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Image-Based Model Parameter Optimization Using Model-Assisted Generative
Adversarial Networks

Saúl Alonso-Monsalve and Leigh H. Whitehead

Abstract— We propose and demonstrate the use of a model-assisted
generative adversarial network (GAN) to produce fake images that accu-
rately match true images through the variation of the parameters of the
model that describes the features of the images. The generator learns the
model parameter values that produce fake images that best match the true
images. Two case studies show excellent agreement between the generated
best match parameters and the true parameters. The best match model
parameter values can be used to retune the default simulation to minimize
any bias when applying image recognition techniques to fake and true
images. In the case of a real-world experiment, the true images are exper-
imental data with unknown true model parameter values, and the fake
images are produced by a simulation that takes the model parameters
as input. The model-assisted GAN uses a convolutional neural network
to emulate the simulation for all parameter values that, when trained,
can be used as a conditional generator for fast fake-image production.

Index Terms— Fast simulation, generative adversarial networks
(GANs), model-assisted GAN, parameter optimization.

I. INTRODUCTION

Generative adversarial networks (GANs) [1] have been shown to
produce fake images indistinguishable from true images, but these
images are manipulated in an arbitrary way to match the true image.
However, there are many experiments, for example, in experimental
physics, where the features of the true images can be described by
a model that contains a number of parameters (hereafter referred
to as the model parameters). In these cases, the GAN should only
be able to manipulate the images in a way described by the model
parameters to produce accurate and physically motivated fake images.
Considering a set of true images produced by such an experiment,
with fake images produced by an implementation of the model called
the simulation, it is clear that an arbitrary approach to manipulating
the fake images to match the true images is not well motivated as
it disregards any knowledge of the model and the model parameters.
Note that in a real experiment, the true images are experimental data
images, but, here, we will, henceforth, refer to them as true images.

We propose the model-assisted GAN as a solution to this problem.
The approach varies the model parameters p = (p0, . . . , pN ) that
cause well-defined changes in the images, providing new fake images
that better match the true images. A set of true images is produced
with true model parameter vectors pt drawn from a distribution such
that pt ∼ pdata

(
pt

)
since a single choice of pt would produce a set of

identical images. The goal is for the model-assisted GAN to generate
a set of model parameters pbm ∼ pgenerator

(
pbm

)
to produce simulated
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images that best match the true images such that pgenerator

(
pbm

) =
pdata

(
pt

)
. The default simulation for an experiment will typically

have default model parameter values that do not exactly match the
true model parameter values. The parameters pbm ∼ pgenerator

(
pbm

)

can be extracted to update the default simulation model parameters so
that the fake images will more accurately reproduce the true images.
Furthermore, the difference between pgenerator

(
pbm

)
and the default

parameters distribution gives physical insight into the understanding
of the model and the model parameter values that were not correct
in the default simulation. The key advantage of the model-assisted
GAN is that the simulation only needs to be run once, and then, any
number of model parameter optimizations can be performed with
different true data sets very quickly. Another advantage is that any
additional number of fake images can be produced efficiently using
the emulator from the model-assisted GAN.

II. RELATED WORK

To the best of our knowledge, there is no GAN variant in the
literature that aims to generate a vector of parameters that are used
to produce fake images through a defined mapping of the parameters
to an image as opposed to generating the fake images directly.
However, there are some related studies to consider. One example
is the conditional GAN [2] that was used to generate MNIST digits
conditioned on class labels. More recent studies used conditional
GANs for more complex tasks, such as generating aged versions of
people’s faces that preserve their identities [3]. There are also some
novel works that propose a conditional GAN framework that is robust
against forgetting in generative models [4].

During the last few years, some studies successfully learned knowl-
edge constraints from image and text generation [5] that were used
to improve the results over base generative models or to learn dis-
entangled representations in a completely unsupervised manner [6].
In addition, Creswell and Bharath [7] introduced a new inversion
technique to identify attributes of a data set that a trained GAN is
able to model and quantitatively compare the performance of different
generative networks.

Several domains could benefit from the approach we present in this
brief, but its best application is probably in physical experiments [8].
Although GANs have not been broadly used in real-world scientific
experiments, some promising work has been done on the production
of j et images [9], GAN-based calorimeter simulations [10], [11],
and in the production of galaxy images [12]. Contrary to the above-
mentioned studies, the model-assisted GAN that we present in this
brief could be, for instance, used to learn the optimal parameters
needed by a Monte Carlo simulation for mimicking detector images
in physics experiments.

III. NETWORK ARCHITECTURE AND DATA TYPES

A schematic of the model-assisted GAN architecture is shown
in Fig. 1. The three data types (true, simulated, and emulated),
the four neural networks (generator, emulator, discriminator, and
Siamese), and the simulator that forms the architecture are described
in the following. The training and implementation of the network are
also discussed.
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Fig. 1. Overview of the model-assisted GAN.

