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Event-Based Line Fitting and Segment Detection
Using a Neuromorphic Visual Sensor

David Reverter Valeiras, Xavier Clady, Sio-Hoi Ieng , and Ryad Benosman

Abstract— This paper introduces an event-based luminance-
free algorithm for line and segment detection from the output
of asynchronous event-based neuromorphic retinas. These recent
biomimetic vision sensors are composed of autonomous pixels,
each of them asynchronously generating visual events that
encode relative changes in pixels’ illumination at high temporal
resolutions. This frame-free approach results in an increased
energy efficiency and in real-time operation, making these sensors
especially suitable for applications such as autonomous robotics.
The proposed algorithm is based on an iterative event-based
weighted least squares fitting, and it is consequently well suited
to the high temporal resolution and asynchronous acquisition of
neuromorphic cameras: parameters of a current line are updated
for each event attributed (i.e., spatio-temporally close) to it, while
implicitly forgetting the contribution of older events according
to a speed-tuned exponentially decaying function. A detection
occurs if a measure of activity, i.e., implicit measure of the
number of contributing events and using the same decay function,
exceeds a given threshold. The speed-tuned decreasing function
is based on a measure of the apparent motion, i.e., the optical
flow computed around each event. This latter ensures that the
algorithm behaves independently of the edges’ dynamics. Line
segments are then extracted from the lines, allowing for the
tracking of the corresponding endpoints. We provide experiments
showing the accuracy of our algorithm and study the influence
of the apparent velocity and relative orientation of the observed
edges. Finally, evaluations of its computational efficiency show
that this algorithm can be envisioned for high-speed applications,
such as vision-based robotic navigation.

Index Terms— Event-based vision, line detection, neuromor-
phic sensing, segment detection.

I. INTRODUCTION

THIS paper introduces a new methodology to extract
and estimate parameters of lines and segments present

in a visual scene acquired using a neuromorphic event-
based camera. Neuromorphic cameras are a novel type of
asynchronous biomimetic vision sensors, often referred to as
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Fig. 1. Each pixel asynchronously generates events when a sufficient amount
of change in the log of the luminance is detected at the corresponding position
on the focal plane. These events are “positive” if the luminance increased and
“negative” if it decreased.

“silicon retinas” [1]. Neuromorphic cameras have convincingly
demonstrated their potential for energy efficiency and high
temporal resolution (from 1 μs to 1 ms) allowing researchers
to rethink most computer vision algorithms to operate in the
event-based framework in real time. Since the pioneering work
of Mahowald [2], a variety of these event-based devices have
been designed, including gradient-based sensors sensitive to
static edges [3], temporal contrast vision sensors sensitive to
relative luminance change [4]–[6], edge-orientation sensitive
devices, and optical-flow sensors [7], [8]. A complete review
of the history and existing sensors can be found in [9].
For a recent review of neuromorphic systems, sensors, and
processing, the interested reader can refer to [10]. The asyn-
chronous time-based image sensor (ATIS) used in this paper
is a new type of clockless neuromorphic camera outputting
events rather than frames, as shown in Fig. 1. Each pixel
contains a change detector circuit that asynchronously and
autonomously generates events. Each event signifies a change
in the log intensity of the luminance at a spatial location
on the focal plane at 1-μs temporal precision. A polarity is
associated to each event depending on whether the luminance
increases or decreases. The ATIS camera also provides an
asynchronous absolute measurement of light intensity encod-
ing in the time domain [6]. This functionality, however,
is not being used in this paper. Unlike conventional cameras,
neuromorphic vision sensors do not sample data at an arbitrary
frequency imposed by some artificial clock signal that has no
relation to the source of the visual information. This frame-
free approach reduces the amount of redundant information
generated by conventional sensors, allowing for a drastic
increase in its temporal resolution while allowing for real-time
processing at several hundred kilohertz at a low energy cost.

Extracting lines (and segments) from man-made environ-
ments provides indispensable low-level features for vision-
based systems. They are frequently used in robotics as features
for visual odometry [11] and vision-based structure from
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motion [12], [13]. More recently, the two problems have been
combined to be used in simultaneous localization and map-
ping (SLAM) [14]–[16]. Various approaches for the detection
of lines and segments have been proposed starting from the
textbook classic Hough transform [17] that can be generalized
to the detection of generic shapes [18]. This technique is still
widely used and studied as shown in the recent state of the art
proposed in [19]. Other classical approaches include gradient-
based methods [20] or statistical-based techniques [21]. In the
field of segment detection, a line segment detector (LSD) [22]
is currently among the most used algorithms.

