
772 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Compact and Computationally Efficient
Representation of Deep Neural Networks

Simon Wiedemann, Klaus-Robert Müller, Member, IEEE, and Wojciech Samek , Member, IEEE

Abstract— At the core of any inference procedure, deep neural
networks are dot product operations, which are the component
that requires the highest computational resources. For instance,
deep neural networks, such as VGG-16, require up to 15-G
operations in order to perform the dot products present in a
single forward pass, which results in significant energy con-
sumption and thus limits their use in resource-limited environ-
ments, e.g., on embedded devices or smartphones. One common
approach to reduce the complexity of the inference is to prune
and quantize the weight matrices of the neural network. Usually,
this results in matrices whose entropy values are low, as measured
relative to the empirical probability mass distribution of its
elements. In order to efficiently exploit such matrices, one usually
relies on, inter alia, sparse matrix representations. However, most
of these common matrix storage formats make strong statistical
assumptions about the distribution of the elements; therefore,
cannot efficiently represent the entire set of matrices that exhibit
low-entropy statistics (thus, the entire set of compressed neural
network weight matrices). In this paper, we address this issue
and present new efficient representations for matrices with
low-entropy statistics. Alike sparse matrix data structures, these
formats exploit the statistical properties of the data in order to
reduce the size and execution complexity. Moreover, we show
that the proposed data structures can not only be regarded as a
generalization of sparse formats but are also more energy and
time efficient under practically relevant assumptions. Finally,
we test the storage requirements and execution performance
of the proposed formats on compressed neural networks and
compare them to dense and sparse representations. We experi-
mentally show that we are able to attain up to ×42 compression
ratios, ×5 speed ups, and ×90 energy savings when we lossless
convert the state-of-the-art networks, such as AlexNet, VGG-16,

Manuscript received May 27, 2018; revised December 1, 2018,
March 13, 2019 and April 3, 2019; accepted April 5, 2019. Date of publication
May 29, 2019; date of current version February 28, 2020. This work was sup-
ported in part by the Fraunhofer Society through the MPI-FhG collaboration
project “Theory and Practice for Reduced Learning Machines,” in part by the
German Ministry for Education through the Berlin Big Data Center under
Grant 01IS14013A, in part by the Berlin Center for Machine Learning under
Grant 01IS18037I, in part by DFG (EXC 2046/1) under Grant 390685689,
and in part by the Information and Communications Technology Planning and
Evaluation (IITP) Grant funded by the Korean Government under Grant 2017-
0-00451. (Corresponding authors: Klaus-Robert Müller; Wojciech Samek.)

S. Wiedemann and W. Samek are with the Fraunhofer Heinrich Hertz Insti-
tute, 10587 Berlin, Germany (e-mail: wojciech.samek@hhi.fraunhofer.de).

K.-R. Müller is with Technische Universität Berlin, 10587 Berlin, Germany,
also with the Max Planck Institute for Informatics, 66123 Saarbrücken,
Germany, and also with the Department of Brain and Cognitive Engineer-
ing, Korea University, Seoul 136-713, South Korea (e-mail: klaus-robert.
mueller@tu-berlin.de).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2910073

ResNet152, and DenseNet, into the new data structures and
benchmark their respective dot product.

Index Terms— Computationally efficient deep learning, data
structures, lossless coding, neural network compression, sparse
matrices.

I. INTRODUCTION

THE dot product operation between matrices constitutes
one of the core operations in almost any field in sci-

ence. Examples are the computation of approximate solu-
tions of complex system behaviors in physics [1], iterative
solvers in mathematics [2], and features in computer vision
applications [3]. In addition, deep neural networks heavily rely
on dot product operations in their inference [4], e.g., networks,
such as VGG-16, require up to 16 dot product operations,
which results in 15-G operations for a single forward pass.
Hence, lowering the algorithmic complexity of these opera-
tions and thus increasing their efficiency is of major interest
for many modern applications. Since the complexity depends
on the data structure used for representing the elements of the
matrices, a great amount of research has focused on designing
data structures and respective algorithms that can perform
efficient dot product operations [5]–[7].

Of particular interest are the so-called sparse matrices,
a special type of matrices that have the property that many
of their elements are zero-valued. In principle, one can design
efficient representations of sparse matrices by leveraging the
prior assumption that most of their element values are zero
and, therefore, only store the nonzero entries of the matrix.
Consequently, their storage requirements become of the order
of the number of nonzero values. However, having an efficient
representation with regard to storage requirement does not
imply that the dot product algorithm associated with that data
structure will also be efficient. Hence, a great part of the
research was focused on the design of data structures that have
as well low-complex dot product algorithms [7]–[10]. How-
ever, by assuming sparsity alone, we are implicitly imposing
a spike-and-slab prior1 over the probability mass distribution
of the elements of the matrix. If the actual distribution of
the elements greatly differs from this assumption, then the
data structures become inefficient. Hence, sparsity can be a
too constrained assumption for the representation of quantized
neural networks.

In this paper, we alleviate the shortcomings of sparse
representations by considering a more relaxed prior to the

1That is, a delta function at 0 and a uniform distribution elsewhere.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6283-3265

WIEDEMANN et al.: COMPACT AND COMPUTATIONALLY EFFICIENT REPRESENTATION OF DEEP NEURAL NETWORKS 773

distribution of the matrix elements. More precisely, we assume
that the empirical probability mass distribution of the matrix
elements has a low-entropy value, as defined by Shannon [11].
Mathematically, sparsity can be considered a subclass of the
general family of low entropic distributions. In fact, sparsity
measures the min-entropy of the element distribution, which
is related to Shannon’s entropy measure through Renyi’s
generalized entropy definition [12]. With this goal in mind,
we ask the question:

“Can we devise efficient data structures under the
implicit assumption that the entropy of the distribu-
tion of the matrix elements is low?”

We want to stress once more that by efficiency we regard
two related but distinct aspects: 1) efficiency with regard
to storage requirements and 2) efficiency with regard to
algorithmic complexity of the dot product associated with
the representation. For the later, we focus on the number of
elementary operations required in the algorithm, since they are
related to the energy and time complexity of the algorithm. It is
well known that the minimal bit length of a data representation
is bounded by the entropy of its distribution [11]. Hence,
matrices with low entropic distributions automatically imply
that we can design data structures that do not require high
storage resources. In addition, as we will discuss in the fol-
lowing, low entropic distributions also attain gains in efficiency
if these data structures implicitly encode the distributive law
of multiplications. By doing so, a great part of the algorithmic
complexity of the dot product is reduced to the order of the
number of shared weights per row in a matrix. This number
is related to the entropy, such that it is small as long as the
entropy of the matrix is low. Therefore, these data structures
not only attain higher compression gains but also require less
total number of operations when performing the dot product.

Our contributions can be summarized as follows.
1) We propose new highly efficient data structures that

exploit on the prior that the matrix has a low number of
shared weights per row (i.e., low entropy).

2) We provide a detailed analysis of the storage require-
ments and algorithmic complexity of performing the dot
product associated with these data structures.

3) We establish a relation between the known sparse and
the proposed data structures. Namely, sparse matrices
belong to the same family of low entropic distributions;
however, they can be considered a more constrained
subclass of them.

4) We show through experiments that indeed, these data
structures attain gains in efficiency on simulated as well
as real-world data. In particular, we show that up to
×42 compression ratios, ×5 speed ups, and ×90 energy
savings can be achieved when we benchmark the com-
pressed weight matrices of the state-of-the-art neural
networks relative to the matrix-vector multiplication.

In Section II, we introduce the problem of efficient rep-
resentation of neural networks and briefly review related
literature. In Section III, the proposed data structures are
given. We demonstrate through a simple example that these
data structures are able to: 1) achieve higher compression
ratios than their respective dense and sparse counterparts and

2) reduce the algorithmic complexity of performing the dot
product. Section IV analyses the storage and energy com-
plexity of these novel data structures. Experimental evaluation
is performed in Section V using simulations as well as the
state-of-the-art neural networks, such as AlexNet, VGG-16,
ResNet152, and DenseNet. Section VI concludes this paper
with a discussion.

