
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 7, JULY 2019 1967

Inverting the Generator of a Generative
Adversarial Network

Antonia Creswell and Anil Anthony Bharath

Abstract— Generative adversarial networks (GANs) learn a
deep generative model that is able to synthesize novel, high-
dimensional data samples. New data samples are synthesized by
passing latent samples, drawn from a chosen prior distribution,
through the generative model. Once trained, the latent space
exhibits interesting properties that may be useful for downstream
tasks such as classification or retrieval. Unfortunately, GANs do
not offer an “inverse model,” a mapping from data space back
to latent space, making it difficult to infer a latent representation
for a given data sample. In this paper, we introduce a technique,
inversion, to project data samples, specifically images, to the latent
space using a pretrained GAN. Using our proposed inversion
technique, we are able to identify which attributes of a data set
a trained GAN is able to model and quantify GAN performance,
based on a reconstruction loss. We demonstrate how our proposed
inversion technique may be used to quantitatively compare the
performance of various GAN models trained on three image data
sets. We provide codes for all of our experiments in the website
(https://github.com/ToniCreswell/InvertingGAN).

Index Terms— Backpropagation, feature extraction, image gen-
eration, multilayer neural network, pattern recognition, unsuper-
vised learning.

I. INTRODUCTION

GENERATIVE adversarial networks (GANs) [10], [20]
are a class of generative model which are able to synthe-

size novel, realistic looking images of faces, digits, and street
numbers [20]. GANs involve two networks: a generator, G,
and a discriminator, D. The generator, G, is trained to generate
synthetic images, taking a random vector, z, drawn from
a prior distribution, P(Z), as input. The prior is often chosen
to be a normal or uniform distribution.

Radford et al. [20] demonstrated that GANs learn a “rich
linear structure,” meaning that algebraic operations in Z -space
often lead to semantically meaningful synthetic samples in
image space. Since images represented in Z -space are often
meaningful, direct access to a z ∈ Z for a given image, x ∈ X
may be useful for discriminative tasks such as retrieval or
classification. Recently, it has also become desirable to be able
to access Z -space in order to manipulate original images [27].
Thus, there are many reasons we may wish to invert the
generator.

Typically, inversion is achieved by finding a vector z ∈ Z
which when passed through the generator produces an image

Manuscript received February 15, 2018; revised August 14, 2018; accepted
October 7, 2018. Date of publication November 2, 2018; date of current
version June 14, 2019. The work of A. Creswell was supported by an EPSRC
Doctoral Training Programme under Grant EP/L504786/1. (Corresponding
author: Antonia Creswell.)

The authors are with BICV, Imperial College London, London SW7 2AZ,
U.K. (e-mail: ac2211@ic.ac.uk; aab01@ic.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2875194

that is very similar to the target image. If no suitable z exists,
this may be an indicator that the generator is unable to model
either the whole image or certain attributes of the image.
We give a concrete example in Section VI-B. Therefore, invert-
ing the generator, additionally, provides interesting insights to
highlight what a trained GAN has learned.

Mapping an image, from image space, X , to Z -space
is nontrivial, as it requires inversion of the generator,
which is often many layered, nonlinear model [4], [10], [20].
Dumoulin et al. [9] (ALI) and Donahue et al. (BiGAN) [8]
proposed learning a third, decoder network along side the
generator and discriminator to map image samples back to
Z -space. Collectively, they demonstrated results on MNIST,
ImageNet, CIFAR-10, SVHN, and CelebA. However, recon-
structions of inversions are often poor. Specifically, recon-
structions of inverted MNIST digits using methods of
Donahue et al. [7], often fail to preserve the style and char-
acter class. Recently, Li et al. [16] proposed a method to
improve reconstructions. Some drawbacks to these approa-
ches [8], [9], [16] include the need to train a third network,
which increases the number of parameters that have to be
learned; with more parameters, there is generally a greater
chance of overfitting [23], or even of memorizing [12] input
samples.

