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Abstract— Studies of structural connectivity at the synaptic
level show that in synaptic connections of the cerebral cortex,
the excitatory postsynaptic potential (EPSP) in most synapses
exhibits sub-mV values, while a small number of synapses exhibit
large EPSPs (� 1.0 [mV]). This means that the distribution
of EPSP fits a log-normal distribution. While not restricting
structural connectivity, skewed and long-tailed distributions have
been widely observed in neural activities, such as the occur-
rences of spiking rates and the size of a synchronously spiking
population. Many studies have been modeled this long-tailed
EPSP neural activity distribution; however, its causal factors
remain controversial. This study focused on the long-tailed EPSP
distributions and interlateral synaptic connections primarily
observed in the cortical network structures, thereby having con-
structed a spiking neural network consistent with these features.
Especially, we constructed two coupled modules of spiking neural
networks with excitatory and inhibitory neural populations
with a log-normal EPSP distribution. We evaluated the spiking
activities for different input frequencies and with/without strong
synaptic connections. These coupled modules exhibited inter-
mittent intermodule-alternative behavior, given moderate input
frequency and the existence of strong synaptic and intermodule
connections. Moreover, the power analysis, multiscale entropy
analysis, and surrogate data analysis revealed that the long-tailed
EPSP distribution and intermodule connections enhanced the
complexity of spiking activity at large temporal scales and
induced nonlinear dynamics and neural activity that followed
the long-tailed distribution.

Index Terms— Log-normal distribution, long-tailed distribu-
tion, pattern alternation, spiking neural network.

I. INTRODUCTION

RECENT studies using neuroimaging modalities, such
as functional magnetic resonance imaging (fMRI),
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electroencephalography (EEG), and magnetoencephalography
(MEG), to capture brain activity have elucidated the role
of spatiotemporal fluctuations of neural activity in brain
function [1]–[6]. Studies using diffusion tensor imaging with
high spatial resolution have also revealed the complex brain
network structures that produce fluctuations in neural activ-
ity [7]–[10]. Especially, the brain network possesses feedback
loops at multiple hierarchical levels [11] and with complex
characteristics, such as high-degree nodes, high clustering,
short path length, and high centrality [12]–[17]. It has pre-
viously been suggested that these brain network structures
produce the complex activity; accordingly, various models
with spiking neural networks have been proposed [18]–[21]
(review in [9] and [22]). In particular, Riecke et al. [23]
and Shanahan [24] demonstrated that the highly complex
neural activity is induced by the small worldness of synaptic
connections in spiking neural networks.

Moreover, studies of structural connectivity at the
synaptic-level show that the excitatory postsynaptic poten-
tial (EPSP) of most cerebral synapses exhibits sub-mV val-
ues, while a small number of synapses exhibit large EPSPs
(� 1.0 [mV]), i.e., the distribution of EPSP fits a log-normal
distribution [25], [26]. Modeling studies focusing on the
log-normal distribution of EPSPs have described spontaneous
activity [27], [28], which is fluctuated spiking activity that
is sustained even in the absence of external stimulation [20],
[29], [30]. Moreover, Kriener et al. [31] reported that this
spontaneous activity that was induced by the log-normal
distribution of EPSPs exhibited a complex behavior with
slow temporal transitions between bistable activity states.
Recently, Kada et al. [32] and Nobukawa et al. [33] introduced
a spiking neural network with a physiologically observed
duality of a complex synaptic connection depending on the
magnitude of EPSP. Furthermore, we reproduced the complex
spatiotemporal spontaneous activity with multiple states of
neural activity [33].

Physiological experimental studies have revealed that fluc-
tuations of neural activity exhibit spatiotemporal behaviors
with skewed and long-tailed distributions (reviewed in [9]).
In particular, when considering the probability of spiking
rates [34]–[40] and the size of synchronously spiking pop-
ulations [35], [41], a log-normal distribution is exhibited.
In visual perception, when an ambiguous figure with two
different interpretations is presented, the period of dominant
perception (which involves unilateral stimuli interpretation)
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follows a heavy-tailed, unimodal, maximum peak distribution,
such as that of gamma or log-normal distribution [42]–[45]
(reviewed in [46]). In a modeling study of the long-tailed
distribution of neural activity, Kossio et al [47] reproduced the
power-law distribution of the size of neuronal synchronization
(known as neuronal avalanche) by a developing a network
model. Modeling studies of recognition of ambiguous patterns
have focused on fluctuations at the level of the neuron [48],
[49]. For example, we revealed that chaotic neural activity
leads to the emergence of the long-tailed distribution of
residence time using an associative chaotic neural network
model [48]. Furthermore, Kanamaru [49] revealed that the
long-tailed distribution of residence time emerges in multiple
coupled modules composed of spiking neural networks that
exhibit chaotic activity. However, the factors that produce the
characteristic long-tail remain controversial.