II. EFFICIENT INFERENCE IN NEURAL NETWORKS

Deep neural networks [13], [14] became the state of
the art in many fields of machine learning, such as in
computer vision, speech recognition, and natural language
processing [15]–[18], and have also been progressively used
in the sciences, e.g., physics [19], neuroscience [20], and
chemistry [21], [22]. In their most basic form, they constitute
a chain of affine transformations concatenated with a nonlinear
function which is applied elementwise to the output. Hence,
the goal is to learn the values of those transformation or
weight matrices (i.e., parameters) such that the neural network
performs its task particularly well. The procedure of calcu-
lating the output prediction of the network for a particular
input is called inference. The computational cost of performing
inference is dominated by computing the affine transforma-
tions (thus, the dot products between matrices). Since today’s
neural networks perform many dot product operations between
large matrices, this greatly complicates their deployment onto
resource-constrained devices.

However, it has been extensively shown that most
neural networks are overparameterized, i.e., there are many
more parameters than actually needed for the tasks of
interest [23]–[26]. This implies that these networks are highly
inefficient with regard to the resources they require when per-
forming inference. This fact motivated an entire research field
of model compression [27]. One of the suggested approaches
is to: 1) compress the weight elements of the neural network
without (considerably) affecting their prediction accuracy and
2) convert the resulting weights into a representation that
achieves high compression ratios and is able to execute the dot
product operation efficiently. While there has been a plethora
of work focusing on the first step [25], [26], [28]–[38], pre-
vious literature has not focused as much on the second
part. As a consequence, most of the research has focused
on developing techniques that either sparsify the network
weights [26], [28]–[30] or reduce the cardinality of the weight
elements [31]–[33], since then sparse matrix representations or
dense matrices with compressed numerical representations can
be employed in order to efficiently perform inference.

However, this greatly reduces the possible efficiency
gains that can be achieved. In fact, highest reported com-
pression gains are attained with techniques that either
implicitly [25], [37] or explicitly [34]–[36], [38], [39] attempt
to reduce the entropy of the weight matrices of the net-
work. To recall, throughout this paper, we consider the
entropy of the empirical probability mass distribution of
the weight elements.2 With sparse or dense representations,

2We identify the set of unique elements � in the matrix and for each element
ωk ∈ � count it’s relative frequency of appearance pk = #(ωk)/N . Finally,
we calculate Shannon’s entropy H = − ∑

k pk log2 pk .

774 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Fig. 1. Distribution of the weight matrix of the last layer of VGG-16 after
uniform quantization over the range of values, with 27 quantization points,
which resulted in no loss of accuracy. Left: distribution of quantized weights.
Right: frequency of appearance of the 15 most frequent values.

i.e., formats which are not specifically designed for repre-
senting low-entropy weight matrices, the theoretically possible
efficiency gains may not be achieved.

For instance, Fig. 1 shows the distribution of the weight
elements of the last classification layer of VGG-16 [40]
(1000 × 4096 dimensional matrix), after having applied uni-
form quantization on the weight elements. We stress that the
prediction accuracy and generalization of the network were not
affected by this operation. As we can see, the distribution of
the compressed layer does not satisfy the sparsity assumption,
i.e., there is not one particular element (such as 0) that
appears specially frequent in the matrix. The most frequent
value is −0.008 and its frequency of appearance does not
dominate over the others (about 4.2%). Thus, although this
matrix has low entropy, it is not sparse enough to be efficiently
represented by sparse matrix formats. Alternatively, one could
trivially reduce the numerical precision [31], [32], [41], [42]
needed for representing each weight element value down to
7 bits in this case. This greatly reduces the storage require-
ments without affecting the accuracy. However, if the acti-
vation values remained unquantized, then the associated dot
product algorithm would require multiple, mostly expensive
decoding operations in order to convert back each weight
element to its original 32-bit floating point value, increas-
ing as such by at least ×2 the workload. If, on the other
hand, the activation values were quantized and reduced to a
7-bit representation, then we could apply similar optimization
techniques as in [43] and [44] in order to reduce both the
memory and algorithmic complexity for performing inference.
However, the accuracy of most networks we considered in
this paper is harmed by 1%–3% (see the Supplementary
Material I-B) in this case. Since the main focus of this
paper is on lossless encoding of neural networks, we do
not consider these types of representations here. However,
we acknowledge that nonlinear quantization methods as well
as low-precision representations, especially in combination
with retraining [45]–[49] may constitute a good alternative to
dedicated matrix representations in practice.

In this paper, we present new lossless matrix representations
that become more efficient as the entropy of the weight
matrices is reduced. In particular, their complexity depends
partially on the number of shared weights present in the

matrix, which is reduced as the entropy of the matrix is
reduced. Indeed, we note that for the matrix in Fig. 1, most of
the entries are dominated by only 15 distinct values, which is
1.5% of the number of columns of the matrix. In Section III,
we will describe with a simple example how these new
representations leverage on this property in order to achieve
both high compression ratios and efficient dot products.

III. DATA STRUCTURES FOR MATRICES

WITH LOW-ENTROPY STATISTICS

In this section, we introduce the proposed data structures
and show that they implicitly encode the distributive law.
Consider the following matrix:

M =

⎛
⎜⎜⎜⎜⎝

0 3 0 2 4 0 0 2 3 4 0 4
4 4 0 0 0 4 0 0 4 4 0 4
4 0 3 4 0 0 0 4 0 2 0 0
0 0 0 4 4 4 0 3 4 4 0 0
0 4 4 0 0 4 0 4 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

Now assume that we want to: 1) store this matrix with the
minimum amount of bits and 2) perform the dot product with
a vector a ∈ R

12 with the minimum complexity.

A. Minimum Storage

We firstly comment on the storage requirement of dense
and sparse formats and then introduce two new formats which
more effectively store matrix M .

1) Dense Format: Arguably, the simplest way to store the
matrix M is in its so-called dense representation. That is,
we store its elements in a 5 × 12 long array (in addition to its
dimensions m = 5 and n = 12).

2) Sparse Format: However, note that more than 50% of
the entries are 0. Hence, we may be able to attain a more
compressed representation of this matrix if we store it in one
of the well-known sparse data structures, for instance, in the
compressed sparse row (CSR) format. This particular format
stores the values of the matrix in the following way.

1) Scans the nonzero elements in row-major order (that is,
from left to right and up to down) and stores them in
an array (which we denote as W).

2) Simultaneously, it stores the respective column indices
in another array (which we call colI).

3) Finally, it stores pointers that signal when a new row
starts (we denote this array as rowPtr).

Hence, our matrix M would take the form

W : [3, 2, 4, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3,

4, 4, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4]
col I : [1, 3, 4, 7, 8, 9, 11, 0, 1, 5, 8, 9, 11, 0,

2, 3, 7, 9, 3, 4, 5, 7, 8, 9, 1, 2, 5, 7]
rowPtr : [0, 7, 13, 18, 24, 28].

If we assume the same bit size per element for all arrays,
then the CSR data structure does not attain higher compres-
sion gains in spite of not saving the zero-valued elements
(62 entries versus 60 that are being required by the dense
data structure).

WIEDEMANN et al.: COMPACT AND COMPUTATIONALLY EFFICIENT REPRESENTATION OF DEEP NEURAL NETWORKS 775

We can improve this by exploiting the low-entropy property
of matrix M . In the following, we propose two new formats
which realize this.

3) Compressed Entropy Row Format: First, note that many
elements in M share the same value. In fact, only the four
values � = {0, 4, 3, 2} appear in the entire matrix. Hence,
it appears reasonable to assume that data structures that
repeatedly store these values (such as the dense or CSR
structures) induce high redundancies in their representation.
Therefore, we propose a data structure where we only store
those values once. Second, note that different elements appear
more frequently than others, and their relative order does
not change throughout the rows of the matrix. Concretely,
we have a set of unique elements � = {0, 4, 3, 2} which
appear P# = {32, 21, 4, 3} times, respectively, in the matrix,
and we obtain the same relative order of highest to lowest
frequent value throughout the rows of the matrix. Hence,
we can design an efficient data structure which leverages on
both properties in the following way.

1) Store unique elements present in the matrix in an array
in frequency-major order (that is, from most to least
frequent). We name this array �.

2) Store, respectively, the column indices in row-major
order, excluding the first element (thus excluding the
most frequent element). We denote it as colI.

3) Store pointers that signal when the positions of the next
new element in � start. We name it �Ptr. If a particular
pointer in �Ptr is the same as the previous one, this
means that the current element is not present in the
matrix and we jump to the next element.

4) Store pointers that signal when a new row starts.
We name it rowPtr. Here, rowPtr points to entries
in �Ptr.