When employing a decoder model to perform inversion, its
value as a diagnostic tool for evaluating GANs is hindered.
GANs suffer from several pathologies [1], [2], [13], [19],
[21], [26], including overfitting [11], [24], that we may be able
to detect using inversion. If an additional encoder model is
trained to perform inversion [8], [9], [16], [17], the encoder
itself may overfit, thus not portraying the true nature of a
trained GAN. Since our approach does not involve training
an additional encoder model, we may use our approach for
“trouble-shooting” and evaluating different pretrained GAN
models.

In this paper, we make the following contributions.

1) We propose a novel approach to invert the generator
of any pretrained GAN, provided that the computa-
tional graph for the generator network is available
(Section II).

2) We demonstrate that, we are able to infer a Z -space
representation for a target image, such that when passed
through the GAN, it produces a sample visually similar
to the target image (Section VI).

3) We demonstrate several ways in which our proposed
inversion technique may be used to both qualita-
tively (Section VI-B) and quantitatively compare GAN
models (Section VII).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0003-1037-9395
https://orcid.org/0000-0001-8808-2714

1968 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 7, JULY 2019

Algorithm 1: Algorithm for Inferring z∗ ∈ �d , the Latent
Representation for an Image x ∈ �m×m

Result: Infer(x)
1 z∗ ∼ Pz(Z) ;
2 while NOT converged do
3 L ←−(x log[G(z∗)] + (1− x) log[1− G(z∗)]);
4 z∗ ← z∗ − α∇z L;
5 end
6 return z∗ ;

4) In addition, we show that batches of z samples can be
inferred from batches of image samples, which improve
the efficiency of the inversion process by allowing
multiple images to be inverted in parallel (Section II-A).

We begin, by describing our proposed inversion technique.

II. METHOD: INVERTING THE GENERATOR

For a target image, x ∈ �m×m we want to infer the Z -space
representation, z ∈ Z , which when passed through the trained
generator produces an image very similar to x . We refer to
the process of inferring z from x as inversion. This can be
formulated as a minimization problem, as follows, where E is
the expectation:

z∗ = min
z
−Ex log[G(z)]. (1)

Provided that the computational graph for G(z) is known,
z∗ can be calculated via gradient descent methods, taking the
gradient of G with respect to z. This is detailed in Algorithm 1.

Provided that the generator is deterministic, each z value
maps to a single image, x . A single z value cannot map
to multiple images. However, it is possible that a single x
value may map to several z representations, particularly if the
generator has collapsed [21]. This suggests that there may be
multiple possible z values to describe a single image. This
is very different to a discriminative model, where multiple
images, may often be described by the same representation
vector [18], particularly when a discriminative model learns
representations tolerant to variations.

The approach described in Algorithm 1 is similar in spirit to
that of Mahendran and Vedaldi [18], but instead of inverting a
representation to obtain the image that was responsible for it,
we infer the latent representation that generates a particular
image.

A. Inverting a Batch of Samples
Algorithm 1 shows how we can invert a single data sample.

However, it may not be efficient to invert single images at
a time; instead, a more practical approach is to invert many
images at once. We will now show that we are able to invert
batches of examples.

Let zb ∈ �B×n , zb = {z1, z2, . . . zB} be a batch of B
samples of z. This will map to a batch of image samples
xb ∈ �B×m×m , xb = {x1, x2, . . . xB}. For each pair (zi , xi),
i ∈ {1 . . . B}, a loss Li , may be calculated. The update for zi

would then be zi ← zi − α(d Li/dzi).

If reconstruction loss is calculated over a batch, then the
batch reconstruction loss would be

∑
i={1,2...B} Li , and the

update would be

∇zb L = ∂
∑

i∈{1,2,...B} Li

∂(zb)
(2)

= ∂(L1 + L2 . . .+ Li)

∂(zb)
(3)

= d L1

dz1
,

d L2

dz2
, . . .

d L B

dzB
. (4)

Each reconstruction loss depends only on G(zi), so Li

depends only on zi , which means (∂Li/∂z j) = 0, for all
i �= j . This shows that zi is updated only by reconstruction
loss Li , and the other losses do not contribute to the update
of zi , meaning that it is valid to perform updates on batches.
The ability to perform updates on batches means that multiple
inversions may be run in parallel, making use of parallel archi-
tectures, and specifically general purpose graphical processing
units.

