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Abstract— Hashing offers a desirable and effective solution
for efficiently retrieving the nearest neighbors from large-scale
data because of its low storage and computation costs. One of
the most appealing techniques for hashing learning is matrix
factorization. However, most hashing methods focus only on
building the mapping relationships between the Euclidean and
Hamming spaces and, unfortunately, underestimate the naturally
sparse structures of the data. In addition, parameter tuning is
always a challenging and head-scratching problem for sparse
hashing learning. To address these problems, in this article,
we propose a novel hashing method termed adaptively sparse
matrix factorization hashing (SMFH), which exploits sparse
matrix factorization to explore the parsimonious structures of
the data. Moreover, SMFH adopts an orthogonal transformation
to minimize the quantization loss while deriving the binary
codes. The most distinguished property of SMFH is that it is
adaptive and parameter-free, that is, SMFH can automatically
generate sparse representations and does not require human
involvement to tune the regularization parameters for the sparse
models. Empirical studies on four publicly available benchmark
data sets show that the proposed method can achieve promising
performance and is competitive with a variety of state-of-the-art
hashing methods.

Index Terms— Binary code, hashing, image retrieval, matrix
factorization, sparse learning.

I. INTRODUCTION

W ITH the rapid advancement of information technolo-
gies and the prevalence of social networks, consider-

able quantities of data, including images, videos, and texts
collected from different application domains, such as com-
puter vision, machine learning, and information retrieval, are
increasing in a marvelous and unprecedented way. As the data
grow explosively, how to efficiently organize and index the
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large-scale data is a challenging and fundamental issue [1].
From the viewpoint of practical applications, efficiently
retrieving relevant information from such large-scale data
with good scalability has become an emerging need for the
communities of computer vision and information retrieval.

Nearest neighbor (NN) search, also known as similarity
search, is of particular interest and receives significant atten-
tion in computer vision, pattern recognition, recommendation
systems, and information retrieval [2]–[4]. Given a query,
NN aims to identify those similar or nearest data points from
a large data collection by using some distances or similar
measurements [5]. Nonetheless, traditional NN algorithms are
neither scalable nor efficient for large-scale data because
the time complexity of finding exact NNs is linear with
respect to the size of data [6]. Especially when the data
have a magnitude of millions or billions, NN algorithms are
usually computationally prohibitive and infeasible for practical
applications.

Approximate NN (ANN) search is an alternative solution to
end the aforementioned problem. It exploits heuristic strate-
gies, such as tree-based structures [7] and hash functions [8],
to obtain ANNs with sublinear or even constant-time com-
plexity [9], [10]. Due to its efficiency, many effective ANN
methods have been developed in the literature. Broadly, they
can be grouped into three different categories, i.e., tree-based,
vector quantization, and hashing methods [11]. The tree-
based methods reorganize the data as indexing-tree structures,
such as KD-tree, M-tree, and R-tree [7], [12], while the
vector quantization methods transfer the data into a schema of
vectors [13]. Both schemes work well when the data dimen-
sionality is low. However, they may suffer from the curse of
dimensionality and memory constraints if the dimensionality
is high [12].

The hashing methods encode the high-dimensional data
as the representation of binary codes by a series of hash
functions while preserving the neighborhood relationships
(e.g., similarities or distances) of the data. As a result, the
derived binary codes corresponding to the data points that
are close in the Euclidean space should also have small
Hamming distances, which can be obtained efficiently, usually
with O(1) time complexity [4]. Benefiting from bit operations,
the binary-code representation can not only enable neighbor
retrieval to be extremely efficient without greatly degrading the
performance but also take much less storage space compared
to the original data [1]. This, however, is especially crucial for
large-scale data, where low storage and efficient computation
are always appealing.
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Fig. 1. Toy example of SMFH (see Section III for details). The basic encoding scheme of our method consists of two stages: sparse projection and optimal
rotation. (a) Data points from four clusters in a 3-D feature space. (b) Sparse projection: the data are projected into a low-dimensional space via adaptively
sparse matrix factorization, and each axis corresponds to a principal component direction. (c) Optimal rotation: the projected space is rotated with respect to
the structure of the data to achieve low quantization errors for hash encoding. (a) Original space. (b) Projected space. (c) Hamming space.

Motivated by the potential advantages, hashing learning has
shown great promise, and a rich number of hashing methods,
including data-independent hashing and data-dependent hash-
ing, have been proposed in recent decades [1] [4] [8]. The data-
independent hashing (also known as random projection-based
hashing) randomly generates a set of hash functions without
involving the data. Representative examples include locality-
sensitive hashing (LSH) [14] and its variants, e.g., KLSH [15]
and SKLSH [16]. Theoretically, the similar property of the
data can be progressively approximated if the generated hash
codes are long enough. In contrast, the data-dependent hashing
(also known as learning-based hashing) seeks projection func-
tions to capture the underlying geometries of data. Typical
examples of such methods are PCA hashing (PCAH) [17],
spectral hashing (SH) [18], iterative quantization (ITQ) [19],
circulant binary embedding (CBE) [20], density sensitive
hashing (DSH) [21], spherical hashing (SpH) [22], and
sparse embedding and least variance encoding (SELVE) [23].
Generally, the data-dependent methods have a promising per-
formance with shorter hash codes, making them more popular.
Nevertheless, learning the projection functions from the data
is difficult and time consuming.