Recently, an event-based segment detector has been
published in [23], called Event-Based Line Segment
Detector (ELiSeD) and derived from the LSD [22]. The
reported accuracy, when tracking a single line, is about
1.36 pixels compared with the original LSD algorithm.
The ELiSeD method requires events to be stored on a
circular buffer of a fixed size (they report typical sizes of
2500–8000 events). Considering a buffer is implicitly building
a frame with the main disadvantage of losing the ability of the
algorithm to adapt to velocities in the scene, as the number
of events is related to the amount of motion. As a result,
fast moving objects, which generate globally more events at
constant contrast, tend to dominate the buffer contents.

To address these limitations, we propose an event-based line
and segment detector using an iterative single event update to
determine the parameters of a given line. The method uses an
iterative weighted least squares fitting for each incoming event
attributed (i.e., spatio-temporally close) to a line. The weights
of past events follow a speed-tuned exponentially decay-
ing function, which makes the method velocity-independent.
We will also extend the line detection technique to detect
segments in order to provide pixelwise feature detection. This
is useful for many computer vision algorithms that require
pixelwise feature detection, identification, and tracking [24].

II. EVENT-BASED LINE DETECTION

A stream of asynchronous events generated by a neuro-
morphic camera can be mathematically described as ek =
[uT

k , tk , pk]T , a quadruplet describing an event occurring at
time tk at the position uk = [xk, yk]T in the focal plane. The
two possible values for pk are 1 or −1, depending on whether
a positive or negative change of luminance has been detected,
while the time tk is usually referred to as the timestamp of
the event. We are looking for the set of lines that best fits the
stream of recent past events, in the sense of minimizing the
sum of the squared distances between events spatial locations
and lines.

A. Event-Based Visual Flow

The first step to track lines from events is to compute the
event-based visual flow for each incoming event. We apply the
technique described in [25], where the visual flow is obtained
from the normal to a 3-D plane locally approximating the
spatio-temporal surface described by incoming events. In the
standard plane parametrization of Ax + By + t + C = 0,
the normal to a plane defined by data [x, y, t]T is directly

related to the parameters A and B . To estimate these parame-
ters, we apply a least squares fitting algorithm on the centered
data to avoid ill conditioned systems [26]. The plane equation
is then

˜t = Ax̃ + B ỹ (1)

where the tilde means that the average values are subtracted
from each variable. We consider the most recent events in
a given spatial neighborhood of the current event and we
denote Ik the set of indices identifying these events (i.e.,
if i ∈ Ik , then ei is one of the most recent events in a spatial
neighborhood of ek).

This yields the linear system
⎡
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Parameters A and B can be calculated by inverting the
2 × 2 matrix in the left-hand side of the equation; this is,
however, a very inefficient technique as inverting a matrix for
each incoming event might prevent from operating in real time.
Since this is a 2× 2 linear system, when the system matrix is
invertible, we can apply Cramer’s rule to obtain a closed-form
solution, allowing us to compute A and B . The velocity vector
is, according to [25], given by

vk = 1

A2 + B2

[−A
−B

]

. (3)

From this result, we define an “oriented” event
ok = [uT

k , vT
k , tk, pk]T , as an event augmented with the

velocity vk .

B. Event-Based Least Squares Line Fitting

1) Line Parametrization: We derive an iterative event-based
rewriting of the least squares fitting of lines with perpendicular
offsets [27]. Lines in 2-D space are defined by two parameters;
we choose the ρ-θ (or polar) parametrization [28] that avoids
infinite or close to infinite slopes that one can encounter when
using the slope-intercept parametrization [29]. We define a
given line model i as L(i)(ρ

(i)
k , θ

(i)
k ), where ρ

(i)
k is the distance

from the line to the origin, and θ
(i)
k the angle between the

normal n(i)
k to the line and the horizontal (see Fig. 2). The

subindex k relates the line to time, i.e., ρ
(i)
k is the angle of

line i at time tk , and so on. The equation of the line is then

x cos
(

θ
(i)
k

)+ y sin
(

θ
(i)
k

)− ρ
(i)
k = 0 (4)

where θ
(i)
k ∈ [−π/2, π/2] and the unit vector normal to the

line n(i)
k is

n(i)
k =

[

cos
(

θ
(i)
k

)

, sin
(

θ
(i)
k

)]T
. (5)

Remark: While lines are defined by the angle θ
(i)
k , we will

not need to calculate it explicitly. The algorithm can be
directly applied on cos(θ(i)

k ), sin(θ
(i)
k ) as it will be shown in

Section II-B6.