B. Using Prior Knowledge of P(Z)
A GAN is trained to generate samples from a z ∈ Z where

the distribution over Z is a chosen prior distribution, P(Z).
P(Z) is often a multivariate Gaussian or uniform distribution.
If P(Z) is a multivariate uniform distribution, U[a, b], then
after updating z∗, it can be clipped to be between [a, b]. This
ensures that z∗ lies in the probable regions of Z . If P(Z) is
a multivariate Gaussian Distribution, N [μ, σ 2], regularization
terms may be added to the cost function, penalizing samples
that have statistics that are not consistent with P(Z) =
N [μ, σ 2].

If z ∈ Z is a vector of length d and each of the d elements
in z ∈ �d is drawn independently and from identical distri-
butions, we may be able to add a regularization term to the
loss function. For example, if P(Z) is a multivariate Gaussian
distribution, then elements in a single z are independent and
identically drawn from a Gaussian distribution. Therefore,
we may calculate the likelihood of an encoding, z, under a
multivariate Gaussian distribution by evaluating

log P(z) = log P(z1, . . . , zd) = 1

d

d∑

i=0

logP(zi)

where zi is the i th element in a latent vector z and P is the
probability density function of a (univariate) Gaussian, which
may be calculated analytically. Our new loss function may be
given by

L(z, x) = Ex log[G(z)] − β log P(z) (5)

by minimizing this loss function (Equation 5), we encourage
z∗ to come from the same distribution as the prior.

III. RELATION TO PREVIOUS WORK

In this paper, we build on our own work [6], which was pre-
viously presented at the NIPS 2016 Workshop on Adversarial
Training, but has not yet been published.

We have augmented the paper by performing additional
experiments on a shoe data set [17] and CelebA, as well

CRESWELL AND BHARATH: INVERTING THE GENERATOR OF A GAN 1969

as repeating experiments on the Omniglot data set using the
DCGAN model proposed by Radford et al. [20] rather than
our own network [5]; we also perform experiments showing
the ability to access the Wasserstein GAN (WGAN). In addi-
tion to proposing a novel approach for mapping data samples
to their corresponding latent representation, we show how
our approach may be used to quantitatively and qualitatively
compare models.

Our approach to inferring z from x is similar to the previous
work of Zhu et al. [27], but we make additional contributions.

Zhu et al. [27] calculated a reconstruction loss by compar-
ing the features of x and G(z∗) extracted from the layers of
AlexNet [14], a convolutional neural network (CNN) trained
on natural scenes. This loss is unlikely to be appropriate
if the generated samples are either not of natural scenes
(e.g., Omniglot handwritten characters), or are of signals.
Our approach considers a raw pixel loss, providing a generic
approach that is not specific to the data set. Furthermore,
if our intention is to use the inversion to better understand the
GAN model, it is not appropriate to incorporate information
from other pretrained networks (e.g., AlexNet) in the inversion
process (see [3] for empirical evidence of bias even in visual
networks).

An alternative class of inversion methods involves train-
ing a separate encoding network to learn a mapping from
image samples, x to latent samples z. Li et al. [16],
Donahue et al. [8], and Dumoulin et al. [9] propose learning
the encoder along side the GAN. Training an additional
encoder network increases the parameter space for learning:
for two GANs of the same combined generator/discriminator
capacity, the additional parameters of an encoder network on
one pair can lead to overfitting in that pair. Furthermore, this
approach may not be applied to pretrained models.

Luo et al. [17], train an encoding network after a GAN has
been trained, which means that their approach may be applied
to pretrained models. However, as with any learning approach,
the trained encoder may overfit to the examples it has been
trained on. For this reason, the approach of Luo et al. [17] may
not be suitable for inverting image samples that come from a
different distribution to the training data. Luo et al. [17] only
show “original” reconstructed image samples being inverted,
not samples from a set of independent data; in other words,
Luo et al. [17] showed results for inverting already synthe-
sized samples, rather than real image samples from a test
set.