Furthermore, recent studies that focused on more physiolog-
ical cortical structures, such as symmetricity of random synap-
tic connections and duality of complex synaptic connectivity,
reported that these structures can reproduce complex spa-
tiotemporal neural activity with slow temporal dynamics [33],
[50], [51]. These slow temporal dynamics might contribute
to the emergence of the long-tailed characteristic of temporal
neural activity. As new candidates for these structures, it is
known that cortical intermicrocircuit lateral connections in lay-
ers 2/3 of visual cortex [52]–[55] induce complex interactions
of neural activity, including various temporal scale dynam-
ics [56]–[58]. Moreover, such interlateral connections are not
restricted to the visual cortex; they have been widely observed
in the cerebral cortex for integrating information processing
among different brain regions [59], [60]. To describe these
complex mutual interactions of neural activity, a model-based
numerical approach with spiking neural networks is considered
appropriate, as it is difficult to apply an analytical approach in
multibody systems with nonlinear dynamical interactions, even
when the Fokker–Planck equations and mean-field approxi-
mations in the spiking neural networks [20], [61]–[63] were
applied.

In this context, we hypothesized that spiking neural net-
works with interlateral and intralateral connections exhibit-
ing a long-tailed EPSP distribution may induce complex
neural activity with the long-tail characteristic of neural
activity. We previously attempted to reproduce the spiking
pattern alternation, given a long-tailed distribution of the
switching period using coupled neural populations (called
“neural modules” in this study) consisting of intramodule
connections with log-normal EPSP distributions and excita-
tory intermodule connections inspired by cortical intermicro-
circuit lateral connections [64]. However, no study to date
has revealed the mechanisms underlying the spiking pattern
alternation, provided a detailed evaluation of the complex-
ity associated with temporal-scale dependence in dynami-
cal spiking activity, or elucidated the conditions required
to generate the long-tailed distribution of switching period
patterns.

Therefore, in this study, we constructed spiking neural
networks composed of two coupled modules with EPSPs
following a log-normal distribution, based on the outcomes

of our previous study [64]. First, we evaluated the spiking
activity by power analysis and synchronization analysis in
cases with and without large EPSPs. Second, we evaluated and
compared the complexity of spiking dynamics and spiking pat-
tern alternation between cases with and without large EPSPs.
Third, we investigated the conditions required to generate the
long-tailed distribution of switching period, in terms of the
frequency of external stimulus and existence of intramodule
connections with EPSPs following a log-normal distribution
and intermodule connections.

II. MATERIAL AND METHODS

A. Spiking Neural Network

As shown in Fig. 1, we used two coupled spiking
neural modules composed of excitatory and inhibitory
neural populations. The excitatory-to-excitatory intramodule
connections had synaptic weights following a log-normal
distribution. Intermodule excitatory-to-excitatory and
excitatory-to-inhibitory connections, which were inspired by
interlateral connections in the cerebral cortex [52]–[55], joined
two modules. We predicted that the spiking activity of each
module suppressed the spiking activity of the other, given
an adequately large magnitude of excitatory-to-inhibitory
connections.

Terame et al. [20] proposed a spiking neural network that
exhibits spontaneous activity using the log-normal distribution
of EPSP. In this study, we employed this same spiking neural
network. In each neuron of this network, the dynamics of the
membrane potential v(t) were given by the conductance, based
on a leaky integrate-and-fire neuron model

dv

dt
= − 1

τm
(v − VL) − gE (v − VE ) − gI (v − VI ) + Iex (1)

if v ≥ Vthr [mV], then v(t) → Vr (2)

where τm , VE , VI , and VL are the membrane decay
constants, and the reversal potentials of the α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor-
mediated excitatory synaptic current, inhibitory synaptic
current, and leakage current, respectively. Iex is an external
input given by 21 · δ(t − tex) [mV], where input time
tex is drawn from a Poisson process with the input rate
� [Hz], for the trigger to produce the spiking activity. The
excitatory/inhibitory synaptic conductances gE(t) and gI (t)
[ms−1] were given by

dgX

dt
= − gX

τs
+

∑

j

G X, j

∑

s j

δ(t − s j − d j), X = E, I (3)

where τs is the decay constant of the excitatory and inhibitory
synaptic conductances. s j , d j , G E, j , and G I, j are spike times
of synaptic input from the j th neuron, synaptic delays, and
weights of excitatory and inhibitory synapses, respectively.

As the parameter sets of neurons, we used VI = −80 [mV],
VL = −70 [mV], Vr = −60 [mV], Vthr = −50 [mV], VE =
0 [mV], τm = 20 [ms] (excitatory neuron), τm = 10 [ms]
(inhibitory neuron), and τs = 2 [ms] [20]. In this study, (3)
was solved using the Euler method, with the size of time step
�t = 0.1 [ms]. The refractory period was set to 1 [ms]. In this
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Fig. 1. (a) Topology of the spiking neural network. In the synaptic connec-
tions labeled by a dotted square, the EPSP follows a log-normal distribution.
(b) Distribution of EPSP for intramodule excitatory-excitatory connections of
the synaptic connections labeled by the dotted square in Fig. 1(a). Upper and
lower parts show semilogarithmic and double-logarithmic charts, respectively.

study, the spiking neural network was simulated using Brian2
(https://brian2.readthedocs.io/en/2.0rc/index.html) [65].