In this article, we also focus our attention on hashing learn-
ing and propose a novel two-stage hashing method, dubbed
as adaptively sparse matrix factorization hashing (SMFH).
Fig. 1 gives a toy example of SMFH. It mainly consists of
two stages: sparse projection and optimal rotation. First, the
projection stage exploits the technique of matrix factorization
to automatically learn the latent and local structural informa-
tion of the data so that the similarity property of the data
can be retained after projection. Since the weight coefficients
obtained by transformation are continuous and require a large
sum of memory to store, we further make them sparse without
losing considerable information. In routine sparse models, the
regularization parameters are often tuned empirically or deter-
mined experimentally. This, however, is time consuming and
heavily data dependent, resulting in the overfitting problem.
To end this, here, we exploit heuristic strategies to avoid the
head-scratching problem of the tuning parameter. As a result,
SMFH is adaptive and parameter-free, where no parameter

is required to be tuned. The second stage aims at rotating
principal directions of the data projected from the original
feature space to optimally encode the data into binary codes
with low quantization errors.

In summary, we propose a simple yet effective learning
method for hashing, which brings potential benefits to learning
systems for large-scale data. The major contributions of this
article are briefly highlighted as follows.

1) We formulate the learning method for hashing as an
optimization problem and then solve it by using matrix
factorization, which is good at capturing the latent struc-
tural information of the data. Furthermore, an orthogonal
rotation is performed on the projection coefficients to
generate more discriminative and representative binary
codes.

2) An effective sparsity-inducing function, which can auto-
matically yield a parsimonious model according to the
data at hand, is introduced to make the projection
coefficients sparse, reducing their storage consumption.

3) More importantly, a heuristic strategy for tuning the
regularization parameters is introduced, making the
sparsity-inducing function adaptive and parameter-free.
Thus, the regularization parameters are no longer
required when generating sparse models without consid-
ering the head-scratching problem of parameter tuning
in SMFH.

The rest of this article is organized as follows. Section II
provides a brief review of hashing algorithms. In Section III,
we first present the notations used in this article and the
problem formulation and then provide the details of our adap-
tively SMFH method. Experimental results on four publicly
used data sets are reported in Section IV, followed by the
concluding remarks of this article in Section V.

II. RELATED WORK

As mentioned earlier, hashing learning has received consid-
erable attention due to its low storage cost and high compu-
tational efficiency, and great endeavors have been attempted
in recent decades [1], [4], [8]. The existing hashing learning
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methods generally follow two lines: the data-independent
hashing and the data-dependent hashing. For the former, the
projection functions are constructed independently of the data.
The most classic example is LSH [14], which randomly
projects the data points in the Euclidean space to the corre-
sponding binary codes in the Hamming space. Theoretically,
the closer the data points, the higher the collision probability
of the corresponding binary codes, and vice versa, as the
length of the binary codes is long enough. Because of its
efficiency, LSH has become very popular, and the similarity
measurements embedded have also been extended to the
p-norm distance [24], the Mahalanobis distance [25], the
Hamming affinity [14], the kernel similarity [15], and the
cosine similarity [30]. Unfortunately, the LSH-related methods
have not considered the intrinsic structural information of the
data. In addition, an acceptable performance for LSH requires
longer binary codes [8].

The data-dependent or learning-based methods derive
shorter binary codes while retaining the characteristics of
the data. Since the generated codes are more effective and
compact, the data-dependent methods have recently flourished.
Depending on the availability of label information, they can
be further divided into three major subcategories: unsuper-
vised hashing, supervised hashing, and semisupervised hash-
ing (SSH) [8]. In the semisupervised and supervised hashings,
the data label information is required to learn hashing func-
tions or codes with more discriminative capabilities. Typical
examples include, but are not limited to, SSH [26], kernel-
based supervised hashing (KSH) [27], fast supervised discrete
hashing (FSDH) [28], supervised discrete hashing with relax-
ation (SDHR) [29], and angular reconstructive embeddings
(AREs) [30]. As an example, Ding et al. [31] first transferred
data labels to binary values via LSH and then took several
binary classifiers as hashing functions to reap the binary codes.

Auxiliary contexts of data can also benefit to generating
binary codes if available [32]. Indeed, the same objects in
reality often exhibit different representations, e.g., images or
videos are described or accompanied by text information.
Taking the contexts into consideration, Zhu et al. [33] lever-
aged contextual modalities to retain visual similarities when
transferring, yielding the binary codes with strong semantics.
Yu et al. [34] obtained meaningful binary codes after mapping
local features of data points at both the image and text
levels into a common space. Jin et al. [35] encoded rank
structures of features into ordinal representation and then used
it to generate discriminative codes, while Wang et al. [36]
transformed multimodal data into latent semantic spaces,
where the same labels from different models have the same
semantic and representations. RFDH [37] utilizes a discrete
matrix decomposition technique, coupled with an �2,1-norm,
to minimize the quantization errors among multimodal data
and then projects data into effective binary codes with two
hash functions. Zheng et al. [38] measured the similarities
between each pair of modalities by three order random walks
and then transformed into the problem of regularized support
vector learning for the sake of efficiency.