1220 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Fig. 2. Line, identified by its index i , is denoted L(i)(ρ
(i)
k , θ

(i)
k ) and defined

by two parameters: the distance ρ
(i)
k between the line and the origin and the

angle θ
(i)
k between the normal to the line n(i)

k and the horizontal. Incoming
events are assigned to previously existing lines based on two conditions: the
Euclidean distance d(i)

k between the line and the position of the event uk , and

the angular distance α
(i)
k between the normal to the line n(i)

k and the visual
flow of the event vk .

2) Activity: Each possible line model has a certain level
of activity A(i)

k as in [30]. The activity of every model is
updated with the incoming events ek , following a speed-tuned
exponential decay function:

A(i)
k =

{

A(i)
k−1e−‖vk‖�tk + 1 if ek is assigned to L(i)

A(i)
k−1e−‖vk‖�tk , otherwise

(6)

where �tk = tk−tk−1. Here, we choose a speed-tuned decreas-
ing strategy, which makes the activity of the lines independent
from their respective velocities. This is an important advantage
over the fixed decreasing strategies, as it provides an automatic
and adaptive way to characterize each line. A more detailed
explanation of this strategy is discussed in Section II-C.

If the activity A(i)
k of a line model L(i) is greater than a

predefined threshold, then L(i) is said to be visible, and a line
is assumed to be actually present at that position.

3) Assignment of Events: Let ok = [uT
k , vT

k , tk, pk]T be an
oriented event occurring at time tk at the position uk on the
focal plane, with normal flow vk . The assignment of ok to a
line is based on two criteria.

1) The Euclidean distance d(i)
k from the event to the line

has to be smaller than a threshold dmax.
2) The angle α

(i)
k between the normal to the line n(i)

k and
the visual flow of vk must be smaller than a threshold
αmax (see Fig. 2), in order to assure orthogonality of the
flow to the line.

The two criteria are translated into the following inequalities
that an event has to satisfy in order to be assigned to a line L(i):

{

d(i)
k =

∣

∣uT
k n(i)

k−1 − ρ
(i)
k−1

∣

∣ < dmax
∣

∣ cos
(

α
(i)
k

)∣

∣ = ∣

∣vT
k n(i)

k−1

∣

∣ > cos(αmax).
(7)

If several line models verify these two conditions, the event
is simply assigned to the line with the highest activity. If an
oriented event does not satisfy any existing line, a new one is
initialized.

4) Initialization of Line Models: The form of a line indexed
by i created for an incoming-oriented event ok is given by

{

n(i)
k = vk

ρ
(i)
k = uT

k vk .
(8)

To limit the computational time required by the algorithm,
we fix a maximum of N line models to be tracked simulta-
neously. If N line models have already been created, then the
newly created one replaces the line with the lowest activity.

5) Optimal Parameters: When an event ok is assigned to
a line, the parameters of the line are updated accordingly.
The new optimal parameters must minimize the sum of the
squared distances between the line and the past events assigned
to it. As in [24], these distances are weighted in order to
give greater importance to the most recent events. Hence, the
function E (i)

k (θ, ρ) to be minimized is

E (i)
k (θ, ρ) = 1

�k

k
∑

j=0

ωk, j (x j cos(θ)+ y j sin(θ)− ρ)2 (9)

where ωk, j is the weight of the j th event assigned to the i th
line, at time tk . The weights verify

ωk, j ≥ 0 ∀ j ∈ {0, 1, . . . , k} (10)

with

�k =
k

∑

j=0

ωk, j . (11)

We can define several strategies to set the values of ωk, j ,
and we will always chose the one providing greater importance
to the most recent events. The weighting strategy used in this
paper is given in (16).

