −
nb−1�
τ=0

η∇θr(θτ , Dτ )

≈ −
nb−1�
τ=0

η∇θr(θ0, Dτ ) = −η∇θr(θ0, D) (38)

with

θτ = θτ−1 − η∇θr(θτ−1, Dτ−1), τ > 0. (39)

In the remainder of this work, we will compute cosine simi-
larities between weight-updates instead of gradients according
to

αi, j := ��θi ,�θ j�
��θi���θ j� , i, j ∈ c. (40)

Our experiments in Section V will demonstrate that comput-
ing cosine similarities based on weight-updates, in practice,
surprisingly achieves even better separations than computing
cosine similarities based on gradients.

B. Preserving Privacy

Every machine learning model carries information about the
data it has been trained on. For example, the bias term in the
last layer of a neural network will typically carry information
about the label distribution of the training data. Different
authors have demonstrated that information about a client’s
input data (“x”) can be inferred from the weight-updates that
it sends to the server via model inversion attacks [29]–[33].
In privacy-sensitive situations, it might be necessary to prevent
this type of information leakage from clients to the server
with mechanisms, such as the ones presented in [3]. Luckily,
CFL can be easily augmented with an encryption mechanism
that achieves this end. As both the cosine similarity between
two clients’ weight-updates and the norms of these updates
are invariant to orthonormal transformations P (such as the
permutation of the indices)

��θi ,�θ j�
��θi���θ j� =

�P�θi , P�θ j �
�P�θi��P�θ j� (41)
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a simple remedy is, for all clients, to apply such a transforma-
tion operator to their updates before communicating them to
the server. After the server has averaged the updates from all
clients and broadcasted the average back to the clients, they
simply apply the inverse operation

1

|c|
�
i∈c

�θi = P−1

�
1

|c|
�
i∈c

P�θi

�
(42)

and the FL protocol can resume unchanged. Other multitask
learning approaches require direct access to the client’s data
and, hence, cannot be used together with encryption, which
means that CFL has a distinct advantage in privacy-sensitive
situations.

C. Varying Client Populations and Parameter Trees

Up until now, we always made the assumption that all
clients participate from the beginning of training. However,
CFL is flexible enough to handle client populations that vary
over time.

In order to incorporate this functionality, the server, while
running CFL, needs to build a parameter tree T = (V , E) with
the following properties.

1) The tree contains a node v ∈ V for every (intermediate)
cluster cv computed by CFL.

2) Both cv and the corresponding stationary solution θ∗v
obtained by running the FL Algorithm 2 on cluster cv

are cached at node v.
3) At the root of the tree. vroot resides the FL solution over

the entire client population with cvroot = {1, . . . , M}.
4) If the cluster cvchild was created by bipartitioning the

cluster cvparent in CFL, then the nodes vparent and vchild

are connected via a directed edge e ∈ E .
5) At every edge e(vparent → vchild), the presplit

weight-updates of the children clients

�e =
�

SGD
�
θ∗vparent

, Di

�
− θv∗parent

|i ∈ cvchild

�
(43)

are cached.

An exemplary parameter tree is shown in Fig. 5. When a new
client joins the training, it can get assigned to a leaf cluster
by iteratively traversing the parameter tree from the root to
a leaf, always moving to the branch that contains the more
similar client updates according to Algorithm 4.

Another feature of building a parameter tree is that it
allows the server to provide every client with multiple models
at varying specificity. On the path from the root to leaf,
the models get more specialized with the most general model
being the FL model at the root. Depending on the application
and context, a CFL client could switch between the models of
different generality. Furthermore, a parameter tree allows us
to ensemble multiple models of different specificity together.
We believe that investigations along those lines are a promising
direction for future research.

Putting all pieces from the previous sections together,
we arrive at a protocol for general privacy-preserving CFL
that is described in Algorithm 5.

Fig. 5. Exemplary parameter tree created by CFL. At the root node resides,
the conventional FL model, obtained by converging to a stationary point θ∗
of the FL objective over all clients {1, . . . , M}. In the next layer, the client
population has been split up into two groups, according to their cosine
similarities, and every subgroup has again converged to a stationary point
θ∗0 respective θ∗1 . Branching continues recursively until no stationary solution
satisfies the splitting criteria. In order to quickly assign new clients to a leaf
model, at each edge e of the tree, the server caches the presplit weight-updates
�e of all clients belonging to the two different subbranches. This way, the new
client can be moved down the tree along the path of the highest similarity.