Unsupervised hashing exploits underlying structures or
distributions of the data to learn the binary codes without

involving label information, which is not always available in
real-world applications. During the past decades, a variety of
unsupervised hashing methods, such as DSH [21], PCAH [17],
SH [18], and SpH [22], have been witnessed. For example,
Jin et al. [39] applied a ranking-based LSH on fingerprint
templates to develop the Gaussian random projection-based
and uniformly random permutation-based hashing schemes for
fingerprint biometric protection. Huang et al. [40] proposed an
online hashing model for sequential or stream data by using a
similarity loss function, which measures the difference of the
binary codes of a pair of data points in the Hamming space.
Unlike SH [18], reversed SH (ReSH) [41] defines the similari-
ties of the data points as those of hash codes and interchanges
the input and output of SH. In this way, the similar data points
are encoded into adjacent binary codes, while the dissimilar
data points were separated from each other. KRH [42] takes a
normalized Gaussian kernel to preserve the local distribution
of data and then uses a low-rank approximation technique to
obtain optimal binary codes.

The ITQ is an intensively studied branch of unsupervised
hashing. It iteratively quantifies the continuous vectors of data
points into discrete ones to achieve compact binary codes.
The most representative examples of such kind are ITQ and
its supervised variants (e.g., CCA-ITQ [19]). Cao et al. [43]
integrated deep learning with the quantization approach to
jointly learn deep visual-semantic embeddings and quantizers
using hybrid networks. To handle the dilemma with insuf-
ficient data, Zhou et al. [44] introduced a concept called
transfer hashing by extending ITQ for transfer learning.
Duan et al. [45] treated projection and quantization as a whole
and solved it by using the minimal reconstruction bias of
signals. Yuan et al. [46] adopted k-means to quantize codes
on each feature that is generated by using feature clustering.

Matrix factorization is another promising technique for
hashing learning because it can effectively capture latent
and intrinsic locality structures of data [47]. Recently, it has
attracted increasing interest from the community of hashing
learning, and a rich number of hashing methods adopt matrix
factorization to obtain discriminative hash codes. For example,
Ding et al. [48] utilized collective matrix factorization to
learn latent factor models that were subsequently used to
produce unified binary codes. Similarly, with the help of
collective matrix factorization, Tang et al. [49] took both label
consistencies and local geometric consistencies as a mixed-
graph Laplacian regularization term to obtain the discrimina-
tive binary codes. Lai et al. [50] integrated the ideas of anchor
graph, dimension reduction, and rotation operation together
to minimize the quantization errors between binary codes
and low-dimensional feature spaces. Besides, the �2,1-norm
regularization term was conducted to obtain a jointly sparse
projection matrix for feature selection. Lu et al. [12] first
obtained latent semantic features via matrix decomposition
and then combined them with a minimum encoding loss to
generate more discriminative binary codes.

In this article, we also focus our concentrations on
the matrix factorization technique for unsupervised hashing.
Unlike the aforementioned work, our contributions will be
made on its sparse variant without involving regularization
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parameters for the sake of saving memory and time
consumption.

III. SPARSE MATRIX FACTORIZATION HASHING

In this section, we deliberately present the implementation
details about the proposed method termed SMFH. As illus-
trated in Fig. 1, the key idea of SMFH consists of projection
and rotation stages. The former maps the data points into a
low-dimensional feature subspace with a sparse representation
by using an adaptively sparse matrix factorization, while the
latter derives the projected vectors by optimally rotating the
projection directions with orthogonal transformation so that
the data points can be encoded as the semantic-preserving
binary codes.

A. Notations and Problem Statements

Throughout this article, we use bold-faced uppercase letters,
such as X, to denote matrices and bold-faced lowercase letters,
such as x, to represent (column) vectors, respectively. The
(i, j)th element in X is denoted as xi j . XT is the transpose
of X. For the vector x, xi denotes the i th element of x. The
Frobenius norm of x is denoted as ‖x‖2. Let Ik ⊆ {1, . . . , k}
be an index set, and the notation ‘�’ be a sparse structure
relationship. As an example, x̄ � x implies that x̄ is a
parsimonious vector of x, where both vectors have the same
number of elements and each element x̄i of x̄ equals to zero
or xi of x. For clarity, the letter x also represents a random
variable (feature vector). Given a data set X∈ Rn×p consisting
of n data points, i.e., X = {xi }ni=1, each point xi ∈ Rp is
represented by a p-dimensional feature vector.