For intramodule connections, the synaptic delays were set
to uniform random values between 0 and 2 [ms]. The synaptic
weights for excitatory-to-inhibitory, inhibitory-to-excitatory,
and inhibitory-to-inhibitory connections were set to constant
values of 0.018, 0.0019, and 0.0025, respectively. This para-
meter set was determined based on [20]. The size of the
module was NE = 5000 for excitatory neurons and NI = 1000
for inhibitory neurons. For intramodule connections, each
neuron was randomly connected with coupling probabilities,
i.e., the probabilities of excitatory and inhibitory connections
were 0.1 and 0.5, respectively.

For intermodule connections, each module was con-
nected by excitatory-to-excitatory and excitatory-to-inhibitory
synapses, whose strengths were G E = 0.05 and 0.021. Each
neuron was randomly connected with coupling probabilities,
i.e., the probability of connections was 0.01. The synaptic
delays were set to uniform random values between 1 and
3 [ms] and between 0 and 2 [ms] for the excitatory-to-
excitatory and excitatory-to-inhibitory connections, respec-
tively.

The amplitudes of EPSP, VEPSP [mV], which represents
increased membrane potential from the resting state, caused
by excitatory synaptic input, were produced by a log-normal
distribution, as follows [20]:

p(x) = exp[−(log x − μ)2/2σ 2]√
2πσ x

(4)

where σ = 1.0 and the mode of the distribution μ − σ 2 =
log 0.2 was set. To remove unrealistic values of VEPSP that
exceeded 14 [mV], a new value was drawn from the distri-
bution. We used this EPSP distribution for the intramodule
excitatory-to-excitatory connections. To confirm the effect of
the long-tail distribution, we compared the spiking activity
between the case with strong synaptic weights (VEPSP >
2 [mV]) and that without them. The synaptic transmissions
failed with EPSP amplitude-dependence, according to the
failing rate: PE = (a/a + VEPSP) (a = 0.1 [mV]) for
excitatory-to-excitatory synaptic intermodule/intramodule con-
nections [20], [26].

To translate VEPSP as an observable value into synaptic
weight G E , we derived the relationship between VEPSP and
G E as follows:

G E = VEPSP/100. (5)

B. Evaluation Index

1) Spiking Rate: To observe temporal behaviors of spiking
activity, we used spiking rates from the excitatory neural
population of # j module r j

E [Hz] and the inhibitory neural
population r j

I [Hz] as follows:

r j
X (t) = 1000

S j
X (t)

�t NX
X = E, I (6)

where S j
E /S j

I indicates the frequency of spikes in the bin of
width �t = 0.1 [ms] in excitatory/inhibitory neural popula-
tions. Using these spiking rates, we measured the maintenance
period of r1

E > r2
E or r2

E > r1
E as the residence time. Here,

the time-series of spiking rate was smoothed by a moving
average with a time window of 100 [ms]. The length of the
time-series was set to 30 [s]. Using five types of seeds for
randomization, we derived five time-series of spiking rates.

2) Power Spectrum Analysis: To analyze the temporal oscil-
lation of spiking activity in the neural populations, power
spectra for the time-series of spiking rates of r i

E,I were
analyzed. The absolute power was calculated for these spectra.
To estimate the power spectrum, we used a periodogram power
spectral density.

3) Synchronization Index for Between Intermod-
ule/Intramodule Neural Populations: In neural systems
composed multiple neural populations, synchronization
among temporal oscillation of spiking activity appears; this
synchronization exhibits nonstationary temporal variability
and frequency-band dependence [56]–[58]. To investigate
this type of synchronization, an instantaneous phase
approach utilizing the Hilbert transformation is widely
utilized [66]–[69]. Therefore, to investigate synchronization
of spiking activity in the intraneural/interneural modules,
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Fig. 2. Time-series of the spiking rate of excitatory and inhibitory neural populations (left) and their respective power spectrum (right) in the case with
strong excitatory synaptic connections. (a) Poisson input spike rate � = 0.1 [Hz]. (b) � = 0.3 [Hz]. (c) � = 2.0 [Hz]. Here, mean values of power and the
upper/lower confidence limits based on standard deviation were calculated from five time-series from different trials. In the � = 0.3 case, a state with high
spiking rate r j

E ≈ 10 [Hz] (called the “activated state” in this study) appears intermittently and alternately between modules #1 and #2 (termed intermittent
intermodule-alternative behavior). This behavior includes slow temporal behavior ([1:5] [Hz]).

we evaluated the phase synchronization (PS) of r i
E,I by using

the PS index

PS = cos(�θ) (7)

where �θ indicates the phase difference between the spiking
rates of r i

E,I ; each phase time-series of spiking rate is obtained
by bandpass filtering with the range [ fmin : fmax] [Hz] and their
Hilbert transformation. The PS ≈ 1.0, 0, and −1.0 correspond
to phase-coherent, nonphase-coherent, and antiphase-coherent

states, respectively. In this study, we focused on PS for the
component [ fmin : fmax] = [10 : 20] [Hz].