A. Data Types

There are three m × m pixel image data types.

1) True Data: A set of simulated data with a chosen set of
true parameters pt used to represent an experiment. In a real
experiment, this would be the experimental data with unknown
parameter values that we want to measure.

2) Simulated Data: The output from the custom simulation used
to simulate the experiment.

3) Emulated Data: The output from the emulator that learns to
mimic the custom simulation.

B. Generator

The goal of the generator G is to produce parameters such that the
simulator can use them to create images that cannot be distinguished
from true data images. Contrary to the generator from a traditional
GAN, this generator outputs only the set of parameters p rather than
the completed image. These parameters form the input to both the
simulator and the emulator. In our implementation, G is a multilayer
perceptron (MLP), and its last layer uses a tanh activation function.

C. Simulator

The simulator T , which is specific to each use case, can be
any set of operations that perform a well-defined transformation
from the input model parameters p to an m × m pixel image. The
simulator is not a neural network (or any other type of machine
learning algorithm) but, for example, a Monte Carlo simulation of
an experiment with some default set of model parameter values
that do not necessarily produce fully accurate fake images due to
uncertainties associated with the understanding of the experiment.
Two simulation choices are used in the case studies described in
Sections IV and V.

D. Emulator

The emulator E is a neural network, similar to a generator from
a conditional GAN [2], that learns to mimic the simulator. In other
words, its aim is to generate identical images to those of the simulator
T when both E and T are fed with the same input parameters
p. It is a necessary component of the architecture as it provides
the correct back-propagation (it is not generally possible to calculate
the derivatives of the simulator) needed by the generator to learn the
required model parameter variations. Once the components of the
model-assisted GAN have been trained to produce the optimal set of
parameters, the emulator can be used as a fast simulation technique
since it produces an accurate emulation of the full simulation running
in the simulator step. The specific architecture of the emulator
depends on the complexity of the simulation and the number of
parameters. In our implementation, which is identical for both case
studies, E is a convolutional neural network (CNN) that maps an
input parameter vector p to a 2-D output that represents an emulated
image. The last layer of E uses a tanh activation function.

Fig. 2. Architecture of the Siamese network, containing two identical CNNs
that share the same parameters θ , used to determine the similarity of two
input images.

E. Discriminator

As in regular GANs, the goal of the discriminator D is to
distinguish between true data images and images produced by the
simulator (or images produced by the emulator to speed up the
training process). In our implementation, D is a CNN, and its last
layer uses a sigmoid activation function.

F. Siamese Network

The Siamese network S [13], [14] determines the similarity
between the simulated images and the emulated images (both the
simulator and the emulator are fed with the parameters p from the
generator) and is used to ensure that the images are as identical
as possible. It includes two CNNs that share all their parameters
so that they give the same output for a given input. For the i th
training example, each CNN generates an encoding f (x(i)) (a 128-
length vector) from an input sample x(i); then, the L2-norm of the
differences of both encodings is applied (see Fig. 2). Unlike in face
recognition deep learning tasks [14], [15], this network outputs the
probability of two input images to be identical (same pixel map),
so there is no need to use a triplet loss [16], unless the simulator
T had the ability to output different images (e.g., by introducing
some randomness) from the same parameters p. The last layer of the
Siamese network uses a sigmoid activation function.

G. Training Details

The two main stages of training the model-assisted GAN, each
consisting of two steps, are shown visually in Fig. 3: pretraining and
training.

1) In the pretraining stage, the goal is to learn an emulator distribu-
tion pE (x) that matches the simulator distribution pT (x). The
model learns an emulator network E that generates samples
from the emulator distribution pE by transforming random
parameter set variables prandom(r) into samples E(r) such that
E(r) = T (r), where T (r) are samples that the custom sim-
ulation technique T generates from the simulator distribution
pT by transforming the same random parameter set variables
prandom(r) into the samples. To achieve this, S and E play the
following two-player minimax game [1] with value function
V1(E, S)1:

min
E

max
S

V1(S, E)

= Er∼prandom(r)[log S(T (r), T (r))]
+ Er∼prandom(r)[log(1 − S(T (r), E(r)))]. (1)

The two pretraining steps using randomized input parameters,
normalized between −1 and 1, are as follows.

1The expectation E, or expected value, of some function f (x) with respect
to a probability distribution p(x) is the average, or mean value, that f takes
on when x is drawn from p [17].
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a) The Siamese network is trained to learn the similarity of
the simulated and emulated images.

b) The emulator is trained to learn to create emulated images
that mimic simulated images using the Siamese network
as trained in step one. The goal is that the emulator and
the simulator generate an identical image from all possible
parameter sets.