The hashing problem has a similar representation to matrix
factorization [51]. Mathematically, the data matrix X∈ Rn×p

can be approximately reconstructed as follows:

arg min
1

2
‖X− UDVT ‖22

s.t. UT U = I, VT V = I (1)

where D = diag(δ1, δ2, . . . , δk) is a diagonal matrix of
singular values, such that δ1 ≥ δ2 ≥ · · · ≥ δk , and U and
V are the left and right singular matrices corresponding to
the k singular values, respectively. Considering a sequential
way, (1) can be equivalently reorganized as

arg max
u,v

uT Xv

s.t. uT u = 1, vT v = 1. (2)

B. Adaptively Sparse Matrix Factorization

Most conventional matrix factorization techniques focus
only on the aspect of computational efficiency rather than the
physical meanings of the constructed models. In many real-
world domains, such as medical diagnosis, business decision-
making, and information retrieval, the interpretability of the
derived models plays a critical role because it can help users
understand the models better and make right decisions. How-
ever, as the dimensionality of the data increases, interpreting

the derived models becomes challenging and even impossible
in some cases.

Imposing regularization terms on the optimization problem
of (2) as follows seems to be a feasible solution to alleviate
the above-mentioned problem:

arg max
u,v,�

uT Xv+ g(u, v,�)

s.t. uT u = 1, vT v = 1 (3)

where g(u, v,�) is a regularization function on u and v, and
� is a set of regularization factors. Typical regularization
terms include the �0-norm, �1-norm (also known as Lasso),
�2-norm, and their variants. Note that these norms have
different characteristics. For example, the �0-norm can induce
sparse models, but its solution is often nonconvex, and the
computational cost is relatively high, making it impracticable
even in middle-scale problems. Contrastively, the �2-norm has
good statistical properties, while the derived models tend to
be overfitting [52].

The �1-norm offers an effective solution for improving the
interpretability of the derived models. It enforces those small
coefficients of the derived results to zero via the regularization
functions, yielding parsimonious structures for the models.
Assume that ū and v̄ are the corresponding parsimonious
structures of u and v, respectively. The sparse variant of (2)
can be formally represented as

arg max
ū,v̄

ūT Xv̄

s.t. ūT ū = 1, v̄T v̄ = 1 (4)

where ū and v̄ can be obtained by using sparse-inducing func-
tions, such as smoothly clipped absolute deviation (SCAD),
Lasso, adaptive Lasso, and fused Lasso [52]. As an example,
the soft-thresholding function enforces ūi (or v̄i ) to zero if
the corresponding absolute value ui (or vi ) is less than λ, a
regularization parameter, or ui − λ (or vi − λ) or ui + λ (or
vi + λ), depending on the sign of ui (or vi ).

How to determine appropriate values for the regularization
parameters, i.e., � in (3), in sparse learning is still an open and
challenging issue. As a matter of fact, the regularization para-
meters are data driven and should be carefully tuned according
to the available data. Generally, empirically assigning appro-
priate values with a cross-validation manner or considering
prior knowledge for the regularization parameters are the two
commonly used strategies. However, their computational costs
are relatively high. The worse thing is that the derived models
with the optimal values incline to be overfitting, that is, the
models with the optimal parameters may perform well in one
case but poorly in other cases.

Here, we resort to a heuristic strategy to approximately
obtain ū and v̄ by exploiting the inherent properties of ū and
v̄ to their counterparts without involving the regularization
parameters �. Let us revisit (4). It is a suboptimization
problem of (2) to some extent if no parsimonious structures
are considered, i.e., ū = u and v̄ = v. Therefore, ū and v̄ can
be derived from u and v, respectively, only when (4) holds.
Observing from this property, we have the fact that there are
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two kinds of intrinsic relationships between the parsimonious
structures, i.e., intrarelation and interrelation.

The intrarelation refers to the fact that ū (or v̄) is an
elementwise one-to-one projection of u (or v, respectively),
while the interrelation implies that ū and v̄ should be positively
correlated with each other with respect to X, such that ūT Xv̄
is maximal. Inspired by the idea of the hard-thresholding
function, both ū and v̄ can be similarly derived from u and v,
respectively.

First, let us turn our focus on the intrarelation of ū (or v̄)
to u (or v, respectively). For any two random vectors x∈ Rn

and y∈ Rn , we have the following property.
Lemma 1: Given two vectors x∈ Rn and y∈ Rn with the

same number of elements, xT y is maximal if their correspond-
ing elements have the same signs, i.e., sgn(xi ) = sgn(yi ).

Proof: This lemma can be proved easily in an intuitive
manner. Let n be the number of elements within x and y. For
any i = 1 . . . n, xi yi ≥ 0 if both xi and yi have the same signs.
Thus, �i=1...n xi yi is maximal. Otherwise, let the signs of xk

and yk be different, and we have xi yi ≤ 0. In this case, xT y is
not maximal because �i=1...nxi yi ≤ �i=1...k−1,k+1...n xi yi . �

The lemma enlightens us to make a vector sparse straightfor-
wardly. Based on the lemma above, a parsimonious structure x̄
of the vector x can be obtained through the following lemma.

Lemma 2: Given a vector x∈ Rn and a reference vector
y∈ Rn , x̄ � x is a parsimonious structure of x, such that x̄T y
is the maximal value of xT y if

x̄i =
{

xi , if xi yi ≥ 0

0, otherwise.
(5)

Proof: It can be easily observed that x̄ is a parsimonious
structure of x, i.e., x̄ � x, because for each element x̄i ∈ x̄
(i = 1, . . . , n), its value equals to the corresponding element
xi ∈ x if it has the same sign to the reference element yi ,
otherwise x̄i = 0.