4) Multiscale Entropy: The temporal fluctuation of neural
activity, which is observed in experimental observations of
neural activity, such as EEG/MEG, and in the reproduced
temporal oscillation of spiking activity by spiking neural
networks, has been shown to exhibit nonstationary temporal
variability and frequency-band dependence [1]–[6], [33],
[64]. To characterize the complexity of the temporal neural
activity, multiscale entropy (MSE) [70] has been widely
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Fig. 3. (a) Time-series of the spiking rate of excitatory and inhibitory neural populations in the case without strong excitatory synaptic connections. � is set
to 3.0 [Hz] to obtain the mean excitatory spiking rate of r j

E corresponding to that of r j
E in Fig. 2(b), i.e., ≈ 3.0 [Hz] (� = 0.3 [Hz] case). (b) Power spectrum

for the spiking rate r j
E,I . Here, mean values of power and upper/lower confidence limits based on standard deviation were calculated from five time-series

from different trials. The intermittent intermodule-alternative behavior observed in the case with strong synaptic connections (see Fig. 2) does not occur.

utilized [1], [33], [64]. Therefore, to evaluate the
temporal-scale dependence of the complexity in the time
series of r j

E , MSE was employed in this study. MSE is
the sample entropy (SampEn) at each temporal scale factor
τ (τ = 1, 2, . . .). The SampEn for stochastic variables
{x1, x2, . . . , xN } is defined by

hτ (r, m) = − log
Cm+1(r)

Cm(r)
(8)

where Cm(r) indicates the probability of satisfying |xm
i −xm

j | <
r (i �= j , i, j = 1, 2, . . .). xm

i is an m-dimensional vector
xm

i = {xi , xi+1, . . . , xi+m−1}.
In the MSE analysis, the sample entropy hτ (r, m)

was calculated against the temporal coarse-grained series
{x1, x2, . . . , xN }, with the scale factor τ

y(τ )
j = 1

τ

jτ∑

i=( j−1)τ+1

xi . (1 ≤ j ≤ N/τ). (9)

Using the dependence of hτ (r, m) on the scale factor τ ,
the characteristic of the complexity in the time-series of the
excitatory firing rates r j

E was evaluated. In this study, we set
m = 2, r = 0.2 [70], and the scale width to 10 [ms].

5) Surrogate Data Analysis: Recent findings regarding tem-
poral fluctuations of neural activity imply that the structural
network characteristics induce complex temporal neural fluc-
tuation [20], [29]–[33]. Moreover, we previously reported
that this characteristic appears as the deterministic dynamical
activity, instead of stochastic temporal behavior [33]. To inves-
tigate whether the complexity of temporal spiking activity is
produced by a deterministic or stochastic process, we utilized
the surrogate data analysis. We derived the surrogate data by
using iterative amplitude adjusted Fourier transform (IAAFT)
surrogate data analysis for the spiking rate r j

E to examine
whether a nonlinear dynamic process is involved in the spiking
rates [71]. To retain the power spectrum density profile of
the original time-series, 30 iterations were performed [71].
We compared the MSE profile between the original time-series
r j

E and that for IAAFT. Here, using five types of seeds

for randomization, we derived five surrogate data sets per
time-series r j

E and then calculated an average value among
the corresponding SampEn values. To evaluate the differences
between MSE profiles of the original time-series of r j

E and
that for IAAFT, a paired t-test was used. A two-tailed α level
of 0.01 and 0.001 was considered statistically significant.

III. RESULTS

A. Neural Activity in Networks With/Without Strong
Excitatory Synaptic Connections

Fig. 2 (left) shows the time-series of spiking rate r j
E,I , given

strong excitatory synaptic connections when applying the
Poisson input spikes with � = 0.1, 0.3, 2.0 [Hz]. In the � =
0.3 [Hz] case, the spiking rates exhibited greater temporal vari-
ability than the counterparts when applying the Poisson input
spikes with smaller and larger values of � (� = 0.1, 2.0).
In particular, the state with high spiking rate r j

E ≈ 10 [Hz]
(called an “activated state” in this study) appeared intermit-
tently and alternately between modules #1 and #2 (termed
“intermittent intermodule-alternative behavior”). Conversely,
in the case without strong synaptic connections, the large
variability and alternation of spiking rate were not confirmed
(see Fig. 3). These power spectrum densities primarily dis-
tributed from [0:30] [Hz] in both network cases, as shown in
the right-hand side of Figs. 2 and 3. In particular, in the case
with strong excitatory synaptic connections and � = 0.3 [Hz],
the slow frequency component of power ([1:5] [Hz]), which
corresponds to the intermittently alternative behavior observed
in Fig. 2(b), increased in comparison with the other cases.

B. Phase Synchronization Analysis

The intermittent intermodule-alternative behavior was ana-
lyzed with respect to PS. Fig. 4 shows the time-series
of differences in spiking rates for r1

E − r2
E and r1

I − r2
I

and the time-series of phase-synchronization (PS) indexes
betweenintermodule excitatory-excitatory/inhibitory-inhibitory
neural populations (r1

E/r2
E and r1

I /r2
I ) and for intramodule
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Fig. 4. Time-series of the difference in spiking rates of r1
E − r2

E [Hz] and
r1

I − r2
I [Hz] (top two figures) in the case with strong EPSP connections.