To minimize E (i)
k with respect to ρ and θ , we look for the

two values that cancel the respective partial derivatives of E (i)
k .

The optimal ρ
(i)
k is then obtained as

ρ
(i)
k =

x̂ (i)
k cos(θ)+ ŷ(i)

k sin(θ)

�k
(12)

while θ
(i)
k is deduced after simplifying the vanishing derivative

into the equation

ak sin
(

2θ
(i)
k

)+ bk cos
(

2θ
(i)
k

) = 0 (13)

where

ak = �k
(

ŷy(i)
k − x̂ x (i)

k

)+ (

x̂ (i)
k

)2 − (

ŷ(i)
k

)2

bk = 2
(

�k x̂ y(i)
k − x̂ (i)

k ŷ(i)
k

)

. (14)

Here, x̂ (i)
k , ŷ(i)

k , x̂ y(i)
k , . . . denote the weighted sum of the

corresponding coordinates of the events previously assigned
to the line
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We will refer to these values as the auxiliary parameters of
a line, which are required to compute its optimal ρ, θ .

Let us note that the development so far is independent of the
weighting strategy being used. In the following, we will choose
the weights to follow a speed-tuned exponentially decaying
strategy as in [31]:

wk, j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k
∏

i= j+1

e−‖vi‖�ti = e−‖vk‖�tk ωk−1, j , if j < k

1, if j = k.

(16)

According to this strategy, similar weights (close to 1,
because (tk − t j ) � 0) will be associated to events e j (quasi)-
simultaneously occurring at the last event’s timing (tk) and
belonging to the current line, while the weights of older
events corresponding to older locations of the line will rapidly
tend to 0. The speed-tuning automatically adapts the decay
according to the speed of the contour line (see Section II-C).

As in (6) about activity, this weighting strategy allows us
to compute the auxiliary parameters in the following iterative
form, where δk = e−‖vk‖�tk :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x̂ (i)
k ≈ δk x̂ (i)

k−1 + xk

ŷ(i)
k ≈ δk ŷ(i)

k−1 + yk

x̂ x (i)
k ≈ δk x̂ x (i)

k−1 + x2
k

ŷy(i)
k ≈ δk ŷy(i)

k−1 + y2
k

x̂ y(i)
k ≈ δk x̂ y(i)

k−1 + xk yk .

(17)

Additionally, when applying this set of weights, we obtain

�k = A(i)
k . (18)

Let us note that expressions in (17) still hold when the past
events have been assigned to different lines, since the auxiliary
parameters of a given model are only updated when an event
is assigned to it.

6) Optimization Strategy: As previously stated, the actual
value of θ

(i)
k is never directly required. Instead, we just need

its sinus and cosinus. This avoids the computation of an
arctangent, a sinus, and a cosinus, at the cost of computing
three square roots. We are updating the parameters of lines
with every event assigned to them, and consequently, it is of
great importance to limit the number of operations carried out
for every incoming event. As shown in Appendix A, from (13),
we obtain

sin θ
(i)
k = ±

√

1− βk

2
, cos θ

(i)
k = +

√

1+ βk

2
(19)

where

βk = ±
√

a2
k

a2
k + b2

k

. (20)

Here, we are just keeping the positive solution for cos θ
(i)
k ,

because θ ∈ [−π/2, π/2]. This yields a total of four possible
combinations for sin θ

(i)
k , cos θ

(i)
k . To disambiguate the right

solution from the four possible ones, a procedure is given
in Appendix B. Let us also remark that these equations are
always well defined, since (a2

k /(a2
k + b2

k )) ≥ 0 and βk ≤ 1 for
all values of ak , bk .

C. About Speed-Tuned Strategy

We derive a speed-tuned decaying weighting function to
provide a lifetime of a given contour inspired from [31].
The lifetime of a contour is related to the normal velocity,
i.e., the inverse of the time during which the contour travels
through a pixel. However, keeping exactly the same weighting
strategy would require storing all the events assigned to the
line (or at least the ones with significant weights). This would
be nonefficient in terms of memory and computation time
consumption.