Hence, this new data structure represents matrix M as

� : [0, 4, 3, 2]
col I : [4, 9, 11, 1, 8, 3, 7, 0, 1, 5, 8, 9, 11, 0,

3, 7, 2, 9, 3, 4, 5, 8, 9, 7, 1, 2, 5, 7]
�Ptr : [0, 3, 5, 7, 13, 16, 17, 18, 23, 24, 28]
rowPtr : [0, 3, 4, 7, 9, 10].

Note that we can uniquely reconstruct M from this data struc-
ture. We refer to this data structure as the compressed entropy
row (CER) data structure. One can verify that indeed, the CER
data structure only requires 49 entries (instead of 60 or 62)
attaining as such a compressed representation of the matrix M .

To summarize, the CER representation is able to attain
higher compression gains because it leverages on the following
two properties: 1) many matrix elements share the same value
and 2) the empirical probability mass distribution of the shared
weight elements does not change significantly across rows.

4) Compressed Shared Elements Row Format: In some
cases, it may be well that the probability distribution across
rows in a matrix is not similar to each other. Hence, the second
assumption in the CER data structure would not apply and we
would only be left with the first one. That is, we only know
that not many distinct elements appear per row in the matrix
or, in other words, that many elements share the same value.

The compressed shared elements row (CSER) data structure
is a slight extension to the previous CER representation. Here,
we add an element pointer array, which signals which element
in � the colI indices refer to. We called it �I . Thus, �I points
to entries in �, �Ptr to entries in colI, and rowPtr to entries
in �Ptr. Hence, the above matrix would then be represented
as follows:

� : [0, 2, 3, 4]
col I : [4, 9, 11, 1, 8, 3, 7, 0, 1, 5, 8, 9, 11, 0,

3, 7, 2, 9, 3, 4, 5, 8, 9, 7, 1, 2, 5, 7]
�I : [3, 2, 1, 3, 3, 2, 1, 3, 2, 3]
�Ptr : [0, 3, 5, 7, 13, 16, 17, 18, 23, 24, 28]
rowPtr : [0, 3, 4, 7, 9, 10].

Thus, for storing matrix M , we require 59 entries, which is still
a gain but not a significant one. Note that, now the ordering
of the elements in � is not important anymore, as long as the
�I array is accordingly adjusted. Similarly, the ordering of
�I at each row can also be arbitrary, as long as the �Ptr
and colI arrays are accordingly adjusted.

The relationship between CSER, CER, and CSR data struc-
tures is described in Section IV.

B. Dot Product Complexity

We just saw that we can attain gains with regard to com-
pression if we represent the matrix in the CER and CSER
data structures. However, we can also devise corresponding
dot product algorithms that are more efficient than their
dense and sparse counterparts. As an example, consider the
scalar product between the second row of matrix M with an
arbitrary input vector a = [a1 a2 . . . a12]�. In principle,
the difference in the algorithmic complexity arises because
each data structure implicitly encodes a different expression
of the scalar product, namely

dense : 4a1 + 4a2 + 0a3 + 0a4 + 0a5 + 4a6

+ 0a7 + 0a8 + 4a9 + 4a10 + 0a11 + 4a12

C S R : 4a1 + 4a2 + 4a6 + 4a9 + 4a10 + 4a12

C E R/C SE R : 4(a1 + a2 + a6 + a9 + a10 + a12).

For instance, the dot product algorithm associated with the
dense format would calculate the above scalar product by:
1) loading M and a and 2) calculating 4a0 +4a1+0a2+0a3+
0a4 +4a5 +0a6 +0a7 +4a8 +4a9 +0a10 +4a11. This requires
24 load (12 for the matrix elements and 12 for the input vector
elements), 12 multiply, 11 add, and 1 write operations (for
writing the result into memory). We purposely omitted the
accumulate operation, which stores the intermediate values of
the multiply-sum operations, since their cost can effectively be
associated with the sum operation. Moreover, we only consid-
ered read/write operations from and into memory. Hence, this
makes 48 operations in total.

In contrast, the dot product algorithm associated with the
CSR representation would only multiply-add the nonzero
entries. It does so by performing the following steps.

776 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 3, MARCH 2020

1) Load the subset of rowPtr respective to row 2. Thus,
rowPtr → [7, 13].

2) Then, load the respective subset of nonzero elements
and column indices. Thus, W → [4, 4, 4, 4, 4, 4] and
col I → [0, 1, 5, 8, 9, 11].

3) Finally, load the subset of elements of a respective to
the loaded subset of column indices and subsequently
multiply-add them to the loaded subset of W . Thus, a →
[a0, a1, a5, a8, a10, a11] and calculate 4a0 + 4a1 + 4a5 +
4a8 + 4a9 + 4a11.

By executing this algorithm, we would require 20 load opera-
tions (2 from rowPtr and 6 from W , colI, and the input vector,
respectively), six multiplications, five additions, and one write.
In total, this dot product algorithm requires 32 operations.

However, we can still see that the above dot product algo-
rithm is inefficient in this case since we constantly multiply
by the same element 4. Instead, the dot product algorithm
associated with, e.g., the CER data structure would perform
the following steps.

1) Load the subset of rowPtr respective to row 2. Thus,
rowPtr → [3, 4].

2) Load the corresponding subset in �Ptr. Thus,
�Ptr → [7, 13].

3) For each pair of elements in �Ptr, load the respective
subset in colI and the element in �. Thus, � → [4]
and col I → [0, 1, 5, 8, 9, 11].

4) For each loaded subset of colI, perform the sum of the
elements of a respective to the loaded colI. Thus, a →
[a0, a1, a5, a8, a10, a11] and do a0 + a1 + a5 + a8 + a9 +
a11 = z.

5) Subsequently, multiply the sum with the respective ele-
ment in �. Thus, compute 4z.

A similar algorithm can be devised for the CSER data struc-
ture. One can find both pseudocodes in the Supplementary
Material I-C. The operations required by this algorithm are
17 load operations (2 from rowPtr, 2 from �Ptr , 1 from �,
6 from colI, and 6 from a), one multiplication, five additions,
and one write. In total, these are 24 operations.

Hence, we have observed that for the matrix M , the CER
(and CSER) data structure does not only achieve higher
compression rates but also attains gains in efficiency with
respect to the dot product operation.

In Section IV, we give a detailed analysis of the storage
requirements needed by the data structures and also the
efficiency of the dot product algorithm associated with them.
This will help us identify when one type of data structure will
attain higher gains than the others.

IV. ANALYSIS OF THE STORAGE AND ENERGY

COMPLEXITY OF DATA STRUCTURES

Without loss of generality, in the following, we assume that
we aim to encode a particular matrix M ∈ �n×m=N , where its
elements Mij = ωk ∈ � take values from a finite set of ele-
ments � = {ω0, ω1, . . . , ωK−1}. Moreover, we assign to each
element ωk a probability mass value pk = #(ωk)/N , where
#(ωk) counts the number of times the element ωk appears
in the matrix M . We denote the respective set of probability
mass values P� = {p0, p1, . . . , pK−1}. In addition, we assume

that each element in � appears at least once in the matrix
(thus, pk > 0 for all k = 0, . . . , K − 1) and that ω0 = 0
is the most frequent value in the matrix. Finally, we order
the elements in � and P� in probability-major order, that is,
p0 ≥ p1 ≥ · · · ≥ pK−1.

A. Measuring the Energy Efficiency of the Dot Product

This paper proposes representations that are efficient with
regard to storage requirements as well as their dot product
algorithmic complexity. For the latter, we focus on the energy
requirements, since we consider it as the most relevant mea-
sures for neural network compression. However, exactly mea-
suring the energy of an algorithm is unreliable since it depends
on the software implementation and on the hardware the
program is running on. Therefore, we will model the energy
costs in a way that can easily be adapted across different
software implementations as well as hardware architectures.

In the following, we model a dot product algorithm by a
computational graph, whose nodes can be labeled with one of
the four elementary operations, namely: 1) a mul or multiply
operation which takes two numbers as input and outputs their
multiplied value; 2) a sum or summation operation which takes
two values as input and outputs their sum; 3) a read operation
which reads a particular number from memory; and 4) a write
operation which writes a value into memory. Note that, we do
not consider read/write operations from/into low-level memory
(like caches and registers) that stores temporary runtime val-
ues, e.g., outputs from summation and/or multiplications, since
their cost can be associated with those operations. Now, each
of these nodes can be associated with an energy cost. Then,
the total energy required for a particular dot product algorithm
simply equals the total cost of the nodes in the graph.