Let us prove the maximal sum problem. Assume that It ⊆
{1, . . . , t} is the index subset from one to t , and St is the
maximal subsum of xIt and yIt from the first to the t th
element, i.e., St = arg maxIt (x

T
It

yIt
). For the first element

x1 ∈ x, we have x̄1 = x1 if x1y1 ≥ 0, otherwise x̄1 = 0
according to the definition. Thus, S1 = x̄1y1 ≥ x1y1 and
I1 = {1}.

Assume that we have It−1 ⊆ {1 . . . t − 1} and St−1 =
x̄T y = arg maxIt−1(x

T
It−1

yIt−1
). According to the definition,

we can observe that St = max(St−1, xT
1...t y1...t ) ≤ St−1+ xt yt .

Therefore, if xt has the same sign to yt , it should be preserved,
i.e., x̄t = xt , as it can increase the maximal sum St−1.
On the contrary, xt will decrease St−1 when xt yt ≤ 0.
In this case, x̄t = 0 will not affect the fact that St−1 is
maximal. Similarly, we can handle the other element x̄i and,
ultimately, generate the parsimonious vector x̄ of x, such that
x̄T y = arg maxIn xT y. �

The lemma provides an intuitive description of the intrarela-
tion of vectors and offers us a good clue to generate a
parsimonious structure for any vector. It should be noted
that the lemma requires both the vector and its reference
to have the same number of elements. This implies that we

cannot straightforwardly apply the lemma to generate the
parsimonious structure ū (or v̄) of u (or v, respectively)
because the number of elements within u is usually different
from that of v, i.e., n �= p. Fortunately, we can make
the vectors sparse with the help of the interrelation between
u and v.

From the aforementioned statement, the interrelation of two
vectors indicates that they are positively correlated with each
other. According to the lemma, one may observe that the
derived parsimonious vector (e.g., ū or v̄) is the most posi-
tive correlated vector for the corresponding reference vector
(e.g., u or v, respectively). Indeed, the maximal subsum of two
vectors can be considered as a measurement of their positive
correlation to some extent. More importantly, according to the
optimization problems of (2) and (4), we have the fact that
u and v derived from (2) are correlated with each other with
respect to X. Meanwhile, ū and v̄ derived from (4) should also
be correlated with respect to X, such that ūT Xv̄ is maximal.

Based on the interrelations, we can seek an alternating
way to approximately obtain ū and v̄, where (5) is the basis
of our sparse operations. Before making the vector (e.g., u)
sparse, its corresponding reference vector with the same length
should be given in advance. Thus, it is natural to take the data
matrix X into consideration when generating the parsimonious
structures. Specifically, Xv will be considered as the reference
vector of u when making it sparse because they should be
positively correlated and have the same length. In a similar
way, once the sparse vector ū is available, it, together with X,
can also be used as the reference vector (i.e., XT ū) of v to
generate the corresponding sparse vector v̄.

C. Binary Coding With Rotation

With the sparse vectors V̄ = [v̄1, v̄2, . . . , v̄k] available, X
can be represented as XV̄ after projected into V̄. In this con-
text, the general schema of hashing learning can be formally
organized as

L(B, R) = 1

2
‖B−MR‖22 (6)

where M = XV̄ and R is an orthogonal matrix with k × k.
Thus, minimizing the quantization loss can preserve the orig-
inal local structure of the data. The binary matrix B and the
rotation matrix R can be obtained with alternative iterations.
Specifically, in each iteration, we first obtain R with B fixed.
Once R is available, we can solve B alternatively.

1) Update R With B Fixed: It is noticeable that the for-
mulation of (6) is the orthogonal procrustes problem when
B is fixed. Thus, the objective function L(R), which tries
to seek the most optimal rotation R, can be solved by
performing partial derivative operation in a routine manner.
Unfortunately, it is time consuming, and the matrix inverse
may be unavailable. Alternatively, here, we resort to matrix
factorization to obtain R. Let BT M = UDVT , and (6) can be
rewritten as

R = arg min
R̄

1

2
‖B−MR̄‖22

= arg max
R̄

tr(BT MR̄)
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Algorithm 1 Adaptively SMFH

Input: The data X ∈ Rn×p and the length of hash codes k;
Output: The generated binary codes B ∈ {−1, 1}n×k ;
1: Normalize X, and Y=X;
2: For i = 1,…,k do
3: Get u and v from Y via matrix factorization;
4: Make u and v sparse according to Eq.(4) in Lemma 2;
5: U=U∪{u} and V=V∪{v};
6: Update Y as Y← Y− tr(YvuT )uvT ;
7: End
8: M=XV;
9: Obtain the optimized rotation R according to Eq.(8);
10: B=sign(MR);
11: Return B as the binary codes.