Using 16, we can derive an iterative algorithm. The decreas-
ing weighting strategy is here applied to the previous model
line (computed at time tk−1) according to its synchrony
measurement [e−‖vk‖�tk ; see (16)] with the current event
(occurring at time tk), and not to the events (e j , contribut-
ing to the current model line) according to their synchrony
measurements (as in [31]): if the model line is “outdated” in
comparison with the current event, this latter weighs relatively
more in the updating computation of the new line model.

D. Event-Based Line Detection Algorithm

A summary of the complete event-based line detection
procedure is given in Algorithm 1.

Algorithm 1 Event-Based Line Detection

Require: ok = [uT
k , vT

k , tk , pk]T , ∀k ≥ 0
Ensure: ρ

(i)
k , θ

(i)
k ∀i = 1...N

for every oriented event ok do
for every line L(i) do

Apply the decay to A(i)
k using (6)

end for
if ∃ any lines verifying (7) then

i ← arg max j A( j )
k s.t. L( j ) verifies (7)

A(i)
k ← A(i)

k + 1
Update sin θ

(i)
k , cos θ

(i)
k and ρ

(i)
k using (19) and (12)

if A(i)
k > A(L)

up then
Output the line

end if
else

Initialize a new line model using (8)
end if

end for

III. EVENT-BASED SEGMENT DETECTION

Segments, from a line, are detected by localizing discon-
tinuities that are actually the segments’ endpoints. Hence,
we add to the line detection algorithm some procedure to
output the positions of these endpoints at the same time the line
is detected and tracked. In our implementation, the algorithm
produces a pair of endpoint events for each segment. These
events signal the position in space and time of the endpoints.
As such, the output of this segment detector is a stream of
endpoint events that can be used as the feature for matching
and learning tasks.
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Fig. 3. Normal to L(1), denoted n(1)
k , forms a small angle with the horizontal:

|θ(1)
k | < π/4. We can then say that this line is closer to being vertical than

horizontal, and each pixel of the line corresponds to a unique y position.
Consequently, when an event is assigned to this line, we perform our search
for neighboring active pixels on this axis. The opposite holds true for L(2): if
the event ek at position uk is assigned to L(2), we look for neighboring active
pixels on X (2)

k starting at xk . The furthest active pixel in each direction gives
us an endpoint, and we generate two endpoint events at their positions.

A. Activity of Each Pixel

Let us define, for each line L(i), two vectors X (i)
k ∈ R

w and
Y(i)

k ∈ R
h . These vectors contain the activity of each pixel of

the line, projected on the x- and y-axes, respectively, where
w and h are the width and height of the sensor. The activity
of each pixel is increased whenever an event is assigned to
the line at a distance smaller than l pixels, and it follows
a speed-tuned exponential decay afterward. Thus, when an
oriented event ok = [uT

k , vT
k , tk , pk]T is assigned to a line L(i),

we update X (i)
k and Y(i)

k according to

X (i)
k (x) =

{

X (i)
k−1(x)e−‖vk‖�tk + 1, if |x − xk | < l

X (i)
k−1(x)e−‖vk‖�tk , otherwise

(21)

Y(i)
k (y) =

{

Y(i)
k−1(y)e−‖vk‖�tk + 1, if |y − yk| < l

Y(i)
k−1(y)e−‖vk‖�tk , otherwise

(22)

where x = 1, 2, . . . , w,, y = 1, 2, . . . , h, and l is a tuning
parameter controlling the size of the local neighborhood for
the computation of the pixel’s activity.

B. Generation of Endpoint Events

Pixels of a line are labeled as active if their activity is greater
than a predefined threshold A(px)

up . The search for neighboring
active pixels is then performed on the x or y projection,
depending on the orientation of the line. Roughly speaking,
if |θ(i)

k | > π/4 (or cos(θ(i)
k ) < cos(π/4)), we can say that the

line is closer to being horizontal than vertical: in that case,
each pixel of the line corresponds to a unique x coordinate,
and we consequently perform our search on X (i)

k . Otherwise,
we employ Y(i)

k . This idea is illustrated in Fig. 3.
When an oriented event ok is assigned to a line L(i), we look

for active pixels in its neighborhood, starting at the position

of the event. Thus, if |θ(i)
k | > π/4, we look for recent pixels

in X (i)
k starting at xk . Otherwise, we perform our search

in Y(i)
y starting at yk . The endpoints are then given by the

furthest active pixel in each direction, as shown in Fig. 3,
where we impose a minimum length of l/2 to the segments.
Two endpoint events are finally generated, giving the endpoint
positions in space and time after a smoothing process using a
blob tracker similar to the one introduced in [30].