However, the energy cost of each node depends on the
hardware architecture and on the bit size of the values involved
in the operation. Hence, in order to make our model flexible
with regard to different hardware architectures, we introduce
four cost functions σ,μ, γ , and δ : N → R, which take as
input a bit size and output the energy cost of performing the
operation associated with them3; σ is associated with the sum
operation, μ with the mul, γ with the read, and δ with the
write operation.

A simple dot product algorithm for two 2-D input vectors
requires four read operations, two mul, one sum, and one write.
Assuming that the bit size of all numbers is b ∈ N, we can
state that the energy cost of this dot product algorithm would
be E = 1σ(b) + 2μ(b) + 4γ (b) + 1δ(b). Note that simi-
lar energy models have been previously proposed [50], [51].
In Section V, we validate the model by comparing it to real
energy results measured by previous authors.

Considering this energy model, we can now provide a
detailed analysis of the complexity of the CER and CSER
data structures. However, we start with a brief analysis of the
storage and energy requirements of the dense and sparse data
structure in order to facilitate the comparison between them.

3The sum and mul operations take two numbers as input and they may have
different bit sizes. Hence, in this case, we take the maximum of those as a
reference for the bit sizes involved in the operation.

WIEDEMANN et al.: COMPACT AND COMPUTATIONALLY EFFICIENT REPRESENTATION OF DEEP NEURAL NETWORKS 777

B. Efficiency Analysis of the Dense and CSR Formats

The dense data structure stores the matrix in an N-long
array (where N = m × n) using a constant bit size b�

for each element. Therefore, its effective per element storage
requirement is

Sdense = b� (1)

bits. The associated standard scalar product algorithm then has
the following per element energy costs:

Edense = σ(bo) + μ(bo) + γ (ba) + γ (b�) + 1

n
δ(bo) (2)

where ba denotes the bit size of the elements of the input
vector a ∈ R

n and bo is the bit size of the elements of the
output vector. The cost (2) is derived by considering: 1) load-
ing the elements of the input vector [γ (ba)]; 2) loading the
elements of the matrix [γ (b�)]; 3) multiplying them [μ(bo)];
4) summing the multiplications [σ(bo)]; and 5) writing the
result [δ(bo)/n]. We can see that both the storage and the
dot product efficiency have a constant cost attached to them,
despite the distribution of the elements of the matrix.

In contrast, the CSR data structure requires only

SCSR = (1 − p0)(b� + bI) + 1

n
bI (3)

effective bits per element in order to represent the matrix,
where bI denotes the bit size of the column indices. This
comes from the fact that we need in total N(1− p0)b� bits for
representing the nonzero elements of the matrix, N(1 − p0)bI

bits for their respective column indices, and mbI bits for the
row pointers. Moreover, it requires

ECSR = (1 − p0)(σ (bo) + μ(bo) + γ (ba) + γ (b�) + γ (bI))

+ 1

n
γ (bI) + 1

n
δ(bo) (4)

units of energy per matrix element in order to perform the
dot product. The expression (4) was derived from: 1) loading
the nonzero element values [(1 − p0)γ (b�)], their respective
indices [(1− p0)γ (bI)+γ (bI)/n], and the respective elements
of the input vector [γ (ba)]; 2) multiplying and summing
those elements [σ(bo) + μ(bo)]; and 3) writing the result into
memory [δ(bo)/n].

Different from the dense format, the efficiency of the CSR
data structure increases as p0 → 1, and thus, the number of
zero elements increases. Moreover, if the matrix size is large
enough, the storage requirement and the cost of performing a
dot product becomes effectively 0 as p0 → 1.

For the ease of the analysis, we introduce the big O notation
for capturing terms that depend on the shape of the matrix.
In addition, we denote the following set of operations:

ca = σ(ba) + γ (ba) + γ (bI) (5)

c� = γ (bI) + γ (b�) + μ(bo) + σ(bo) − σ(ba). (6)

ca can be interpreted as the total effective cost of involving
an element of the input vector in the dot product operation.
Analogously, can c� be interpreted with regard to the elements
of the matrix. Hence, we can rewrite (2) and (4) as follows:

Edense = ca + c� − 2γ (bI) + O(1/n) (7)

ECSR = (1 − p0)(ca + c�) + O(1/n) (8)

C. Efficiency Analysis of the CER and CSER Formats

Following a similar reasoning as mentioned above, we can
state Theorem 1.

Theorem 1: Let M ∈ R
m×n be a matrix. Let further p0 ∈

(0, 1) be the empirical probability mass distribution of the
zero element, and let bI ∈ N be the bit size of the numerical
representation of a column or row index in the matrix. Then,
the CER representation of M requires

SCER = (1 − p0)bI + k̄ + k̃

n
bI + O(1/n) + O(1/N) (9)

effective bits per matrix element, where k̄ denotes the average
number of shared elements that appear per row (excluding
the most frequent value), k̃ is the average number of padded
indices per row, and N = m×n is the total number of elements
of the matrix. Moreover, the effective cost associated with the
dot product with an input vector a ∈ R

n is

ECER = (1 − p0)ca + k̄

n
c� + k̃

n
γ (bI) + O(1/n) (10)

per matrix element, where ca and c� are as in (5) and (6).
Analogously, we can state Theorem 2.

Theorem 2: Let M , p0, bI , k̄, ca , and c� be as in Theo-
rem 1. Then, the CSER representation of M requires

SCSER = (1 − p0)bI + 2k̄

n
bI + O(1/n) + O(1/N) (11)

effective bits per matrix element, and the per element cost
associated with the dot product with an input vector a ∈ R

n is

ECSER = (1 − p0)ca + k̄

n
c� + k̄

n
γ (bI) + O(1/n). (12)

The proofs of Theorems 1 and 2 are in the Supplementary
Material II. These theorems state that the efficiency of the
data structures depends on the (k̄, p0) (average number of
distinct elements per row—sparsity) values of the empirical
distribution of the elements of the matrix. That is, these
data structures are increasingly efficient for distributions that
have high p0 and low k̄ values. However, since the entropy
measures the effective average number of distinct values that a
random variable outputs,4 both values are intrinsically related
to it. In fact, from Renyi’s generalized entropy definition [12],
we know that p0 ≥ 2−H . Moreover, the following properties
are satisfied.

1) k̄ → min{K − 1, n}, as H → log2 K or n → ∞, and
2) k̄ → 0, as H → 0 or n → 1.

Consequently, we can state Corollary 1.
Corollary 1: For a fixed set size of unique element |�| = K

and constant index bit size bI , the storage requirements S as
well as the cost of the dot product operation E of the CER
and CSER representations satisfy

S, E ≤ O(1 − 2−H) + O(K/n) + O(1/N)

= O(1 − 2−H) + O(1/n)

4From Shannon’s source coding theorem [11], we know that the entropy H
of a random variable gives the effective average number of bits that it outputs.
Therefore, we may interpret 2H as the effective average number of distinct
elements that a particular random variable outputs.

778 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 3, MARCH 2020

where p0, bI , n, and N are as in Theorems 1 and 2, and H
denotes the entropy of the matrix element distribution.

Thus, the efficiency of the CER and CSER data structures
increases as the column size increases, or as the entropy
decreases. Interestingly, when n → ∞, both representations
will converge to the same values, and thus, will become
equivalent. In addition, there will always exist a column size
n, where both formats are more efficient than the original
dense and sparse representations (see Fig. 4 where this trend
is demonstrated experimentally).

D. Connection Between CSR, CER, and CSER

The CSR format is considered to be one of the most
general sparse matrix representations, since it makes no further
assumptions regarding the empirical distribution of the matrix
elements. Consequently, it implicitly assumes a spike-and-slab
distribution on them. However, spike-and-slab distributions are
a particular class of low-entropic (for sufficiently high sparsity
levels p0) distributions. In fact, spike-and-slab distributions
have the highest entropy values compared to all other distri-
butions that have the same sparsity level. In contrast, as a
consequence of Corollary 1, the CER and CSER data struc-
tures relax this prior and can, therefore, efficiently represent
the entire set of low-entropic distributions. Hence, the CSR
data structure can be interpreted as a more specialized version
of the CER and CSER representations.

This may be more evident via the following example:
consider the first row of the matrix example from Section III:

(0 3 0 2 4 0 0 2 3 4 0 4).

The CSER data structure would represent the above row in
the following manner:

� : [0, 4, 3, 2]
col I : [4, 9, 11, 1, 8, 3, 7]
�I : [1, 2, 3]
�Ptr : [0, 3, 5, 7]
rowPtr : [0, 3].