Algorithm 4 Assigning New Clients to a Cluster

1 Input: new client with data Dnew, parameter tree
T = (V , E)

2 · v ← vroot

3 while |Children(v)| > 0 do
4 · v0, v1 ← Children(v)
5 · �θnew ← SGD(θ∗v , Dnew)− θ∗v
6 · α0 ← max�θ∈�(v→v1)

α(�θnew,�θ)

7 · α1 ← max�θ∈�(v→v2)
α(�θnew,�θ)

8 if α0 > α1 then
9 · v ← v0

10 else
11 · v ← v1

12 end
13 end
14 return cv , θ∗v

V. EXPERIMENTS

A. Practical Considerations

In Section II-A, we showed that the cosine similarity
criterion does distinguish different incongruent clients under
three conditions: 1) FL has converged to a stationary point
θ∗; 2) every client holds enough data subject to the empirical
risk approximates the true risk; and 3) cosine similarity is
computed between the full gradients of the empirical risk.
In this section, we will demonstrate that, in practical problems,
none of these conditions have to be fully satisfied. Instead,
we will find that CFL is able to correctly infer the clustering
structure even if clients only hold small data sets and are
trained to an approximately stationary solution of the FL
objective. Furthermore, we will see that cosine similarity can
be computed between weight-updates instead of full gradients,
which even improves the performance.
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Algorithm 5 CFL With Privacy Preservation and Weight-
Updates

1 input: initial parameters θ0, splitting parameters
ε1, ε2 > 0, empirical risk approximation error bound
γmax ∈ [0, 1), number of local iterations/epochs n

2 outout: improved parameters on every client θi

3 init: set initial clusters C = {{1, . . . , M}}, set initial
models θi ← θ0 ∀i = 1, . . . , m, set initial update
�θc ← 0 ∀c ∈ C, clients exchange random seed to create
permutation operator P (optional, otherwise set P to be
the identity mapping)

4 while not converged do
5 for i = 1, . . . , M in parallel do
6 Client i does:
7 · θi ← θi + P−1�θc(i)

8 · �θi ← P(SGD(θi , Di )− θi)
9 end

10 Server does:
11 · Ctmp ← C
12 for c ∈ C do
13 · �θc ← 1

|c|
�

i∈c �θi

14 if ��θc� < ε1 and maxi∈c ��θi� > ε2 then
15 · αi, j ← ��θi ,�θ j �

��θi���θ j�
16 · c1, c2 ← arg minc1∪̇c2=c(maxi∈c1, j∈c2 αi, j )
17 · αmax

cross ← maxi∈c1, j∈c2 αi, j

18 if γmax <


1−αmax
cross

2 then
19 · Ctmp ← (Ctmp \ c) ∪ c1 ∪ c2

20 end
21 end
22 end
23 · C ← Ctmp

24 end
25 return θ

In the experiments of this section, we consider the following
FL setup. All experiments are performed on either the MNIST
[34] or CIFAR-10 [35] data set using M = 20 clients, each
of which belonging to one of K = 4 clusters. Every client is
assigned an equally sized random subset of the total training
data. To simulate an incongruent clustering structure, every
clients’ data are then modified by randomly swapping out
two labels, depending on which cluster a client belongs to.
For example, in all clients belonging to the first cluster, data
points labeled as “1” could be relabeled as “7” and vice versa,
in all clients belonging to the second cluster “3” and “5,”
could be switched out in the same way, and so on. This
relabeling ensures that both ϕ(x) and ϕ(y) are approximately
the same across all clients, but the conditionals ϕ(y|x) diverge
between different clusters. We will refer to this as “label-swap
augmentation” in the following. In all experiments, we train
multilayer convolutional neural networks and adopt a standard
FL strategy with three local epochs of training. We report the
separation gap (see Definition 2)

g(α) := αmin
intra − αmax

cross (44)

Fig. 6. Separation gap g(α) as a function of the number of data points
on every client for the label-swap problem on MNIST and CIFAR. From
Corollary 1, we know that CFL will always find a correct bipartitioning if
g(α) > 0. On MNIST, this is already satisfied if clients hold as little as 20 data
points if weight-updates are used for the computation of the similarity α.

which, according to Corollary 1, tells us whether CFL will
correctly bipartition the clients

g(α) > 0⇒ “Correct Clustering.” (45)

Number of Data Points: We start out by investigating the
effects of data set size on the cosine similarity. We randomly
subsample from each client’s training data to vary the number
of data points on every client between 10 and 200 for MNIST
and 100 and 2400 for CIFAR. For every different local data
set size, we run FL for 50 communication rounds; after that,
training progress has come mostly to halt, and we can expect
to be close to a stationary point. After round 50, we compute
the pairwise cosine similarities between the weight-updates
and the separation gap g(α). The results are shown in Fig. 6.
As expected, g(α) grows monotonically with increasing data
set size. On the MNIST problem, as little as 20 data points
on every client are sufficient to achieve correct bipartitioning
in the sense of Definition 1. On the more difficult CIFAR
problem, a higher number of around 500 data points is
necessary to achieve correct bipartitioning.