Time-series of PS indexes between interneural modules (r1
E /r2

E and r1
I /r2

I )
and intraneural modules (r1

E /r1
I and r2

E /r2
I ) (bottom two figures). (a) � =

0.1 [Hz]. (b) � = 0.3 [Hz]. (c) � = 2.0 [Hz]. These results were calculated
using the spiking rate shown in Fig. 2. In the � = 0.3 [Hz] case, the time-
series r1

E − r2
E and r1

I − r2
I act in opposition. Regarding PS, the phases of

the intramodule-excitatory–inhibitory neural population, corresponding to the
module with r1

E > r2
E or r2

E > r1
E , synchronized (PS ≈ 1.0). Strong PS

between intermodule-inhibitory-inhibitory neural populations was confirmed
(PS ≈ 1.0).

excitatory–inhibitory neural populations (r1
E/r1

I and r2
E/r2

I )
in � = 0.1, 0.3, 2.0 [Hz] cases. For the weak input fre-
quency � = 0.1 [Hz] case, intermodule-alternative behavior
was not confirmed (r1

E − r2
E ≈ 0 [Hz] and r1

I − r2
I ≈

0 [Hz]). The time-series of the PS index almost always
changed the values in −1.0 ≤ PS ≤ 1.0 in inter/intra
modules, i.e., PS did not arise. In the moderate input fre-
quency case � = 0.3 [Hz], there was intermittent alternation
of positive and negative values of r1

E − r2
E and r1

I − r2
I .

Here, the time-series of r1
E − r2

E and r1
I − r2

I behaved in

Fig. 5. Time-series of the difference in spiking rates of r1
E − r2

E [Hz] and
r1

I − r2
I [Hz] (top two figures) in the case without strong EPSP connections.

Time-series of the PS indexes between interneural modules (r1
E /r2

E and r1
I /r2

I )
and intraneural modules (r1

E /r1
I and r2

E /r2
I ) (bottom two figures). These

results were calculated using the spiking rate shown in Fig. 3. The explicitly
intermittent alternations of r1,2

E and r1,2
I were not confirmed, and the period

of synchronization of intramodule-excitatory–inhibitory neural populations
(r1

E /r1
I and r2

E /r2
I ) was shorter in comparison with that in the � = 0.3 [Hz]

case with strong EPSP connection [see Fig. 4(b)].

opposition. That is, activation of the module was induced
by deactivation of the inhibitory neural population within the
module. Regarding PS, we confirmed the tendency of phases
of the intramodule-excitatory–inhibitory neural populations,
corresponding to the module with r1

E > r2
E or r2

E > r1
E ,

to synchronize (PS ≈ 1.0). For the phases of the intermodule-
excitatory-excitatory/intermodule-inhibitory-inhibitory neural
populations, strong PS of intermodule-inhibitory-inhibitory
neural populations was confirmed (PS ≈ 1.0). In the high
input frequency � = 2.0 [Hz] case, the explicitly intermittent
alternations of r1,2

E and r1,2
I were not confirmed, and the period

of synchronization of intramodule-excitatory–inhibitory neural
populations (r1

E/r1
I and r2

E/r2
I ), which were observed in the

� = 0.3 [Hz] case, became shorter. In addition to the case
with strong EPSP connections, the result of the case without
strong EPSP connections is shown in Fig. 5. The explicitly
intermittent alternations of r1,2

E and r1,2
I were not confirmed,

and the period of intramodule-excitatory–inhibitory synchro-
nization (r1

E/r1
I ) and (r2

E/r2
I ) was shorter in comparison with

that of the � = 0.3 [Hz] case with strong EPSP connections
[see Fig. 4(b)].

To elucidate the relationship between absolute power and
PS, the normalized duration of PS (duration rate account-
ing for PS > 0.9) and absolute power were investigated.
Fig. 6(a) shows the scatter plots of the temporal average
of the spiking rate r j

E [Hz] and the absolute power in the
range [10:20] [Hz]. Here, these values were averaged among
modules #1 and #2. The input frequency � was set to
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 2.0 [Hz] in
the case with strong EPSP connections and 1.0, 2.0, 3.0, 4.0,
and 5.0 [Hz] in the case without strong EPSP connections.
Fig. 6(b) shows the scatter plots of the temporal average of
spiking rate r j

E [Hz] and the normalized duration of PS > 0.9
for intramodule-excitatory–inhibitory synchronization under
the same conditions as that in Fig. 6(a). The results indicated
that the power and intramodule-excitatory–inhibitory synchro-
nizations enhanced with increasing excitatory spiking activity



NOBUKAWA et al.: LONG-TAILED CHARACTERISTIC OF SPIKING PATTERN ALTERNATION 3531

Fig. 6. (a) Scatter plots of the temporal average of r j
E and absolute power

in the range [10:20] [Hz]. Here, these values were averaged among modules.
(b) Scatter plots of the temporal average of r j