In contrast, we apply our inversion process on data samples
drawn from test sets of real data samples. To make the inver-
sion more challenging, we sometimes invert image samples
that come from a different distribution to the training data.
For example, we inverted image samples from the Omniglot
handwritten characters data set that come from a different set
of alphabets to the set used to train the (Omniglot) GAN.
We were still able to recover a latent encoding that captures
most features of the test data samples.

Finally, previous inversion approaches that use learned
encoder models [8], [9], [16], [17] may not be suitable for
“trouble-shooting,” as symptoms of the GAN may be

Fig. 1. Synthetic Omniglot samples represent samples synthesized using a
(a) GAN and (b) WGAN.

exaggerated by an encoder that overfits. We discuss this in
more detail in Section VII.

IV. “PRETRAINED” MODELS

In this section, we discuss the training and architecture
details of several different GAN models, trained on three
different data sets, which we will use for our inversion
experiments detailed in Section V. We show results on a total
of 10 trained models (Sections VI and VII).

A. Omniglot
The Omniglot data set [15] consists of characters from

50 different alphabets, where each alphabet has at least 14 dif-
ferent characters. The Omniglot data set has a background
data set, used for training and a test data set. The background
set consists of characters from 30 writing systems, while
the test data set consists of characters from the other 20.
Note that characters in the training and testing data set come
from different writing systems. We train both a DCGAN [20]
and a WGAN [2] using a latent representation of dimension,
d = 100. The WGAN [2] is a variant of the GAN that is easier
to train and less likely to suffer from mode collapse; mode
collapse is where synthesized samples look similar to each
other. All GANs are trained with additive noise whose standard
deviation decays during training [1]. Fig. 1 shows Omniglot
samples synthesized using the trained models. Though it is
clear from Fig. 1(a), that the GAN has collapsed, because the
generator is synthesizing similar samples for different latent
codes, it is less clear to what extent the WGAN [Fig. 1(b)]
may have collapsed or overfit. It is also unclear from Fig. 1(b)
what representative power, the (latent space of the) WGAN
has. Results in Sections VI and VII will provide more insight
into the representations learned by these models.

B. Shoes
The shoes data set [25] consists of 50 000 examples of

shoes in RGB color, from four different categories and over
3000 different subcategories. The images are of dimensions
128× 128. We leave 1000 samples out for testing and use the
rest for training. We train two GANs using the DCGAN [20]
architecture. We train one DCGAN with full sized images and

1970 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 7, JULY 2019

Fig. 2. Shoe samples synthesized using GANs represent samples from
DCGANs trained on (a) lower resolution (64 × 64) images, (b) higher
resolution images (128 × 128), and (c) samples from a WGAN.

the second we train on 64 × 64 images. The networks were
trained according to the setup described by Radford et al. [20],
using a multivariate Gaussian prior. We also train a WGAN [2]
on full sized images. All GANs are trained with additive
noise whose standard deviation decays during training [1].
Fig. 3 shows samples randomly synthesized using the DCGAN
models trained on shoes. The samples look quite realistic,
but again, they do not tell us much about the representations
learned by the GANs.

C. CelebA
The CelebA data set consists of 250 000 celebrity faces,

in RGB color. The images are of dimensions 64× 64 pixels.
We leave 1000 samples out for testing and use the rest
for training. We train three models, a DCGAN and WGAN
trained with decaying noise [1] and a DCGAN trained with-
out noise. The networks are trained according to the setup
described by Radford et al. [20]. Fig. 3(c) shows examples
of faces synthesized with and without noise. It is clear from
Fig. 3(a) and (c) that the GAN trained without noise has
collapsed, synthesizing similar examples for different latent
codes. The WGAN produces the sharpest and most varied
samples. However, these samples do not provide sufficient
information about the representation power of the models.

V. EXPERIMENTS

To obtain latent representations, z∗ for a given image x
we apply our proposed inversion technique to a batch of
randomly selected test images, x ∈ X . To invert a batch
of image samples, we minimized the cost function described
by (5). In most of our experiments, we use β = 0.01, unless
stated otherwise, and update candidate z∗ using an RMSprop
optimiser, with a learning rate of 0.01.