Proximity to Stationary Solution: Next, we investigate the
importance of proximity to a stationary point θ∗ for the
clustering. Under the same setting as in the previous experi-
ment, we reduce the number of data points on every client
to 100 for MNIST and 1500 for CIFAR and compute the
pairwise cosine similarities and the separation gap after each
of the first 50 communication rounds. The results are shown
in Fig. 7. Again, we see that the separation quality monoton-
ically increases with the number of communication rounds.
On MNIST and CIFAR, as little as 10 communication rounds
are necessary to obtain a correct clustering.

Weight-Updates Instead of Gradients: In both the above-
mentioned experiments, we computed the cosine similarities
α based on either the full gradients

αi, j = �∇θri (θ),∇θr j (θ)�
�∇θri (θ)��∇θr j (θ)� (“Gradient”) (46)

or federated weight-updates

αi, j = ��θi ,�θ j�
��θi���θ j� (“Weight-Update”) (47)
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Fig. 7. Separation gap g(α) as a function of the number of communication
rounds for the label-swap problem on MNIST and CIFAR. The separation
quality monotonically increases with the number of communication rounds
of FL. Correct separation in both cases is already achieved after around ten
communication rounds if α is computed using weight-updates.

over three epochs. Interestingly, weight-updates seem to pro-
vide even better separation g(α) with fewer data points and
at a greater distance to a stationary solution. This comes in
very handy as it allows us to leave the FL communication
protocol unchanged. In all following experiments, we will
compute cosine similarities based on weight-updates instead
of gradients.

B. Distinguishing Congruent and Incongruent Clients

In this section, we experimentally verify the validity of
the clustering criteria (30) and (31) in an FL experiment on
MNIST with two clients holding data from incongruent and
congruent distributions. In the congruent case, client one holds
all training digits “0” to “4,” and client two holds all training
digits “5” to “9.” In the incongruent case, both clients hold
a random subset of the training data, but the distributions are
modified according to the “label swap” rule described earlier.
Fig. 8 shows the development of the average update norm [see
(30)] and the maximum client norm [see (31)] over the course
of 1000 communication rounds. As predicted by the theory,
in the congruent case, the maximum client norm converges
to zero, while, in the incongruent case, it stagnates and even
increases over time. In both cases, the average update norm
tends to zero, indicating convergence to a stationary point
(see Fig. 8).

The considerations in this section lead us to the following
recommendations regarding the selection of the hyperparame-
ters ε1 and ε2.

1) As the quality of the clustering improves with proximity
to a stationary solution (see Fig. 7), the value for ε1

should be set as small as the run-time restrictions allow.
A good rule of thumb is to set it to around a tenth of the
maximum average update norm ε1 ≈ maxt ��θ t

c�/10.
2) The value of ε2 should be set in accordance with

the number of available clients and/or prior knowledge
on the heterogeneity of the client data. The smaller
the value of ε2, the more likely it is that the client
population will be separated by CFL. In our experiments,
we obtained good results by setting ε2 ∈ [ε1, 10ε1].

Fig. 8. Experimental verification of the norm criteria (31) and (30). Displayed
is the development of gradient norms over the course of 1000 communication
rounds of FL with two clients holding data from incongruent (left) and
congruent distributions (right). In both cases, FL converges to a stationary
point of F(θ), and the average update norm (30) goes to zero. In the congruent
case, the maximum norm of the client updates (31) decreases along with the
server update norm, while, in contrast in the incongruent case, it stagnates
and even increases.

C. Clustered Federated Learning

In this section, we apply CFL as described in Algorithm 5
to different FL setups that are inspired by our motivating
examples in the introduction. In all experiments, the clients
perform three epochs of local training at a batch size of 100 in
every communication round.

Image Classification on CIFAR-10: We split the CIFAR-
10 training data randomly and evenly among M = 20 clients,
which we group into K = 4 different clusters. All clients
belonging to the same cluster apply the same random permu-
tation Pc(i) to their labels such that their modified training and
test data are given by

D̂i = {(x, PI (i)(y))|(x, y) ∈ Di } (48)

respective

ˆDtest
i = {(x, PI (i)(y))|(x, y) ∈ Dtest}. (49)