In comparison, the CER representation assumes that the order-
ing of the elements in �I is similar for all rows; therefore,
it directly omits this array and implicitly encodes this informa-
tion in the � array. Therefore, the CER representation can be
interpreted as a more explicit/specialized version of the CSER.
The representation would then be

� : [0, 4, 3, 2]
col I : [4, 9, 11, 1, 8, 3, 7]
�Ptr : [0, 3, 5, 7]
rowPtr : [0, 3].

Similarly, the CSR representation omits the �Ptr array since
it assumes a uniform distribution over the nonzero elements
(thus, over the � array), and in such case, all the entries in

Fig. 2. Sketch of efficiency regions of the different data structures on
the entropy-sparsity-plane (H denotes the entropy and p0 is the sparsity).
A point in the plane corresponds to a distribution of the matrix elements
with respective entropy-sparsity value. Red, blue, and green regions indicate
regions where CER/CSER, dense, and sparse data structures are most efficient.
The bottom line corresponds to a min-entropy distribution, and the line at the
most right represents the family of spike-and-slab distributions.

�Ptr would redundantly be equal to 1. Therefore, the respec-
tive representation would be

� : [3, 2, 4, 2, 3, 4, 4]
col I : [1, 3, 4, 7, 8, 9, 11]
rowPtr : [0, 7].

Consequently, the CER and CSER representations will have
superior performance for all those distributions that are not
similar to the spike-and-slab distributions. Fig. 2 shows a
sketch of the regions on the entropy-sparsity plane, where
we expect the different data structures to be more efficient.
The sketch shows that the efficiency of sparse data structures
is high on the subset of distributions that are close to the
right border line of the (H, p0)-plane and that are close to
the family of spike-and-slab distribution. In contrast, dense
representations are increasingly efficient for high-entropic dis-
tributions, hence, in the top-left region. The CER and CSER
data structures would then cover the rest of them. Fig. 3
confirms this trend experimentally.

V. EXPERIMENTS

We applied the dense, CSR, CER, and CSER representations
on simulated matrices as well as on quantized neural network
weight matrices and benchmarked their efficiency with regard
to the following four criteria.

1) Storage Requirements: We calculated the storage
requirements according to (1), (3), (9), and (11).

2) Number of Operations: We implemented the dot product
algorithms associated with the four above data struc-
tures (implementation details and pseudocodes can be
found in the Supplementary Materials I-A and I-C)
and counted the number of elementary operations they
require to perform a matrix-vector multiplication.

3) Time Complexity: We timed each respective elementary
operation and calculated the total time from the sum of
those values.

WIEDEMANN et al.: COMPACT AND COMPUTATIONALLY EFFICIENT REPRESENTATION OF DEEP NEURAL NETWORKS 779

Fig. 3. Plots show the most efficient data structure at different points in the
H − p0 plane. The colors indicate the most efficient data structure at that point
in the plane. We compare the dense data structure (blue), the CSR format
(green), and the proposed CER/CSER data structures (red). We employed
a 100 × 100 matrix and calculated the average complexity over ten matrix
samples at each point. The size of the set of the elements was 27.

TABLE I

ENERGY VALUES (IN pJ) OF DIFFERENT ELEMENTARY OPERATIONS FOR

A 45-nm CMOS PROCESS [52]. WE SET THE 8-bit FLOATING POINT
OPERATIONS TO BE HALF THE COST OF A 16-bit OPERATION,

WHEREAS WE LINEARLY INTERPOLATED THE VALUES IN THE

CASE OF THE READ AND WRITE OPERATIONS

4) Energy Complexity: We estimated the respective energy
cost by weighting each operation according to Table I.
The total energy results consequently from the sum
of those values. As for the case of the IO operations
(read/write operations), their energy cost depends on
the size of the memory the values reside on. There-
fore, we calculated the total size of the array where a
particular number is entailed and chose the respective
maximum energy value. For instance, if a particular
column index is stored using a 16-bit representation and
the total size of the column index array is 30 kB, then
the respective read/write energy cost would be 5.0 pJ.

In addition, we used single-precision floating point rep-
resentations for the matrix elements and unsigned integer
representations for the index and pointer arrays. For the later,
we compressed the index-element-values to their minimum
required bit sizes, where we restricted them to be either 8,
16, or 32 bits.

Note that we do not consider the complexity of converting
the dense representation into the different formats in our
experiments. This is justified in the context of neural network
compression since we can apply this step a priori to the
inference procedure. That is, in most real-world scenarios, one
first converts the weight matrices, possibly with the help of
a capable computer, and then deploys the converted neural

Fig. 4. Efficiency ratios compared to the dense data structure of the different
data representations. n denotes the column size. We chose a matrix with
H = 4, p0 = 0.55, and a fixed row size of 100. The results show the averaged
values over 20 matrix samples. The size of the set of the elements was 27. The
proposed data structures tend to be more efficient, as the column dimension
of the matrix increases, and converge to the same value for n → ∞.

network into a resource-constrained device. We are mostly
interested in the resource consumption that will take place on
the device. Nevertheless, as an additional side note, we would
like to mention that the algorithmic complexity of conversion
into the CSR, CER, and CSER representations is of O(N),
that is, of the order of the number of elements in the matrix.

A. Experiments on Simulated Matrices

As the first experiments, we aimed to confirm the theoretical
trends described in Section IV.

1) Efficiency on Different Regions of the Entropy-Sparsity
Plane: First, we argued that each distribution has a particular
entropy-sparsity value, and that the superiority of the different
data structures is manifested in different regions on that
plane. Concretely, we expected the dense representation to be
increasingly more efficient in the top-left corner, the CSR on
the bottom-right (and along the right border), and the CER
and CSER on the rest.

Fig. 3 shows the result of performing one such experiment.
In particular, we randomly selected a point distribution on the
(H, p0)-plane and sampled ten different matrices from that
distribution. Subsequently, we converted each matrix into the
respective dense, CSR, CER, and CSER representations and
benchmarked the performance with regard to the four different
measures described earlier. We then averaged the results
over these ten different matrices. Finally, we compared the
performances with each other and, respectively, color-coded
the max result. That is, blue corresponds to points where the
dense representation was the most efficient, green to the CSR,
and red to either the CER or CSER. As one can see, the result
closely matches the expected behavior.

2) Efficiency as a Function of the Column Size: As the sec-
ond experiment, we study the asymptotic behavior of the data
structures, as we increase the column size of the matrices.
From Corollary 1, we expect that the CER and CSER data
structures increase their efficiency as the number of columns
in the matrix grows (thus, as n → ∞), until they converge
to the same point, outperforming the dense and sparse data
structures. Fig. 4 confirms this trend experimentally with

780 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 3, MARCH 2020

regard to all four benchmarks. Here, we chose a particular
point distribution on the (H, p0)-plane and fixed the number
of rows. Concretely, we chose H = 4.0, p0 = 0.55, and
m = 100 (the latter is the row dimension) and measured the
average complexity of the data structures as we increased the
number of columns n → ∞.

As a side note, the sharp changes in the plots are due to
the sharp discontinuities in the values of Table I. For instance,
the sharp drops in storage ratios come from the change of the
index bit sizes, e.g., from 8 → 16 bits.

B. Compressed Neural Networks Without Retraining

As the second set of experiments, we tested the effi-
ciency of the proposed data structures on compressed deep
neural networks. In particular, we benchmarked their weight
matrices relative to the matrix-vector operation, after them
being compressed using two different types of quantization
techniques: one where retraining of the network is required
(Section V-C) and one where it is not (Section V-B). We treat
them separately, since the statistics of the resulting compressed
weight matrices are conditioned by the quantization applied
on them. Further results can be found in the Supplementary
Material I-B.

We start by first analyzing the latter case. This scenario
is of particular interest since it applies to cases where one
does not have access to the training data (e.g., federated
learning scenario) or it is prohibited to retrain the model
(e.g., limited access to computational resources). Moreover,
common matrix representations, such as the dense or CSR,
may fail to efficiently exploit the statistics present in these
compressed weight matrices (see Fig. 1 and discussion in
Section II).