2) In the training stage, the goal is to learn a generator distribution
pG over parameters p such that the parameters p predicted by
the generator G can be used by the custom simulation technique
T to match the true data distribution pdata(x). The generator
network G generates parameter samples from the generator dis-
tribution pG by transforming random noise variables pnoise(z)
into samples G(z); then, the pretrained network E generates
samples from G(z) in the form of E(G(z)). To achieve this, D
and G play the following two-player minimax game [1] with
value function V2(G, D)1:

min
G

max
D

V2(D, G)

= Ex∼pdata(x)
[log D(x)]

+ Ez∼pnoise(z)[log(1 − D(E(G(z))))]. (2)

The two training steps are as follows.

a) The discriminator is trained to distinguish between true
data images and simulated images. In the standard con-
figuration shown in Fig. 3, E(G(z)) in (2) is replaced by
T (G(z)). In order to speed up the training process and
assuming the pretraining ended successfully, the simulated
images may be replaced by emulated images without
damaging the results.

b) The generator learns to predict model parameters such
that the images from the emulator cannot be distinguished
from the true data.

The architectures of the networks presented earlier were inspired
by DCGANs [18]. The model-assisted GAN has been implemented
in Keras [19] on top of Tensorflow [20], and the code is available at
https://gitlab.cern.ch/salonsom/model-assisted-gan.

In order to enhance the training phase, we use some suggestions
from [21]. We normalize the images between −1 and 1 and use a
tanh activation function as the last layer of both the generator and the
emulator. To stabilize the training and to provide robustness, we use
the label smoothing technique described in [22], the label y is set with
random values between 0.7 and 1.2 for simulated images and random
values from 0.0 to 0.3 for emulated images, and randomly flip a
fraction of simulated and emulated image labels when training the
different networks [23]. We use the stochastic gradient descent (SGD)
optimizer [24] for training the discriminator and the Siamese and the
Adam optimizer [25] for training the generator and the emulator as
suggested in [18].

IV. CASE STUDY 1: FIRST-ORDER POLYNOMIAL IMAGES

Consider an experiment that produces 28×28 pixel images with a
signal consisting of a first-order polynomial with gradient m, constant
c, and extent in the x-direction xsteps defined by the simple equation:
y = mx + c.

The model parameters describing the images are p =(
m, x0, c, xsteps

)
, where x0 is the initial x value, and the effect of

each parameter on the simulated images is easily understood. We
choose a set of true parameter values pt drawn from the Gaussian
distributions with means μi and standard deviation σi , where i is
the index of the parameter in the range 0 to 3. The ranges of the
parameters are used to represent variations from different processes

Fig. 3. Two training phases of the model-assisted GAN. The red dashed
lines enclose the neural network that is trained in each step, and the inner
red boxes correspond to the trainable modules within the neural network
(thus, the weights of the other modules, if any, are frozen). (a) Adversarial
pretraining: The Siamese network learns the similarity between the simulator
and the emulator images; the emulator learns to make emulated data to
mimic simulated data. (b) Adversarial training: The discriminator learns to
distinguish true (or experimental) data from simulated data (or emulated data
to speed up the training); the generator learns to predict parameters p to
produce emulated data that best match the true data.

TABLE I

MEAN AND STANDARD DEVIATION OF THE MODEL PARAMETERS USED

TO MAKE THE TRUE DATA IMAGES AND THOSE FROM THE BEST
MATCH PARAMETERS LEARNED BY THE GENERATOR IN THE FIRST

CASE STUDY

that can lead an experiment to have image-to-image variations in
the data sample. The mean and standard deviation of the parameters
chosen for the true data images are listed in Table I.

The model-assisted GAN was trained with a minibatch size
of 256 on a single 16-GB NVIDIA Tesla V100 GPU. The pretraining
stage was trained for 500k iterations, and the training stage for 30k
iterations. The best match parameters p̄bm, defined as the mean
of the best match parameter values from the generator, and the
corresponding standard deviations are shown in the bottom two rows
of Table I to be in very good agreement with the true data parameters.

Example images from the simulator and emulator are shown
in Fig. 4 for five random parameter sets after 1k, 5k, 10k, 100k,
and 500k pretraining iterations and demonstrate the ability of the
emulator to mimic the simulator. Fig. 5 shows the simulator images
at five stages throughout the training process. In each case, three
simulated images from randomly chosen sets of generated parameters
are shown and compared with three randomly selected true images.
These simulated images should not be identical to the true images as
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Fig. 4. Emulator output (the columns 1–5 show images after 1k, 5k, 10k,
100k, and 500k pretraining iterations, respectively) versus simulator output
(column 6). The rows show the images generated from five arbitrary parameter
sets.