The clients then jointly train a five-layer convolutional neural
network on the modified data using CFL with three epochs
of local training at a batch size of 100. Fig. 9 (top) shows
the joint training progression: In the first 50 communication
rounds, all clients train one single model together, following
the conventional FL protocol. After these initial 50 rounds,
training has converged to a stationary point of the FL objec-
tive, and the client test accuracies stagnate at around 20%.
Conventional FL would be finalized at this point. At the
same time, we observe (see Fig. 9, bottom) that a distinct
gap g(α) = αmin

intra − αmax
cross has developed ( 1�), indicating

an underlying clustering structure. In communication round
50, the client population is, therefore, split up for the first
time, which leads to an immediate 25% increase in validation
accuracy for all clients belonging to the “purple” cluster that
was separated out 2�. Splitting is repeated in communication
rounds 100 and 150 until all clusters have been separated, and
g(α) has dropped to below zero in all clusters ( 3�), which
indicates that clustering is finalized. At this point, the accuracy
of all clients has more than doubled the one achieved by the FL
solution and is now at close to 60% 4�. This underlines that,
after standard FL, our novel CFL can detect the necessity for
subsequent splitting and clustering that enable arriving at a sig-
nificantly higher performance. In addition, the cluster structure
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Fig. 9. CFL applied to the “permuted labels problem” on CIFAR with
20 clients and four different permutations. Top: accuracy of the trained
model(s) on their corresponding validation sets. Bottom: separation gaps g(α)
for all different clusters. After an initial 50 communication rounds, a large
separation gap has developed, and a first split separates the purple group
of clients, which leads to an immediate drastic increase of accuracy for these
clients. In communication rounds 100 and 150, this step is repeated until all
clients with incongruent distributions have been separated. After the third split,
the model accuracy for all clients has more than doubled, and the separation
gaps in all clusters have dropped to below zero, which indicates that the
clustering is finalized.

Fig. 10. CFL applied to the Ag-News problem. Top: perplexity achieved by
the different clients on their local test set (lower is better). The clients are
separated in communication rounds 30, 60, and 90. After the final separation,
the perplexity of all clients on their local test set has dropped to less
than 36, while the FL solution (black dotted) still stagnates at a perplexity
of 42.

found can potentially be illuminating as it provides interesting
insight into the composition of the complex underlying data
distribution.

Language Modeling on Ag-News: The Ag-News corpus is
a collection of 12 0000 news articles belonging to one of
the four topics “World,” “Sports,” “Business,” and “Sci/Tech.”
We split the corpus into 20 different subcorpora of the same
size, with every subcorpus containing only articles from one
topic and assign every corpus to one client. Consequently,
the clients form four clusters based on what type of articles
they hold. Every client trains a two-layer LSTM network to
predict the next word on its local corpus of articles. Fig. 10
shows 100 communication rounds of multistage CFL applied
to this distributed learning problem. As we can see, FL again
converges to a stationary solution after around 30 communi-
cation rounds. At this solution, all clients achieve a perplexity
of around 43 on their local test set. After the client population
has been split up in communication rounds 30, 60, and 90,
the four true underlying clusters are discovered. After the
100th communication round, the perplexity of all clients has
dropped to less than 36. The FL solution, trained over the
same amount of communication rounds, still stagnates at an
average perplexity of 42.

VI. CONCLUSION

In this article, we presented CFL, a framework for FMTL
that can improve any existing FL framework by enabling the
participating clients to learn more specialized models. CFL
makes use of our theoretical finding that (at any stationary
solution of the FL objective) the cosine similarity between the
weight-updates of different clients is highly indicative of the
similarity of their data distributions. This crucial insight allows
us to provide strong mathematical guarantees on the clustering
quality under mild assumptions on the clients and their data,
even for arbitrary nonconvex objectives.

We demonstrated that CFL can be implemented in a
privacy-preserving way and without having to modify the FL
communication protocol. Moreover, CFL is able to distinguish
situations in which a single model can be learned from the
clients’ data from those in which this is not possible and only
separates clients in the latter case.

Our experiments on convolutional and recurrent deep
neural networks show that CFL can achieve drastic improve-
ments over the FL baseline in terms of classification accu-
racy/perplexity in situations where the clients’ data exhibit a
clustering structure.

Finally, we note that our work also exposes a new privacy
issue in FL as it demonstrates that the information about
client data similarity can be inferred from their weight-updates.
We argue that the privacy loss inflicted is tolerable in most
situations as the mere knowledge of client similarity does
not reveal anything about the clients’ data. Nevertheless,
this fact should be considered when implementing FL for
privacy-sensitive applications.

In future work, we will explore to what extent CFL can
be used in conjunction with differential privacy mechanisms
[36], [37], as well as parameter update compression meth-
ods [21], [38]–[40]. Furthermore, it would be interesting to
study explainable AI techniques [41], [42] also in the context
of (clustered) FL.
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