= arg max
R̄

tr(UDVT R̄)

= arg max
R̄

tr(DVT R̄U). (7)

Since VT R̄U is orthogonal, the above-mentioned formulation
is maximized when it is the identity matrix I, i.e., VT RU = I.
Thus

R = VUT . (8)

2) Update B With R Fixed: Once the rotation matrix R is
available, MR is fixed because M = XV. Let M̃ = MR.
In this case, (6) can be rewritten as

L(B) = 1

2
‖B− M̃‖22

= 1

2
(tr(BT B)+ tr(M̃

T
M̃))− tr(BM̃

T
). (9)

As stated earlier, each element bi j ∈B is either −1 or 1, i.e.,
bi j ∈ {−1, 1}. Thus, the first two terms of the above-mentioned
formulation are constant because M̃ is also fixed. Besides, for
the last term, we have tr(BM̃

T
) = ∑

i j bi j m̃ j i . This implies
that minimizing L(B) is equivalent to maximize

∑
i j bi j m̃ j i .

To achieve this purpose, each element bi j should have the
same sign as that of m̃ j i , i.e., bi j = 1 if m̃ j i ≥ 0 and −1
otherwise.

D. Algorithm Implementation

Based on the above-mentioned analysis, the implemented
details of our hashing learning method are summarized in
Algorithm 1. The schema comprises two stages: sparse decom-
position (from Steps 1 to 7) and binary encoding (from
Steps 8 to 10). The algorithm can be easily understood.
First, the original data are normalized to zero mean and
unit variance before performing the decomposition operation
(Step 3); notwithstanding, scaling does not affect the optimiza-
tion model. Then, the k sparse projection vectors are derived
from the data in a sequential manner. At the beginning of
each iteration, an optimized projection direction of the data is
obtained by nonlinear iterative partial least squares (NIPALS),
which is a classic matrix factorization technique. The reason

for adopting NIPALS here is that it has higher efficiency
than SVD in computing approximately optimal values that are
enough for deriving the sparse model. It should be noted that
u and v can be initially assigned any values, except zeros,
as NIPALS can achieve their optimal values. Subsequently, the
parsimonious structures of u and v can be obtained according
to the principle of Lemma 2. After each sparse projection
vector has been derived, its encoding information should be
removed from the data (see Step 6). Otherwise, similar vectors
would be made, resulting in a useless model. Finally, the sparse
projection vectors are rotated to seek projection directions,
which can help generate optimal and compact binary codes.

Suppose that there are n data points with p dimensions for
the training data X and the number of bits for the final binary
codes is k. The computational complexity of SMFH during
the training stage is predominated by four steps: NIPALS
(Step 3), sparse operation (Step 4), updating data (Step 6), and
rotation operation (Step 9). As we know, the time complexity
of NIPALS is O(cnp), where c is the number of iterations
toward convergence. Generally, it is normally assigned as a
constant (e.g., 20 in our later experiments). Note that both the
sparse operation and the data updating are scaling linearly
with respect to the size of X. For the rotation operation,
O(np2+ p3) time is required. Thus, the overall computational
complexity of SMFH is O(kcnp + np2 + p3). Given a query
point, it needs O(p) to encode the query point to a k-bits
binary code during the test stage.

IV. EVALUATION EXPERIMENTS

In this section, we elaborate extensive evaluation experi-
ments to show the effectiveness of our proposed approach.
Initially, we present experimental settings, including exper-
imental data sets, evaluation metrics, and baselines. Then,
the comparison results of SMFH with the state-of-the-art
hashing algorithms are given. The simulation experiments
were conducted on a PC with a 4.0-GHz Intel Core i7-6700K
CPU with 8 GB of main memory.

A. Data Sets and Settings

To make a comprehensive comparison, we adopted four
publicly available image data sets, including CALTECH265,
CorelDB, GHIM10K, and INRIA Holidays, to verify the
effectiveness of the proposed method. These four data sets
cover different scales and are widely used to evaluate hashing
methods in the literature. The brief descriptions of the exper-
imental data sets are provided as follows.

1) CALTECH2561: It consists of 29 780 color images in
256 categories (over 80 images per category), such as
flag, backpack, bear, beer-mug, butterfly, and calculator.
Each image belongs to one of the 256 categories.

2) CorelDB2: It contains 10 800 color images from the
Corel Photo Gallery associating with 80 concept groups,
e.g., autumn, castle, cloud, dog, elephant, ship, tiger, and
waterfall; each group has more than 100 images.

1http://www.vision.caltech.edu/Image_Datasets/Caltech256
2https://sites.google.com/site/dctresearch/Home/content-based-image-

retrieval
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Fig. 2. Precision curves of the generated binary codes with 160 bits on the data sets (the number of retrieved images ranges from 10 to 100). (a) CALTECH256.
(b) CorelDB. (c) INRIA Holidays. (d) GHIM10K.

Fig. 3. Precision curves of the generated binary codes with 160 bits on the data sets (the number of retrieved images ranges from 100 to 1000).
(a) CALTECH256. (b) CorelDB. (c) INRIA Holidays. (d) GHIM10K.

3) GHIM10K3: It includes 10 000 color images (300 ×
400) collected from the web and cameras. They are
annotated by 20 categories covering diverse contents,
such as sunset, ship, flower, building, car, mountains,
and insect. Each category has 500 images.