A valid inversion process should map a target image sample,
x ∈ X to a z∗ ∈ Z , such that when z∗ is passed through

Fig. 3. Celebrity faces synthesized using GANs represent samples from
DCGANs trained (a) without noise and (b) with noise. (c) Samples from
a WGAN.

the generative part of the GAN, it produces an image, G(z∗),
that is close to the target image, x . However, the quality of
the reconstruction depends heavily on the latent representation
that the generative model has learned. In the case, where a
generative model is only able to represent some attributes
of the target image, x , the reconstruction, G(z∗) may only
partially reconstruct x .

Thus, the purpose of our experiments is twofold.
1) To demonstrate qualitatively, through reconstruction,

(G(z∗)), that for most well-trained GANs, our inversion
process is able to recover a latent code, z∗, that captures
most of the important features of a target image
(Section VI).

2) To demonstrate how our proposed inversion technique
may be used to both qualitatively (Section VI-B) and
quantitatively compare GAN models (Section VII).

VI. RECONSTRUCTION RESULTS

A. Omniglot
The Omniglot inversions are particularly challenging, as we

are trying to find a set of z∗’s for a set of characters, x , from
alphabets that were not in the training data. The inversion
process will involve finding representations for data samples
from alphabets that it has not seen before, using information
about alphabets that it has seen. The original and reconstructed
samples are shown in Fig. 4.

In our previous work [6], we showed that given the “cor-
rect” architecture, we are able to find latent representations
that lead to excellent reconstructions. However, here we focus
on evaluating standard models [20] and we are particularly
interested in detecting (and quantifying) where models fail,
especially since visual inspection of synthesized samples may
not be sufficient to detect the model failure.

It is clear from Fig. 4 that the GAN has overfit; however,
it was less clear whether or not the WGAN has overfit, since
the samples appeared to be more varied. By attempting to

CRESWELL AND BHARATH: INVERTING THE GENERATOR OF A GAN 1971

Fig. 4. Reconstruction of Omniglot handwritten characters. (a) Target
Omniglot handwritten characters, x , from alphabets different to those seen
during training. (b) Reconstructed data samples, G(z∗), using a GAN.
(c) Reconstructed data samples, G(z∗), using a WGAN. (d) Reconstructed
data samples, G(z∗), using a WGAN overlaid with x .

perform inversion, we can see that the WGAN has indeed
overfit, as it is only able to partially reconstruct the target
data samples. In Section VII, we quantitatively compare the
extent to which the GAN and WGAN trained on the Omniglot
data set have overfit.

B. Shoes
In Fig. 5, we compare shoe reconstructions using a DCGAN

trained on low- and high-resolution images. By comparing
all reconstructions in Fig. 5(b) and (c) (particularly the blue
shoe on the top row) we see that the lower resolution model
has failed to capture some structural details, while the higher
resolution model has not. This suggests that the model trained
on higher resolution images is able to capture more structural
details than the model trained on lower resolution images.
Using our inversion technique to make comparisons between
models is just one example of how inversion may also be used
to “trouble-shoot” and identify which features of a data set our
models are not capturing.

In addition, we may observe that while the GAN trained
on higher resolution images preserves more structure than
the GAN trained on lower resolution images, it still misses
certain details. For example, the reconstructed red shoes do
not have laces [Fig. 5(b) and (c) (top left)]. This suggests that
the representation is not able to distinguish shoes with laces
from those without. This may be important when designing
representations for image retrieval, where a retrieval system

Fig. 5. Reconstruction of Shoes. (a) Shoe data samples, x , from a test set.
(b) Reconstructed data samples, G(z∗), using a GAN at resolution 64 × 64.
(c) Reconstructed data samples, G(z∗), using a WGAN at resolution 64×64.
(d) Reconstructed data samples, G(z∗), using a GAN at resolution 128×128.
By comparing reconstructions, particularly of the blue shoe, we see that
the higher resolution model (d) is able to capture some structural details,
particularly the shoe’s heel, which the lower resolution model (b) does not.
Furthermore, the WGAN at 64×64 (c) is able to capture additional detail than
the GAN at 64×64, including the blue shoe’s strap. These results demonstrate
how inversion may be a useful tool for comparing which features of a data
set each model is able to capture.

using this representation may be able to consistently retrieve
red shoes, but less consistently retrieve red shoes with laces.
This is another illustration of how a good inversion technique
may be used to better understand what representation is
learned by a GAN.