Fig. 5. Generator–simulator output from five random noise vectors (the
columns 1–5 show images after 10, 100, 1k, 10k, and 30k training iterations,
respectively) versus some random true images (column 6).

they do not have identical parameters, but they are representative of
the sample.

V. CASE STUDY 2: CIRCULAR SIGNAL WITH NOISE AND

AMPLITUDE VARIATION

We now consider a more complex example containing model
parameters that include brightness and noise manipulations as well
as topological changes to 28 × 28 pixel images. The topological
description of the signal in the images is

x2 + y2 = r 2 (3)

where r is the radius of the circle. The five model parameters are
p = (x0, y0, r, n, b), where (x0, y0) is the center of the circle, n is the
white noise scale that varies the brightness of the white noise, and b
is the signal brightness. Both n and b are defined as a fraction of the
maximum image brightness. The set of true data model parameter
values pt is produced by drawing from the Gaussian distributions
for each model parameter, as described in Section IV. The mean and
standard deviation of the parameter values chosen for the true data
images are given in Table II.

We used the same training and testing infrastructure described in
Section IV. Since the simulator is more complex than in case study
one, 1M iterations were needed in the pretraining step. The training
step required only 30k iterations, as before.

TABLE II

MEAN AND STANDARD DEVIATION OF THE MODEL PARAMETERS USED TO
PRODUCE THE TRUE DATA IMAGES AND THE CORRESPONDING VAL-

UES FROM THE BEST MATCH PARAMETERS FROM THE GENERATOR

IN THE SECOND CASE STUDY

TABLE III

IMAGE PRODUCTION TIME COMPARISON OF THE SIMULATOR AND THE

EMULATOR FOR EACH CASE STUDY. EACH VALUE SHOWS THE AVER-
AGE TIME OF TEN EXECUTIONS

The mean and standard deviation of the best match parameters from
the trained generator are shown in Table II in comparison to the true
data parameters. Excellent agreement is seen for all five parameters
showing that the model-assisted GAN performs equally well on this
more complex example.

Fig. 6 shows a comparison of the emulator images for five sets of
arbitrarily chosen parameters compared at 12 points in the pretraining
process to the simulated image with the same parameters. The
emulated images are shown to accurately reproduce the simulated
images in this more complex scenario. Fig. 7 shows three randomly
chosen simulated images from different points in the training stage
compared with three randomly chosen true images.

VI. FAST SIMULATION WITH THE EMULATOR

Once trained, the emulator produces images very similar to the
simulation in considerably less time for the same set of input
model parameters p. Table III shows that in both the case studies,
the emulator running on the GPU is much faster than the simulation
and that the emulator execution time is independent of the complexity
of the simulation for a given emulator architecture. The emulator is
also considerably quicker using the CPU for case study two, and it
is only slower for the first case study since the simulation is very
simple, which will not be the case for a real-world experiment. The
emulator could, hence, be used in place of the simulation to allow
for the rapid development of analyses that can be performed without
needing the exact simulated images.

VII. CONCLUSION

We have proposed and demonstrated the use of model-assisted
GANs to produce physically motivated manipulations of the sim-
ulated images through variation of underlying model parameters.
In two case studies presented here, the model-assisted GAN produces
best match parameters pbm ∼ pgenerator( pbm) in excellent agreement
with the true data parameters pt ∼ pdata( pt) and, hence, generates
simulated and emulated images that accurately match the true images.
In a situation with experimental data instead of true data, the best

2The experiments were run on an Intel Xeon CPU E5-2698 v4 @ 2.20 GHz.
3The experiments were run on a 16GB NVIDIA Tesla V100 GPU.
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Fig. 6. Emulator output (the columns 1–12 show images after 1k, 5k, 10k, 20k, 50k, 60k, 70k, 80k, 100k, 200k, 500k, and 1M pretraining iterations,
respectively) versus simulator output (column 13). The rows show the images generated from five arbitrary parameter sets.

Fig. 7. Generator–simulator output from some random noise vectors (the
columns 1–5 show images after 10, 100, 1k, 10k, and 30k training iterations,
respectively) versus some random true images (column 6).

match parameters pbm would be used to update the default simulation
to produce more accurate images that reproduce the experimental data
images. This is critical to minimize biases and ensure the similar
performance of image-recognition techniques applied to simulated
images and data images in experimental situations.

The emulator that is trained as a part of the model-assisted GAN
can be used as a conditional generator to very quickly produce images
very similar to the simulation for a given set of model parameters. The
advantages of this method of image production become increasingly
clear for complex simulations, and the first step of the training shown
in Fig. 3(b) could use the emulator and emulated data in order to
reduce the training time accumulated from using a very complex
simulation.

In the future, we will explore fully realistic applications of the
model-assisted GAN to real experiments in a number of scientific
disciplines, including high-energy physics, for both simulation para-
meter optimization and fast simulations.
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