4) INRIA Holidays4: It is a photo collection of personal
holidays. It has 1491 images in total with a large
variety of scene types, covering 500 scenes, such as
natural, water, mountain, building, sea, waterfall, tree,
and sunset.

Recent studies show that the convolutional neural net-
work (CNN), which provides an abstract and holistic represen-
tation of an image via a set of perceptual features, has received
increasing attention in image retrieval and scene recognition.
In our experiments, we also utilized a fully connected CNN to
extract representation features from each image by activating
the last layer of the network, and each image is represented
with 1024 CNN features.

Following the experimental settings in recent work, we ran-
domly selected 1000 images to serve as query points, and the
remaining data served as training samples for each data set.
During the whole experiments, we simply took the class label
of each query as the ground truth if it was annotated. Other-
wise, the ground truth was defined as the average Euclidean
distance of the 50th NN. In this way, a returned point for a
given query was taken as a true neighbor if it was close enough

3http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
4http://lear.inrialpes.fr/ jegou/data.php

to the query. The experiments were repeated ten times, and the
average performance over all runs was reported in this article.

B. Baselines and Metrics

We compared the proposed method to nine popular hash-
ing algorithms, including CBE [20], DSH [21], LSH [14],
MFH [48], PCAH [17], SELVE [23], SH [18], SKLSH [16],
and SpH [22]. As discussed earlier, these algorithms stand for
different kinds of hashing learning techniques.

1) CBE [20]: It projects the data with a circulant matrix and
then uses the technique of the fast Fourier transformation
to improve the encoding efficiency of the binary codes.

2) DSH [21]: It exploits geometric structures, i.e., densi-
ties, of the data to determine the projection vectors rather
than purely random selection in LSH.

3) LSH [14]: It generates the projection vectors by ran-
domly sampling from a Gaussian distribution matrix,
in the context of preserving the locality with high
probability.

4) MFH [48]: It applies collective matrix factorization to
learn latent factor models that are subsequently used to
produce unified binary codes.

5) PCAH [17]: It takes the top principal directions derived
by PCA as the projective vectors to encode the binary
codes to preserve the most variance of the data.

6) SELVE [23]: It learns the binary codes from the coef-
ficients of the least variance encoding model that is
built on sparse embedding vectors derived by spectral
clustering.
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Fig. 4. Precision curves on the CorelDB data set. (a)–(d) Performances of the generated binary codes with 32, 64, 96, and 128 b, respectively.

Fig. 5. Recall curves of the generated binary codes with 160 b on the different data sets. (a) CALTECH256. (b) CorelDB. (c) INRIA Holidays. (d) GHIM10K.

7) SH [18]: It constructs a Laplacian matrix with spectral
embedding and then performs eigenvalue decomposition
operation to quantize the binary codes.

8) SpH [22]: It projects the spatially coherent data into
spherical planes and generates binary codes by itera-
tively adjusting the spherical planes with the spherical
Hamming distances.

9) SKLSH [16]: It derives the binary codes by random
projections with distribution-free encoding for approx-
imating shift-invariant kernels. In our experiments, a
Gaussian kernel was utilized, and its bandwidth was set
to the average distance to the fifth NN.

To make a fair comparison, we adopted four commonly used
metrics, top-k precision (Pre@k), top-k recall (Recall@k),
precision–recall (PR) curve, and mean average precision
(mAP), to quantitatively evaluate the performance of the hash-
ing learning algorithms for retrieval tasks. Their definitions are
briefly given as follows.

1) Pre@k: This refers to the precision of the top-k retrieval
images, that is, it is the ratio of the relevant images
to the retrieved top-k images in terms of the Hamming
distance.

2) Rec@k: It is the ratio of the retrieved relevant images
to all the relevant images in the retrieved top-k images
in terms of the Hamming distance.

3) PR: It denotes the retrieval accuracies at different recall
levels. The area under the PR curve is good at evaluating
the overall performance in information retrieval.

4) mAP: It is the average precision at the retrieval ranks
where the recall changes. Specifically, it represented as

mAP = 1

N

N∑
i=1

1

M

M∑
t=1

Pi (t)Ii (t) (10)

where N is the number of query points, M is the number
of retrieved images, Pi (t) is the top-i precision of the
t th query, and Ii (t) indicates whether the i th images is
relevant to the t th query.

For the above-mentioned metrics, the larger the value, the
better the retrieval performance.

C. Results and Discussion

To test the effectiveness of SMFH, a series of comparison
experiments with popular hashing algorithms were carried out,
in which the number of bits of the generated binary codes
is varied from 16 to 160. We first compared the hashing
algorithms from the perspective of precision, which is a fun-
damental criterion in information retrieval. The experimental
results are shown in Figs. 2 and 3, where the length of the
generated binary codes was fixed to 160 b. As illustrated in
Figs. 2 and 3, we can observe that the precision of the hash-
ing algorithms decreased as the number of retrieved images
increased. This, however, is reasonable because the precision
is sensitive to true positive images of the query. In addition,
the proposed method, SMFH, outperformed the baselines in
most cases. The most comparable hashing algorithm was MFH
that also adopts matrix factorization to generate the binary
codes. On the INRIA Holidays data set [see Fig. 3(c)], DSH
also achieved good performance. The reason is that each
image within this data set has less than five truly similar
images.
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Fig. 6. Recall curves on the CorelDB data set. (a)–(d) Performances of the generated binary codes with 32, 64, 96, and 128 b, respectively.