Fig. 5(d) shows the reconstructions using a WGAN trained
on low-resolution images. We see that the WGAN is better
able to model the blue shoe, and some ability to model the
ankle strap, compared to the GAN trained on higher resolution
images. It is, however, difficult to access from reconstructions,
which model represents the data best. In Section VII, we show
how our inversion approach may be used to quantitatively
compare these models, and determine which learns a bet-
ter (latent) representation for the data.

Finally, we found that while the regularization of the latent
space may not always improve reconstruction fidelity, it can be
helpful for ensuring that latent encodings, z∗, found through
inversion, correspond to images, G(z∗) that look more like
shoes. Our results in Fig. 5 were achieved using β = 0.01.

C. CelebA
Fig. 6 shows the reconstructions using three different

GAN models. Training GANs can be very challenging, and so

1972 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 7, JULY 2019

Fig. 6. Reconstruction of celebrity faces. (a) CelebA faces, x , from
a test dataset. (b) Reconstructed data samples, G(z∗), using a GAN.
(c) Reconstructed data samples, G(z∗), using a GAN+ noise. (d) Recon-
structed data samples, G(z∗), using a WGAN. In this example, we use the
inversion process to compare models trained on CelebA using (b) a GAN,
(c) a GAN+ noise, and (d) a WGAN. The visual results should be compared
with the first column of Table I.

various modifications may be made to their training to make
them easier to train. Two examples of modifications are:
1) adding corruption to the data samples during training [1]
and 2) a reformulation of the cost function to use the
Wasserstein distance. Although these techniques are known
to make training more stable, and perhaps also prevent other
pathologies found in GANs, e.g., mode collapse [22], we are
interested in comparing the (latent) representations learned by
these models.

The most faithful reconstructions appear to be those from
the WGAN as shown in Fig. 6(b). This will be confirmed
quantitatively in Section VII. By observing reconstruction
results across all models in Fig. 6, it is apparent that all three
models fail to capture a particular mode of the data; all three
models fail to represent profile views of faces.

VII. QUANTITATIVELY COMPARING MODELS

Failing to represent a mode in the data is commonly
referred to a “mode dropping,” and is just one of three
common problems exhibited by GANs. For completeness,
common problems exhibited by trained GANs include the
following: 1) mode collapse [2], [22], this is where similar
image samples are synthesized for different inputs; 2) mode
dropping [19], where the GAN only captures certain regions
of high density in the data generating distribution; and 3) train-
ing sample memorisation, where the GAN memorizes and

TABLE I

Comparing Models Using Our Inversion Approach MSE IS REPORTED

ACROSS ALL TEST SAMPLES FOR EACH MODEL TRAINED

WITH EACH DATA SET. A SMALLER MSE SUGGESTS

THAT THE MODEL IS BETTER ABLE TO

REPRESENT TEST DATA SAMPLES

reproduces samples seen in the training data. If a model
exhibits these symptoms, we say that it has overfit; however,
these symptoms are often difficult to detect.

If a GAN is trained well and exhibits none of the
above-mentioned three problems, it should be possible to
perform inversion to find suitable representations for most test
samples using our technique.

However, if a GAN does exhibit any of the three problems
listed above, inversion becomes challenging, since certain
regions of high density in the data generating distribution
may not be represented by the GAN. Thus, we may compare
GAN models, by evaluating the reconstruction error using our
proposed inversion process. A high reconstruction error, in this
case, mean squared error (MSE), suggests that a model has
possibly overfit, and is not able to represent data samples well.
By comparing MSE between the models, we can compare the
extent to which one model has overfit compared to another.

Table I shows how our inversion approach may be used
to quantitatively compare three models (four in the case of
the shoes data set) across three data sets, CelebA, shoes, and
Omniglot. This table gives mean squared reconstruction error
on a large batch of test samples; for CelebA we used 100 sam-
ples and for Shoes and Omniglot we used 500 samples.

From Table I, we may observe the following.