In our experiments, we first quantized the elements of the
weight matrices of the networks in a lossy manner, while
ensuring that we negligible impact their prediction accuracy.
Similar to [34] and [35], we applied a uniform quantizer over
the range of weight values at each layer and subsequently
rounded the values to their nearest quantization point. That is,
for each weight matrix W , we calculated the range of values
[wmin, wmax] (with wmin being the lowest weight element
value and wmax analogously) and inserted K = 2b equidistant
points inside that range, whose values were stored in the
array �. Then, we quantized each weight element in W to
its closest neighbor relative to � and measured the validation
accuracy of the quantized network. In our experiments, we did
not see any significant impact on the accuracy for all b ≥ 7
(see Table II). We chose the uniform quantizer because of
its simplicity and high performance relative to other more
sophisticated quantizers such as entropy-constrained k-mean
algorithms [34], [35]. Finally, we lossless converted the quan-
tized weight matrices into the different data structures and
tested their efficiency with regard to the four above mentioned
benchmark criteria.

1) Storage Requirements: Table II shows the gains in stor-
age requirements of different state-of-the-art neural networks.
Gains can be attained when storing the networks in CER or
CSER formats. In particular, we achieve more than ×2.5 sav-
ings on the DenseNet architecture [53], whereas in contrast,

TABLE II

STORAGE GAINS OF MODELS AFTER THEIR WEIGHT MATRICES HAVE
BEEN COMPRESSED DOWN TO 7 bits AND CONVERTED INTO THE

DIFFERENT DATA STRUCTURES. THE GAINS ARE RELATIVE TO

THE ORIGINAL DENSE REPRESENTATION OF THE COMPRESSED

WEIGHT MATRICES, AND THEY SHOW THE OVER THE
LAYERS’ AGGREGATED RESULTS. THE ACCURACY IS

MEASURED ON THE VALIDATION SET (IN

PARENTHESIS IS THE ACCURACY OF
THE ORIGINAL MODEL) OF THE

IMAGENET CLASSIFICATION TASK

Fig. 5. Storage requirements of a compressed DenseNet after converting
its weight matrices into the different data structures. The weights of the
network layers were compressed down to 7 bits (resulting accuracy is 77.09%).
The plots show the over the layers’ averaged result. Top: compression ratio
relative to the dense format. Bottom: contribution of different parts of the data
structures to the storage requirements.

the CSR data structure attains negligible gains. This is mainly
attributed to the fact that the dense and sparse representations
store very inefficiently the weight element values of these
networks. This is also reflected in Fig. 5, where one can
see that most of the storage requirements for the dense and
CSR representations are spent in storing the elements of the
weight matrices �. In contrast, most of the storage cost for
the CER and CSER data structures comes from storing the
column indices colI, which is much lower than the actual
weight values.

2) Number of Operations: Table III shows the savings
attained with regard to the number of elementary operations
needed to perform a matrix-vector multiplication. As one can
see, we can save up to 40% of the number of operations
if we use the CER/CSER data structures on the DenseNet
architecture. This is mainly due to the fact that the dot prod-
uct algorithm of the CER/CSER formats implicitly encodes
the distributive law of multiplications and consequently they
require much less number of them. This is also reflected
in Fig. 6, where one can see that the CER/CSER dot product
algorithms are mainly performing input load (Inload), column
index load (colIload), and addition (add) operations. Here,
others refer to any other operation involved in the dot product,

WIEDEMANN et al.: COMPACT AND COMPUTATIONALLY EFFICIENT REPRESENTATION OF DEEP NEURAL NETWORKS 781

TABLE III

GAINS ATTAINED WITH REGARD TO THE NUMBER OF OPERATIONS, TIME
AND ENERGY COST NEEDED FOR PERFORMING A MATRIX-VECTOR

MULTIPLICATION WITH THE COMPRESSED WEIGHT MATRICES OF

DIFFERENT NEURAL NETWORKS. THE EXPERIMENT SETTING

AND TABLE STRUCTURE IS THE SAME AS IN TABLE II

Fig. 6. Number of operations required to perform a dot product in the
different formats for the experimental setup described in Fig. 5 (DenseNet).
The CER/CSER formats require less operations than the other formats,
because they do not need to perform as many multiplications and they do
not need to load as many matrix weight elements.

such as multiplications, weight loading, writing, and so on.
In contrast, the dense and CSR dot product algorithms require
an additional equal number of weight element load (�load) and
multiplication (mul) operations.

3) Time Cost: In addition, Table III also shows that we
attain speedups when performing the dot product in the new
representation. Interestingly, Fig. 7 shows that most of the
time is being consumed on IO’s operations (that is, on load
operations). Consequently, the CER and CSER data structures
attain speedups since they do not have to load as many weight
elements. In addition, 20% and 16% of the time is spent
in performing multiplications, respectively, in the dense and
sparse representations. In contrast, this time cost is negligible
for the CER and CSER representations.

4) Energy Cost: Similarly, we see that most of the energy
consumption is due to IOs’ operations (see Fig. 8). Here,
the cost of loading an element may be up to three orders
of magnitude higher than any other operations (see Table I);
therefore, we obtain up to ×6 energy savings when using the
CER/CSER representations (see Table III).

Fig. 7. Time cost of a dot product in the different formats for the experimental
setup described in Fig. 5 (DenseNet). The CER/CSER formats save time,
because they do not require to perform as many multiplications and they do
not spend as much time loading the matrix weight elements.

Fig. 8. Energy cost of a dot product in the different formats for the exper-
imental setup described in Fig. 5 (DenseNet). Performing loading operations
consumes up to three orders more energy than sum and mul operations (see
Table I). Since the CER/CSER formats need substantially less matrix weight
element loading operations, they attain great energy saving compared to the
dense and CSR formats.

TABLE IV

STATISTICS OF DIFFERENT NEURAL NETWORK WEIGHT MATRICES

TAKEN OVER THE ENTIRE NETWORK. p0 DENOTES THE SPARSITY

LEVEL OF THE NETWORK, H THE ENTROPY, k̄ THE NUMBER OF
SHARED ELEMENTS PER ROW, AND n THE COLUMN

DIMENSION. ALL NEURAL NETWORKS HAVE

RELATIVELY LOW ENTROPY, I.E., A LOW
NUMBER OF SHARED ELEMENTS COMPARED

TO THE COLUMN DIMENSIONALITY

Finally, Table IV and Fig. 9 further justify the observed
gains. Namely, Table IV shows that the effective number of
shared elements per row of the network is small relative to
the networks’ effective column dimension. To clarify, we cal-
culated the effective number of shared elements by: 1) for all
rows, calculating the number of shared weights; 2) aggregating

782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Fig. 9. Empirical distributions of the weight matrices of different neural
network architectures after compression displayed on the entropy-sparsity
plane. As we see, most of the layers lay in the region where the CER/CSER
data structures outperform the dense and sparse representations. The top and
bottom black lines constrain the set of possible distributions.

the numbers; and 3) dividing the result by the total number
of rows that appear in the network. Similarly, the effective
number of columns indicates the average number of columns
in the network, and the effective sparsity level and effective
entropy values indicate the over the total number of weights
averaged result. Fig. 9 shows the distributions of the different
layers of the networks on the entropy-sparsity plane, where
we see that most of them lay in the regions where we expect
the CER/CSER formats to be more efficient.

C. Compressed Neural Networks With Retraining

In this section, we benchmark the CER/CSER matrix rep-
resentation on networks whose weight matrices have been
compressed using quantization techniques where retraining
was required in the process. This case is also of partic-
ular interest since highest compression gains can only be
achieved if one applies such quantizations techniques on to
the network [25], [26], [36]–[38].

For instance, deep compression [25] is a technique for
compressing neural networks that is able to attain high
compression rates without incurring significant loss of accu-
racy. It is able to do so by applying a three-staged
pipeline: 1) prune unimportant connections by employing
algorithm [30]; 2) cluster the nonpruned weight values and
refine the cluster centers to the loss surface; and 3) employ
an entropy coder for storing the final weights. Note that
the first two stages aim to implicitly minimize the entropy
of the weight matrices without incurring significant loss of
accuracy, whereas the third stage lossless converts the weight
matrices into low-bit representation. However, the proposed
representation is based on the CSR format, and consequently,
the complexity of the respective dot product algorithm remains
on the same order. Concretely, the total number of operations
that need to be performed is greater or equal to the original
CSR format. In fact, one requires specialized hardware in order
to efficiently exploit this final neural network representation
during inference [54]. Therefore, many authors benchmark
the inference efficiency of highly compressed deep neural
networks with regard to the standard CSR representation
when tested on standard hardware such as CPUs and/or
GPUs [25], [37], [50]. However, this comes at the cost of

Fig. 10. Efficiency comparison of a compressed AlexNet after converting
its weight matrices into the different data structures and benchmarking their
matrix-vector dot product operation. The network was compressed using the
deep compression technique. The plots show the over the layers aggregated
results compared to the original dense data structure.

adding redundancies, since then one does not exploit step 2
of the compression pipeline. In contrast, the CER/CSER
representations become increasingly efficient as the entropy of
the network is reduced, even if the sparsity level is maintained
(see Figs. 2 and 3). Hence, it is of high interest to benchmark
their efficiency on highly compressed networks and compare
them to their sparse (and dense) counterparts.