E and normalized duration
of PS > 0.9 in intraneural modules (r1

E /r1
I and r2

E /r2
I ). (c) Scatter plots

of the temporal average of r j
E and normalized duration of PS > 0.9 in

interinhibitory neural populations (r1
I /r2

I ). The input frequency � is set to
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 2.0 [Hz] in the case with
strong EPSPs and 1.0, 2.0, 3.0, 4.0, and 5.0 [Hz] in the case without strong
EPSPs; typical � values were represented by blue text (case with strong
EPSPs) and red text (case without strong EPSPs). Solid circles indicate
mean values corresponding to the horizontal/vertical labels among five trials.
Horizontal and vertical error bars show their standard deviation. In the case
with strong EPSPs, the absolute power and phase synchronized duration
increased as the temporal average of r j

E increased in comparison with the
cases without strong EPSPs.

in the case with strong EPSP connections; they became higher
at the appropriate input frequency � ≈ 0.3 [Hz] in comparison
with the other � cases, i.e., the oscillation power for spik-
ing rate and intramodule-excitatory–inhibitory synchronization
were strongly correlated with each other. In Fig. 6(c), scatter
plots of the temporal average of the spiking rate r j

E and the
normalized duration of PS > 0.9 for intermodule-inhibitory-
inhibitory synchronization were shown. Here, the condition is

the same as that in Fig. 6(a) and (b). The results showed that
the case with strong EPSP connections accomplished a longer
duration of intermodule-inhibitory-inhibitory synchronization
at the same temporal average of excitatory spiking rate.

C. Multiscale Entropy Analysis

Fig. 7 shows the MSE profile against the time-series of r j
E

for the case with strong synaptic connections (corresponding
to r j

E in Fig. 2). In � = 0.1, 2.0 [Hz] cases, the MSE profiles
exhibited a unimodal maximum peak at approximately τ ≈ 10
(100 [Hz]). However, in the � = 0.3 [Hz] case, the peak
decreased and the values of hτ increased at a larger temporal
scale [τ � 200 (5 [Hz])].

Moreover, we compared the values of hτ in the original
spiking rate r j

E with those in the IAAFT surrogate data. The
hτ values in the case of � = 0.3 [Hz] were significantly lower
at τ ≈ 100 (10 [Hz]) than in the surrogate data produced using
IAAFT. Therefore, it can be interpreted that this MSE profile
in the � = 0.3 [Hz] case reflects a deterministic process of the
spiking neural network. Regarding the case without excitatory
strong synaptic connections, Fig. 8 shows its MSE profile
against the time-series of r j

E , corresponding to Fig. 3. The
same MSE profile occurred as in � = 0.1, 2.0 [Hz] cases
with strong synaptic connections, i.e., a unimodal maximum
peak at approximately τ ≈ 10 (100 [Hz]); temporal scales
τ satisfying significant differences of hτ versus the IAAFT
surrogate data were few.

D. Characteristics of Alternation of Activate and Deactivate
States

Against these time-series of r j
E in both cases with and

without strong synaptic connections, the residence time dis-
tribution was represented, as shown in Fig. 9. In cases with
(� = 0.1, 2.0 [Hz]) and without strong synaptic connections,
the peak value was approximately 20 [ms]. However, in the
case with strong synaptic connections (� = 0.3 [Hz]),
the peak shifted to 220 [ms], and the probability density at
� 220 [ms] increased, i.e., a long-tailed distribution appeared.

IV. CONCLUSION AND DISCUSSION

In this study, we constructed two coupled modules of
spiking neural networks with excitatory and inhibitory
neural populations possessing a log-normal EPSP distribu-
tion. We evaluated spiking activities given different input
frequencies of the Poisson process in the cases with/without
strong EPSP connections. Coupled modules exhibited inter-
mittent intermodule-alternative behavior, given moderate input
frequency and the existence of strong EPSP connections.
In this behavior, the phases of the intramodule-excitatory–
inhibitory neural population in the activated state and that of
the intermodule-inhibitory-inhibitory neural population syn-
chronized. Using the MSE analysis, we revealed that this
intermodule-alternative behavior enhanced the complexity of
spiking activity at larger temporal scales. Furthermore, the sur-
rogate analysis of spiking activity in cases with/without
strong EPSP connections revealed that the complexity at large
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Fig. 7. Dependence of sample entropy hτ on scale factor τ in r j
E in cases with strong excitatory synaptic connections. This condition is same in Fig. 2.

Upper and lower figures represent modules #1 ( j = 1) and #2 ( j = 2). (a) � = 0.1 [Hz]. (b) � = 0.3 [Hz]. (c) � = 2.0 [Hz]. Here, the mean values of
hτ and upper/lower confidence limits based on standard deviation were calculated from five time-series from different trials. Magenta and blue ∗ indicate
cases satisfying p < 0.01, 0.001, respectively, for paired t-tests between the values of hτ of the original r j

E and those of the surrogate data produced using
IAAFT. In the � = 0.3 [Hz] case, the values of hτ increased at a larger temporal scale [τ � 200 (5 [Hz])]. These values were significantly lower at τ ≈ 100
(10 [Hz]) in comparison with the surrogate data produced using IAAFT.

temporal scales was induced by nonlinear neural dynamics.
Furthermore, by comparing the residence time between cases
with and without strong EPSP connections, we revealed
that these strong EPSP connections played a crucial role
in the emergence of the heavy-tailed distribution of this
characteristic.