A. CelebA
The (latent) representation learned by the WGAN general-

izes to test samples, better than either the GAN or the GAN
trained with noise. Results also suggest that training a GAN
with noise helps to prevent overfitting. These conclusions are
consistent with both empirical and theoretical results found
in [1] and [2], suggesting that this approach for quantitatively
comparing models is valid.

B. Shoes
Using inversion to quantify the quality of a representation

allows us to make fine-grained comparisons between models.
We see that training a model using higher resolution images
reduces reconstruction error by almost a factor of two, in the
case of the GAN+ noise, compared to a similar model trained
at a lower resolution. This is in agreement with earlier obser-
vations [Fig. 5(b)], in which we saw that certain structural
detail—such as the presence of a well-defined protrusion—
was lost.

Comparing models using our proposed inversion approach,
in addition to classifier-based measures [21], helps to detect

CRESWELL AND BHARATH: INVERTING THE GENERATOR OF A GAN 1973

fine-grained differences between models, which may not be
detected using classification-based measures alone. A “good”
discriminative model learns many features that help to make
decisions about which class an object belongs to. However,
any information in an image that does not aid classification
is likely to be ignored; for example, when classifying cars
and trucks, the color of the vehicle is unimportant. As an
example, [18, Fig. 10 (bottom left)] shows that the first layer
of a discriminatively trained CNN ignores the colors of the
input image. Yet, we may want to compare representations
that encode information that a classifier ignores (e.g., color
of the car). For this reason, using only a classification-based
measure [21] to compare representations learned by different
models may not be enough, or may require very precise
classifiers to detect differences.

C. Omniglot
From Fig. 4, it was clear that both models trained on the

Omniglot data set had overfit, but not to the same extent.
Here, we are able to quantify the degree to which each model
has overfit. We see that the WGAN has overfit to a lesser
extent than the GAN trained with noise, since the WGAN
has a smaller MSE. Quantifying overfitting can be useful
when developing new architectures, and training schemes,
to objectively compare models.

In this section, we have shown how a particular inversion
approach may be used to quantitatively compare representa-
tions learned by GANs. We intend this approach to provide a
useful, quantitative means of evaluating and developing new
GAN models and architectures for representation learning.

Finally, we emphasize that while there are other techniques
that provide inversion, our proposed technique is the only one
that is both: 1) immune to overfitting, in other words, we do
not train an encoder network that may itself overfit and 2) can
be applied to any pretrained GAN model, provided that the
computational graph is available.

VIII. CONCLUSION

The generator of a GAN learns the mapping G : Z → X .
It has been shown that z values that are close in Z -space
produce images that are visually similar in image space,
X [20]. We propose an approach to map data, x samples back
to their latent representation, z∗ (Section II).

For a generative model, in this case, a GAN, which is trained
well and given target image, x , we should be able to find a
representation, z∗, that when passed through the generator,
produces an image, G(z∗), that is similar to the target image.
However, it is often the case that GANs are difficult to
train, and there only exists a latent representation, z∗, which
captures some of the features in the target image. When z∗
only captures some of the features, this results in, G(z∗),
being a partial reconstruction, with certain features of the
image missing. Thus, our inversion technique provides a tool,
to provide qualitative information about what features are
captured by the (latent) representation of a GAN. We showed
several visual examples of this in Section VI.

Often, we want to compare models quantitatively. In addi-
tion to providing a qualitative way to compare models,

we show how we may use mean squared reconstruction error
between a target image, x and G(z∗), to quantitatively compare
models. In our experiments, in Section VII, we use our
inversion approach to quantitatively compare three models
trained on three data sets. Our quantitative results support
claims from previous work that suggests, that certain modified
GANs are less likely to overfit.

We expect that our proposed inversion approach may be
used as a tool to access and compare various proposed
modifications to generative models, and aid the development
of new generative approaches to representation learning.

ACKNOWLEDGMENT

The authors would like to thank the Engineering and Physi-
cal Sciences Research Council for funding through a Doctoral
Training studentship (EP/L504786/1).