As the first experiment, we chose the AlexNet model [55],
which was compressed using the deep compression tech-
nique.5 The overall entropy of the network was reduced
down to 0.89 without incurring any loss of accuracy. Fig. 10
shows the gains in efficiency when the network layers are
converted into the different data structures. We see that the
proposed data structures are able to surpass the dense and
sparse data structures for all four benchmark criteria. There-
fore, CER/CSER data structures are much less redundant and
efficient representations of highly compressed neural network
models. Interestingly, the CER/CSER data structures attain up
to ×14 storage and ×20 energy savings, which is considerably
higher than the sparse counterpart. Nevertheless, we do not
attain significant time gains. This is due to the fact that,
in our implementations, the time cost of loading the input
elements was significantly higher than any other component in
the algorithm (see Fig. 3 in the Supplementary Material). This
also explains why the CSR format shows similar speedups than
the CER and CSER. However, this effect can be mitigated if
one applies further optimizations on the input vector, such as
data reuse techniques and/or better storage management of its
values during the dot product procedure. With that, we also
expect significant gains in time performance relative to the
CSR format.

Finally, we trained and compressed additional architectures
while following a similar compression pipeline, as described
in [25]. Concretely, we: 1) pretrained the architectures until
we reached the state-of-the-art accuracies; 2) sparsified the
architectures using the technique proposed in [26]; 3) applied
a uniform quantizer to the nonzero values in order to reduce
their effective bit size; and 4) converted the weight matri-
ces into the different representations and benchmarked their
efficiency relative to their matrix-vector product operation.
In step 2), we chose [26] since it is the current state-of-the-art

5https://github.com/songhan/Deep-Compression-AlexNet

WIEDEMANN et al.: COMPACT AND COMPUTATIONALLY EFFICIENT REPRESENTATION OF DEEP NEURAL NETWORKS 783

TABLE V

STORAGE GAINS OF DIFFERENT MODELS AFTER THEY HAVE BEEN
COMPRESSED AS DESCRIBED IN SECTION V-C. THE VGG MODEL

WAS TRAINED ON CIFAR-10 AS BENCHMARKED IN [26] AND [37].
THE LENET ARCHITECTURES WERE TRAINED ON MNIST

AS BENCHMARKED IN [26] AND [37]. THE ACCURACY
COLUMN (ACC) SHOWS THE ACCURACIES OF THE

COMPRESSED (PARENTHESIS) MODELS. FINALLY,
THE SPARSITY COLUMN (SP) DISPLAYS THE

RATIO BETWEEN THE NONZERO WEIGHT

VALUES AND THE TOTAL NUMBER OF

WEIGHT ELEMENTS

TABLE VI

GAINS ATTAINED (AGGREGATED OVER LAYERS) WITH REGARD TO THE
NUMBER OF OPERATIONS, AND TIME AND ENERGY COST NEEDED

WHEN BENCHMARKING THE MATRIX-VECTOR MULTIPLICATION

OF THE WEIGHT MATRICES OF THE NETWORKS DESCRIBED
IN TABLE V. THE PERFORMANCE GAINS ARE RELATIVE TO

THE ORIGINAL DENSE REPRESENTATION OF THE

COMPRESSED WEIGHT MATRICES

sparsification technique. In our experiments, we chose to
benchmark the same architectures as reported in [26] and [37],
that is, an adapted version of the VGG network6 for the
CIFAR-10 image classification task and the fully connected
and convolutional LeNet architectures for the MNIST classifi-
cation task. The respective accuracies and compression gains
can be seen in Table V and the gains relative to the dot product
complexity in Table VI. As we can see, we attain significantly
higher gains in all four benchmarks when we convert their
weight matrices into the CER/CSER representations. In par-
ticular, we are able to attain up to ×42 compression gains,
×5 speedups, and ×90 energy gains on the VGG model.

As a last side note, we want to mention again that compress-
ing further the CSR representation by, for instance, replacing
the nonzero values by their respective quantization indices
(as proposed in [25]) does not necessarily result in higher
gains with regard to the dot product since it requires an
additional decoding step per nonzero element in the process.

6http://torch.ch/blog/2015/07/30/cifar.html.

For instance, we got only ×2.89 speedups on our com-
pressed CIFAR10-VGG model, which is less than the speedups
attained by the original CSR format (×3.63). Furthermore,
we attained ×33.62, ×3.10, and ×62.32 gains in storage,
the number of operations, and energy, respectively, which
is also lower than the gains attained by the CER/CSER
representations (Tables V and VI).

VI. CONCLUSION

We presented two new matrix representations, CER and
CSER, that are able to attain high compression ratios and
energy savings if the distribution of the matrix elements has
low entropy. We showed on an extensive set of experiments
that the CER/CSER data structures are more compact and
computationally efficient representations of compressed state-
of-the-art neural networks than dense and sparse formats.
In particular, we attained up to ×42 compression ratios and
×90 energy savings by representing the weight matrices of a
highly compressed VGG model in their CER/CSER forms and
benchmarked against the matrix-vector product operation.

By demonstrating the advantages of entropy-optimized data
formats for representing neural networks, this paper opens
up new directions for future research, e.g., the exploration of
entropy-constrained regularization and quantization techniques
for compressing deep neural networks [39]. The combina-
tion of entropy-constrained regularization and quantization
and entropy-optimized data formats may push the limits
of neural network compression even further and also be
beneficial for applications such as federated or distributed
learning [56], [57].

Future work will also study lossy compression schemes,
especially in combination with their analysis with explanation
methods [58], [59].

REFERENCES

[1] R. H. Landau, J. Paez, and C. C. Bordeianu, A Survey of Computational
Physics: Introductory Computational Science. Princeton, NJ, USA:
Princeton Univ. Press, 2008.

[2] D. M. Young and R. T. Gregory, A Survey of Numerical Mathematics.
New York, NY, USA: Dover, 1988.

[3] S. Krig, Computer Vision Metrics: Survey, Taxonomy, and Analysis,
1st ed. Berkely, CA, USA: Apress, 2014.

[4] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp,”
in Neural Networks: Tricks of the Trade (Lecture Notes in Computer
Science), vol. 7700, 2nd ed. Berlin, Germany: Springer, 2012, pp. 9–48.

[5] S. Afroz, M. Tahaseen, F. Ahmed, K. S. Farshee, and M. N. Huda,
“Survey on matrix multiplication algorithms,” in Proc. 5th Int. Conf.
Inform., Electron. Vis. (ICIEV), 2016, pp. 151–155.

[6] M. Bläser, “Fast matrix multiplication,” Theory Comput., Graduate
Surv., vol. 5, pp. 1–60, Dec. 2013.

[7] I. S. Duff, “A survey of sparse matrix research,” Proc. IEEE, vol. 65,
no. 4, pp. 500–535, Apr. 1977.

[8] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N.
Koziris, “An extended compression format for the optimization of
sparse matrix-vector multiplication,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 10, pp. 1930–1940, Oct. 2013.

[9] J. King, T. Gilray, R. M. Kirby, and M. Might, “Dynamic-CSR:
A format for dynamic sparse-matrix updates,” in Proc. 31st Int. Conf.
High Perform. Comput. (Lecture Notes in Computer Science), vol. 9697.
Cham, Switzerland: Springer-Verlag, 2016, pp. 61–80.

[10] R. Yuster and U. Zwick, “Fast sparse matrix multiplication,” in
Algorithms—ESA. Berlin, Germany: Springer, 2004, pp. 604–615.

[11] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55,
2001.

784 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 3, MARCH 2020

[12] A. Rényi, “On measures of entropy and information,” in Proc. 4th
Berkeley Symp. Math. Statist. Probab., Contrib. Theory Statist., vol. 1,
1961, pp. 547–561.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[14] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[16] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek,
“Deep neural networks for no-reference and full-reference image quality
assessment,” IEEE Trans. Image Process., vol. 27, no. 1, pp. 206–219,
Jan. 2018.