First, we must consider the reason that the activated state
was induced by a moderate input frequency � = 0.3 [Hz]
in the network with strong EPSP connections. When the
spiking rate of one module increased, the excitatory and
inhibitory spiking activity of this module synchronized, par-
ticularly in the network with strong EPSP connections [see
Fig. 6(b)]. It is known that local interactions between exci-
tatory and inhibitory neurons induce neural oscillations with
high coherence between excitatory and inhibitory neural pop-
ulations [72]–[76], and the size of this synchronized neural
population is expanded under strong EPSP connections [29].
Therefore, it can be interpreted that the activated state of one
module corresponded to the oscillation induced by intramodule
connections between excitatory and inhibitory neural popula-
tions and the existence of strong EPSP connections, whereas
the deactivated state of the other module represented sub-
serviently spiking activity driven by the external input spikes
and spikes from other modules.

Moreover, this oscillation in the excitatory neural population
leads to high phase coherence of interinhibitory-inhibitory
neural populations because both inhibitory neural populations
were always applied via spikes from either module #1’s or #2’s
activated excitatory neural population [see Fig. 6(c)]. Here,
although the activated state of the excitatory neural population
alternated to the other excitatory neural population, the spikes

of the alternating excitatory neural population affected both
inhibitory neural populations. These spikes were the common
input for both inhibitory neural populations; therefore, strong
synchronization of intermodule-inhibitory-inhibitory neural
populations occurred. Many studies have reported that the
synchronization of the inhibitory neural populations supports
cognitive functions involving memory formation and sensory
processing [77], [78] (reviewed in [76]). The synchronization
between interinhibitory-inhibitory neural populations observed
in this study might explain the mechanism for the inhibitory
synchronization. For weak input frequencies, such as the
� = 0.1 [Hz] case in Fig. 4, the excitatory spiking activity
(r i

E ) was too low to induce oscillation and synchronization; in
contrast, disturbance by a large input frequency, such as the
� = 2.0 [Hz] case in Fig. 4, degrades them.

Furthermore, it is necessary to consider why the acti-
vated state alternated between the modules in the intermit-
tent intermodule-alternative behavior. Previous studies have
reported that the log-normal synaptic weight distribution
exhibits large variability in neural activity [9]. Therefore,
highly variable spiking activity can unlock the synchronization
between intramodule excitatory and inhibitory neural popula-
tions. The unlocked state decreases neural oscillations in the
module. This leads to decreased inhibitory spiking activity
in the other module due to decreased excitatory synaptic
inputs; subsequently, the activated state of the other modules
arises. Previous model-based studies that used log-normal
EPSP connections reported that multiple states of neural
activity were constructed, and alternative switching arises [31].
Furthermore, in a study of interlateral connections without
log-normal synaptic weight distribution, alternative switching



NOBUKAWA et al.: LONG-TAILED CHARACTERISTIC OF SPIKING PATTERN ALTERNATION 3533

Fig. 8. Dependence of sample entropy hτ on scale factor τ in r j
E in the case

without strong excitatory synaptic connections. The condition is the same
as that in Fig. 3. Upper and lower figures represent modules #1 ( j = 1)
and #2 ( j = 2). Here, the mean values of hτ and upper/lower confidence
limits based on standard deviation were calculated from five time-series from
different trials. Magenta ∗ indicates the cases satisfying p < 0.01 for paired
t-tests between the values of hτ of the original r j

E and those of the surrogate
data produced using IAAFT. A unimodal maximum peak was present at
approximately τ ≈ 10 (100 [Hz]), and temporal scales τ satisfying significant
differences of hτ versus the IAAFT surrogate data were few. This tendency
was also present for cases with � = 0.1, 2.0 [Hz] and strong synaptic
connections [see Fig. 7(a) and (c)].

was not reported [56]. Moreover, the results of our PS analysis
in the case without strong EPSP connections showed the
same tendency (see Fig. 5). Therefore, the log-normal synaptic
weight distribution has a crucial role in inducing this alterna-
tion. For larger input frequencies (such as � = 2.0 [Hz] case
in Figs. 2 and 4) case with strong EPSP connections, it can
be interpreted that the external high-frequency input becomes
dominant in comparison with the excitatory–inhibitory inter-
action. Therefore, the explicit alternation with a large period
is broken.

The relationship of the MSE profile and the residence
time distribution with the intermittent intermodule-alternative
behavior must be considered. The probability density of res-
idence time at � = 0.3 [Hz] becomes higher than the other
input frequency in the case without strong synapses in the
region � 200 [ms]; SampEn in the temporal scale region
[τ > 20 (corresponding frequency/period: 5 [Hz]/200 [ms])]
becomes higher. This temporal scale region is congruent with
the temporal scale required for the alternatively switching
activated state behavior, as indicated by the power spectrum
analysis. Moreover, the results of the IAAFT surrogate data
analysis indicate that the MSE profile in τ > 20 at � =
0.3 [Hz] reflects a nonlinear deterministic process of the
spiking neural network. This behavior was not confirmed in

the single isolated module case (see Appendix A) or the
case without strong synaptic connections. Therefore, these
alternation behaviors with slow temporal scale dynamics were
induced by intermodule synaptic connections and intramodule
long-tailed synaptic connections.