REFERENCES

[1] M. Arjovsky and L. Bottou. (2017). “Towards principled methods for
training generative adversarial networks.” [Online]. Available: https://
arxiv.org/abs/1701.04862

[2] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[3] P. Ballester and R. M. Araujo, “On the performance of GoogLeNet and
AlexNet applied to sketches,” in Proc. AAAI, 2016, pp. 1124–1128.

[4] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “InfoGAN: Interpretable representation learning by informa-
tion maximizing generative adversarial nets,” in Proc. Adv. Neural Inf.
Processing Syst., 2016, pp. 2172–2180.

[5] A. Creswell and A. A. Bharath. (2016). “Task specific adversarial cost
function.” [Online]. Available: https://arxiv.org/abs/1609.08661

[6] A. Creswell and A. A. Bharath. (2018). “Inverting the generator of a
generative adversarial network (II).” [Online]. Available: https://arxiv.
org/abs/1802.05701

[7] J. Donahue et al., “Long-term recurrent convolutional networks for
visual recognition and description,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 2625–2634.

[8] J. Donahue, P. Krähenbühl, and T. Darrell. (2016). “Adversarial feature
learning.” [Online]. Available: https://arxiv.org/abs/1605.09782

[9] V. Dumoulin et al. (2016). “Adversarially learned inference.” [Online].
Available: https://arxiv.org/abs/1606.00704

[10] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[11] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein GANs,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5767–5777.

[12] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic, “Generating images
with recurrent adversarial networks,” in Proc. 5th Int. Conf. Learn.
Represent. (ICLR) Workshop Track, 2016.

[13] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
gans for improved quality, stability, and variation,” in Proc. Int. Conf.
Learn. Represent., 2018.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[15] B. M. Lake, R. Salakhutdinov, and J. B. Tenebaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[16] C. Li et al., “ALICE: Towards understanding adversarial learning for
joint distribution matching,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 5501–5509.

[17] J. Luo, Y. Xu, C. Tang, and J. Lv, “Learning inverse mapping by
AutoEncoder based generative adversarial nets,” in Proc. Int. Conf.
Neural Inf. Process. Springer, 2017, pp. 207–216.

[18] A. Mahendran and A. Vedaldi, “Understanding deep image represen-
tations by inverting them,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 5188–5196.

[19] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” in Proc. Int. Conf. Learn. Represent., 2017.

1974 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 7, JULY 2019

[20] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
in Proc. 5th Int. Conf. Learn. Represent. (ICLR) Workshop Track,
2016.

[21] T. Salimans et al., “Improved techniques for training GANs,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 2234–2242.

[22] A. Srivastava, L. Valkoz, C. Russell, M. U. Gutmann, and C. Sutton,
“VEEGAN: Reducing mode collapse in GANs using implicit vari-
ational learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 3308–3318.

[23] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[24] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and
B. Catanzaro, “High-resolution image synthesis and semantic manipula-
tion with conditional GANs,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018, pp. 1–13.

[25] A. Yu and K. Grauman, “Fine-grained visual comparisons with local
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 192–199.

[26] H. Zhang et al., “StackGAN: Text to photo-realistic image synthesis
with stacked generative adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis., Oct. 2017, pp. 5908–5916.

[27] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative
visual manipulation on the natural image manifold,” in Proc. Eur. Conf.
Comput. Vis. Springer, 2016, pp. 597–613.

Antonia Creswell recieved the M.Eng. degree in
biomedical engineering from the Imperial College
London, London, U.K., where she is currently
pursuing the Ph.D. degree.

She has been an Intern with Magic Pony, Twitter,
U.K., and DeepMind, Google, U.K.

Anil Anthony Bharath received the B.Eng. degree
in electronic and electrical engineering from the
University College London, London, U.K., in 1988,
and the Ph.D. degree in signal processing from the
Imperial College London, London, in 1993.

He was an Academic Visitor with the Signal
Processing Group, University of Cambridge, Cam-
bridge, U.K., in 2006. He is currently a Reader
with the Department of Bioengineering, Imperial
College London. He is a Fellow of the Institution
of Engineering and Technology and the Imperial

College Data Science Institute. He is also a Co-Founder of Cortexica Vision
Systems, London. His current research interests include deep architectures for
visual inference.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