[17] W. Dai, C. Dai, S. Qu, J. Li, and S. Das. (2016). “Very deep con-
volutional neural networks for raw waveforms.” [Online]. Available:
https://arxiv.org/abs/1610.00087

[18] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. Int. Conf. Represent.
Learn. (ICLR), 2015, pp. 1–11.

[19] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles
in high-energy physics with deep learning,” Nature Commun., vol. 5,
Jul. 2014, Art. no. 4308.

[20] I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Müller, “Interpretable
deep neural networks for single-trial eeg classification,” J. Neurosci.
Methods, vol. 274, pp. 141–145, Dec. 2016.

[21] K. T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, and
A. Tkatchenko, “Quantum-chemical insights from deep tensor neural
networks,” Nature Commun., vol. 8, no. 4, p. 13890, 2017.

[22] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt,
and K.-R. Müller, “Machine learning of accurate energy-conserving
molecular force fields,” Sci. Adv., vol. 3, no. 5, 2017, Art. no. e1603015.

[23] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas, “Pre-
dicting parameters in deep learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 2148–2156.

[24] G. Hinton, O. Vinyals, and J. Dean. (2015). “Distilling the knowledge in
a neural network.” [Online]. Available: https://arxiv.org/abs/1503.02531

[25] S. Han, H. Mao, and W. J. Dally. (2015). “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
Huffman coding.” [Online]. Available: https://arxiv.org/abs/1510.00149

[26] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout
sparsifies deep neural networks,” in Proc. 34th Int. Conf. Mach.
Learn. (ICML), 2017, pp. 2498–2507.

[27] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. (2017). “A survey of model
compression and acceleration for deep neural networks.” [Online].
Available: https://arxiv.org/abs/1710.09282

[28] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems. San Francisco, CA,
USA: Morgan Kaufmann, 1990, pp. 598–605.

[29] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon
and general network pruning,” in Proc. IEEE Int. Conf. Neural Netw.,
vol. 1, 1993, pp. 293–299.

[30] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[31] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” in Proc. Deep Learn. Unsupervised Feature Learn.
Workshop, 2011, pp. 1–8.

[32] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quan-
tization of deep convolutional networks,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2016, pp. 2849–2858.

[33] F. Li, B. Zhang, and B. Liu. (2016). “Ternary weight networks.”
[Online]. Available: https://arxiv.org/abs/1605.04711

[34] Y. Choi, M. El-Khamy, and J. Lee. (2016). “Towards the limit of network
quantization.” [Online]. Available: https://arxiv.org/abs/1612.01543

[35] Y. Choi, M. El-Khamy, and J. Lee. (2018). “Universal deep
neural network compression.” [Online]. Available: https://arxiv.org/abs/
1802.02271

[36] K. Ullrich, E. Meeds, and M. Welling. (2017). “Soft weight-sharing
for neural network compression.” [Online]. Available: https://
arxiv.org/abs/1702.04008

[37] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression
for deep learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 3290–3300.

[38] M. Federici, K. Ullrich, and M. Welling. (2017). “Improved Bayesian
compression.” [Online]. Available: https://arxiv.org/abs/1711.06494

[39] S. Wiedemann, A. Marban, K.-R. Müller, and W. Samek, “Entropy-
constrained training of deep neural networks,” in Proc. IEEE Int. Joint
Conf. Neural Netw. (IJCNN), to be published.

[40] K. Simonyan and A. Zisserman. (2014). “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[41] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for
8-bit training of neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 5145–5153.

[42] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan. (2018).
“Training deep neural networks with 8-bit floating point numbers.”
[Online]. Available: https://arxiv.org/abs/1812.08011

[43] TensorFlow Lite. Accessed: Feb. 28, 2019. [Online]. Available:
https://www.tensorflow.org/lite

[44] QNNPACK Open Source Library for Optimized Mobile Deep Learn-
ing. Accessed: Feb. 28, 2019. [Online]. Available: https://github.
com/pytorch/QNNPACK

[45] N. Mellempudi, A. Kundu, D. Das, D. Mudigere, and B. Kaul. (2017).
“Mixed low-precision deep learning inference using dynamic fixed
point.” [Online]. Available: https://arxiv.org/abs/1701.08978

[46] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio.
(2016). “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1.” [Online]. Available:
https://arxiv.org/abs/1602.02830

[47] M. Kim and P. Smaragdis. (2016). “Bitwise neural networks.” [Online].
Available: https://arxiv.org/abs/1601.06071

[48] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. (2016).
“XNOR-Net: ImageNet classification using binary convolutional neural
networks.” [Online]. Available: https://arxiv.org/abs/1603.05279

[49] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li. (2017). “GXNOR-Net:
Training deep neural networks with ternary weights and activations with-
out full-precision memory under a unified discretization framework.”
[Online]. Available: https://arxiv.org/abs/1705.09283

[50] T. Yang, Y. Chen, and V. Sze, “Designing energy-efficient convolutional
neural networks using energy-aware pruning,” in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5687–5695.

[51] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[52] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 10–14.

[53] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convo-
lutional networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jul. 2016, pp. 4700–4708.

[54] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2016, pp. 243–254.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[56] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas. (2016). “Communication-efficient learning of deep
networks from decentralized data.” [Online]. Available: https://arxiv.
org/abs/1602.05629

[57] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” in Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN), to be
published.

[58] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning
models,” ITU J., ICT Discoveries, vol. 1, no. 1, pp. 39–48, 2018.

[59] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek,
and K.-R. Müller, “Unmasking clever Hans predictors and assessing
what machines really learn,” Nature Commun., vol. 10, Mar. 2019,
Art. no. 1096.

Simon Wiedemann received the M.Sc. degree in
applied mathematics from Technische Universität
Berlin, Berlin, Germany.

He is currently with the Machine Learning Group,
Fraunhofer Heinrich Hertz Institute, Berlin. His
major research interests include machine learning,
neural networks, and information theory.

WIEDEMANN et al.: COMPACT AND COMPUTATIONALLY EFFICIENT REPRESENTATION OF DEEP NEURAL NETWORKS 785

Klaus-Robert Müller (M’12) studied physics in
Karlsruhe, Germany, from 1984 to 1989, and
received the Ph.D. degree in computer science
from Technische Universität Karlsruhe, Karlsruhe,
in 1992.

After completing a postdoctoral position at GMD
FIRST, Berlin, Germany, he was a Research Fel-
low with The University of Tokyo, Tokyo, Japan,
from 1994 to 1995. In 1995, he founded the Intel-
ligent Data Analysis Group, GMD-FIRST (later
Fraunhofer FIRST), and directed it until 2008. From

1999 to 2006, he was a Professor with the University of Potsdam, Potsdam,
Germany. He has been a Professor of computer science with Technische
Universität Berlin, Berlin, since 2006; at the same time, he is co-directing the
Berlin Big Data Center. His current research interests include intelligent data
analysis, machine learning, signal processing, and brain–computer interfaces.

Dr. Müller was a recipient of the 1999 Olympus Prize by the German Pattern
Recognition Society, DAGM, and he received the SEL Alcatel Communication
Award in 2006, the Science Prize of Berlin awarded by the Governing Mayor
of Berlin in 2014, and the Vodafone Innovation Award in 2017. In 2012,
he was elected as a member of the German National Academy of Sciences
Leopoldina, and in 2017, a member of the Berlin Brandenburg Academy of
sciences, and an External Scientific Member of the Max Planck Society.

Wojciech Samek (M’13) received the Diploma
degree in computer science from the Humboldt Uni-
versity of Berlin, Berlin, Germany, in 2010, and the
Ph.D. degree in machine learning from Technische
Universität Berlin, Berlin, in 2014.

In 2014, he founded the Machine Learning Group,
Fraunhofer Heinrich Hertz Institute, Berlin, which
he currently directs. He is associated with the
Berlin Big Data Center and was a Scholar of the
German National Academic Foundation and a Ph.D.
Fellow at the Bernstein Center for Computational

Neuroscience Berlin. He was visiting Heriot-Watt University, Edinburgh,
U.K., and The University of Edinburgh, Edinburgh, from 2007 to 2008.
In 2009, he was with the Intelligent Robotics Group, NASA Ames Research
Center, Mountain View, CA, USA. His research interests include interpretable
machine learning, neural networks, signal processing, and computer vision.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