The application of the results of this study must be consid-
ered. Recently, by the virtue of proposing several methods
of backpropagation for spiking neural networks, the appli-
cation of spiking neural networks to machine learning has
been rapidly progressing [79]–[87]. However, these types of
spiking neural networks do not exhibit complex dynamic
behavior because most do not possess recurrent structures
and use too simple a spiking neuron model. Nevertheless,
Bellec et al. [88] showed that neural dynamics and recurrent
structure might enhance the learning ability of a network.
In addition, Hiratani et al. [89] demonstrated that the irregular
complex spiking behavior produced by the log-normal synaptic
weight distribution may enhance memory recall in a recurrent
spiking neural network. Therefore, the long-tailed distribution
of synaptic weight, which can produce complex temporal-
scale-dependent dynamics, might be utilized to enhance the
ability of machine learning using spiking neural networks.
To achieve this purpose, further evaluation of the function-
ality of neural activity using the log-normal characteristics is
needed.

The limitations of this study must be considered. This study
dealt with intermodule-alternative behavior using a numerical
model-based approach within a spiking neural network. How-
ever, to achieve a general description of this characteristic,
an analytical approach is needed. Although an analytical
approach to a multibody system with nonlinear dynamics is
difficult, the recent progress reported in the studies of the
Fokker–Planck equations in spiking neural networks [90],
[91] might provide an effective solution for this purpose.
In addition, the neural activity in this study was induced
by random input spikes from the Poisson process. However,
a recent study reported that the oscillation of neural activ-
ity in the theta to beta bands frequency range (8–30 Hz)
plays a role in signal transmission among interneural module
connections [58]. Therefore, neural activity driven by these
neural oscillations in coupled modules should be evaluated.
Furthermore, the evaluation of neural activity where EPSPs
follow other long-tailed EPSP distribution is needed. As a part
of a preliminary evaluation, we have confirmed intermittent
intermodule-alternative behavior with large temporal scale
behavior, similar to that observed for log-normal distribution
(see Appendix. B).

We conclude that long-tailed synaptic weight distribution
and intermodule synaptic connections enhance the complexity
of spiking activity at large temporal scales and induce non-
linear dynamics and neural activity following a long-tailed
distribution.

APPENDIX A
NEURAL ACTIVITY IN AN ISOLATED MODULE

Fig. 10 shows the time-series of spiking rates rE and rI in
a single-module case (� = 0.3 [Hz]) where the intramodule
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Fig. 9. Residence time distribution for cases with and without strong
synapses. Here, the probability density was estimated using a gamma distrib-
ution. In the case with strong synaptic connections (� = 0.3 [Hz]), the peak
shifted to 220 [ms], and the probability density at � 220 [ms] increased,
i.e., a long-tailed distribution appeared.

Fig. 10. Time-series of spiking rate rE and rI in a single-module case
(� = 0.3 [Hz]). In this condition, the intermittent intermodule-alternative
behavior, which was observed in the two coupled modules, did not arise.

parameters were set to ensure a long-tailed distribution of
residence time (corresponding to the � = 0.3 [Hz] case
in Fig. 9). In this condition, spiking rates remained approxi-
mately at the applied external input frequency � = 0.3 [Hz],
and the intermittent intermodule-alternative behavior, which
was observed in the case of two coupled modules, did not
arise.

APPENDIX B
NEURAL ACTIVITY IN A CASE WITH ANOTHER

LONG-TAILED EPSP DISTRIBUTION

In addition to log-normal distribution, the gamma distrib-
ution is a typical long-tailed distribution. We evaluated the
neural activity in the spiking neural network with EPSP
amplitudes following gamma distribution given by

p(x) = xα−1e−x/β

βα�(α)
(10)

Fig. 11. (a) Time-series of the spiking rate of excitatory and inhibitory
neural populations in the case for EPSP following a gamma distribution.
(b) Its respective residence time distribution. Here, the probability density was
estimated using a gamma distribution. The probability density at � 220 [ms]
increased more in comparison with the case without strong EPSP connection
in Fig. 9, i.e., a long-tailed distribution appeared.

where �(·) is a gamma function and α and β were shape and
scale parameters. These parameters were set as β = 0.76, α =
0.2/β + 1 ≈ 1.263 to obtain the same mode of p(x) in the
log-normal distribution VEPSP = 0.2 [mV] and, approximately,
the same number of synaptic weights VEPSP > 2 [mV]. The
other conditions were the same as those in the spiking neural
network with log-normal EPSP.

Fig. 11(a) shows the time-series of spiking rate r j
E,I when

applying the Poisson input spikes with � = 0.4 [Hz].
The results show that the intermittent intermodule-alternative
behavior is similar to that where EPSP follows a log-normal
distribution. The residence time distribution is shown
in Fig. 11(b); the probability density at � 200 [ms] is higher in
comparison with the case without strong EPSP connection in
Fig. 9, i.e., a long-tailed distribution appeared.
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