Fig. 7. PR curves of the generated binary codes with 160 b on the different data sets. (a) CALTECH256. (b) CorelDB. (c) INRIA Holidays. (d) GHIM10K.

For different bits of the generated binary codes, SMFH also
exhibited higher precision than the others. Fig. 4 presents the
precision comparison of the generated binary codes with dif-
ferent lengths on the CorelDB data set. From the plots shown
in Fig. 4, one can safely conclude that SMFH was superior
to the popular hashing methods and derived binary codes with
high quality. Besides, the plots shown in Fig. 4(a)–(d) indicate
that the performance decreased as the number of retrieved
images increased, notwithstanding the different lengths of the
generated binary codes. Another interesting fact is that for the
same number of the retrieved images, the precision rates of
the hashing methods with more bits of the binary codes were
higher than those with fewer bits. This is consistent with our
expectation, that is, the binary codes with more bits encoded
more information. The same cases can be found on the rest
of the data sets. For space limitations, we have not provided
all of them here.

The recall criterion is often used to indicate the successfully
retrieved ratio of the relevant images in image retrieval. There
is no exception in our comparisons. We also took it as one
of the criteria to evaluate the performance of the hashing
algorithms. The performance comparisons are illustrated in
Figs. 5 and 6. Similar to the precision criterion, the same
situations can be found for the recall criterion. For example,
SMFH played a predominant role in encoding the binary
codes on these four data sets. MFH was a comparable hashing
method because both SMFH and MFH use the technique of
matrix factorization. The difference is that SMFH exploits
an adaptively sparse strategy without involving regularization
parameters. However, MFH was relatively worse than DSH
and SpH on the INRIA Holidays data set. In addition, for the

same number of retrieved images (see Fig. 6), the hashing
algorithms with more bits of binary codes had higher recall
than the corresponding algorithms with fewer bits.

The precision and recall metrics represent positive predic-
tion and sensitivity, respectively. They stand for different sides
for retrieval tasks. However, a good retrieval algorithm should
have both high precision and high recall. To compromise this
issue, the PR curve is introduced, which measures the tradeoff
relationship between precision and recall for possible cutoffs.
A large area under the curve indicates a low false-positive
rate and false-negative rate. Fig. 7 gives the PR curves of the
binary codes with 160 b generated by the hashing algorithms
on the four data sets. As the PR curves show, the variation
trends of precision and recall are opposite, that is, the precision
decreases smoothly as the recall increased. From the perspec-
tive of the area under the curve, SMFH was better than the
others because the curve of SMFH was higher than those of the
competing algorithms. This implies that SMFH retrieved more
images similar to the query at the top of the retrieved images.
On the GHIM10K data set, MFH also achieved comparable
performance when the length of the binary codes was fixed to
160. However, with fewer bits (see Fig. 8), MFH was worse
than SMFH. This shows that SMFH is good at deriving more
compact binary codes than the other methods.

The mAP measurement can be used to comprehensively
evaluate retrieval performance. We also employed it as a cri-
terion to verify the effectiveness of SMFH in our experiments.
The experimental results of the binary codes generated by the
hashing algorithms are provided in Fig. 9, where the lengths
of the binary codes were varied from 16 to 160. From the
mAP scores, we know that most of the plots corresponding
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Fig. 8. PR curves of the generated binary codes with different bits on the GHIM10K data set. (a)–(d) Performances of the binary codes with 32, 64, 96,
and 128 b, respectively.

Fig. 9. mAP scores of the generated binary codes on the different data sets. (a) CALTECH256. (b) CorelDB. (c) INRIA Holidays. (d) GHIM10K.

to the hashing algorithms were similar, that is, increasing
the length of the binary codes led to higher mAP scores.
PCAH and SELVE seemed to be the exceptions on INRIA
Holidays, as there were too many categories in this data set and
each category contained very few similar images. It should be
mentioned that SMFH achieved very promising performance
with different code bits on all data sets, and MFH was still
comparative. This indicates that the matrix factorization can
effectively explore the relationships of the data to some extent.
In contrast, SKLSH was less stable and had poor performance
on all data sets. The reason is that SKLSH did not perform
dimension reduction, resulting in poor performance for the
high-dimensional data.

V. CONCLUSION

In this article, we propose a novel hashing method that
exploits sparse matrix factorization to capture the latent struc-
tures of data. Unlike traditional sparse learning techniques
that require explicitly choosing appropriate sparsity-inducing
functions and carefully tuning the corresponding regulariza-
tion parameters, our method is adaptive and parameter-free,
without involving the troublesome issue of parameter tuning.
In addition, an orthogonal transformation is also considered to
minimize the quantization loss while deriving the binary codes.
As a result, the binary codes generated by the proposed method
are more compact and have more semantic properties. Exten-
sive experiments on four widely used benchmark image data
sets were carried out. The experimental results demonstrated
the promising performance of the proposed method compared
to the state-of-the-art hashing methods.
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