C. Event-Based Segment Detection Algorithm

The event-based segment detection procedure for lines
with |θ(i)

k | > π/4 is summarized in Algorithm 2. For the
sake of simplicity, we do not detail the procedure for lines
with |θ(i)

k | ≤ π/4, which is the same but operating on the
vertical axis.

Algorithm 2 Event-Based Segment Detection

Require: ok = [uT
k , vT

k , tk, pk]T assigned to L(i) s.t.
|θ(i)

k | > π/4
Ensure: stream of endpoint events

for every oriented event ok assigned to L(i) s.t. |θ(i)
k | > π/4

do
Update X (i)

k and Y(i)
k using (21) and (22)

if A(i)
k > A(L)

up then
x1← xk + 1
while x1 < w and X (i)

k [x1] > A(px)
up do

x1 ← x1 + 1
end while
x2← xk − 1
while x2 ≥ 0 and X (i)

k [x2] > A(px)
up do

x2 ← x2 − 1
end while
if x1 − x2 > l/2 then

y1 ← (x1 cos θ
(i)
k − ρ

(i)
k )/ sin θ

(i)
k

Generate an endpoint event [x1, y1, tk, pk]T
y2 ← (x2 cos θ

(i)
k − ρ

(i)
k )/ sin θ

(i)
k

Generate an endpoint event [x2, y2, tk, pk]T
end if

end if
end for

IV. RESULTS

In this section, we present two experiments to assess the
accuracy of the algorithm with scenes captured by an ATIS
with 304×240 pixel resolution [5]. In the first one, we applied
the line and segment detection to a controlled scene for
which we have built a ground truth. In the second experi-
ment, we used two real scenes while moving the sensor. The
algorithm was implemented in C++ and tested in a standard
computer running Debian Linux. For all the experiments
presented in this paper, we provide videos that can be accessed
online.1

1The video of an additional experiment, not included in this paper, can be
found here: https://www.youtube.com/watch?v=uK8Bsd368cE.
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Fig. 4. (a) Controlled moving pattern composed of 13 lines with a range
of orientation between 0◦ and 90◦ at 7.5◦. When referring to endpoints, we
will distinguish the outer endpoints and the inner endpoints. (b) Experimental
setup: a printed pattern is mounted on a horizontal rail, which can be moved
at different controlled speeds in the field of view of the event-based ATIS
camera, placed above.

Fig. 5. Top: observed velocity of the object on the focal plane, in px/s. The
velocity on the y-axis remains close to zero for the whole recording, while
the x velocity varies between negative and positive values, with a maximum
absolute value of 654.2 px/s. Bottom: observed acceleration in px/s2.

A. Controlled Moving Lines

In order to numerically evaluate the results of the algorithm,
we first apply it to a pattern composed of 13 lines with a range
of orientation between 0◦ and 90◦ at 7.5◦ intervals, as shown
in Fig. 4(a). The horizontal motion of the pattern is precisely
controlled for different speeds. The scene is recorded using
the event-based camera, as shown in Fig. 4(b). The pattern is
moved back and forth eight times for each speed.2

The ground truth values for numerical evaluation of the
algorithm are obtained from reconstructed frames, created by
creating a frame every 1000 events. Since the movement of
the object is always contained on a plane, its position with
respect to the camera can be inferred by matching a planar
template [32] estimated from a homographic transform. This
is achieved with the MATLAB implementation of the ECC
algorithm [33] available online.3

From these ground truth values, we compute the true flow
of the object, displayed in Fig. 5 (top). We verify that the
observed velocity in the y-axis remains approximately zero
for the whole recording, except for some small vibrations. The
x velocity takes much bigger values, going from positive to
negative as the object moves back and forth. The maximum
absolute value is equal to 654.2 px/s. As a comparison, in the
first slowest movement, the value of the flow in the x-direction

2A video showing the results obtained for this experiment is available here:
https://www.youtube.com/watch?v=glcxlVjMfJk.

3https://fr.mathworks.com/matlabcentral/fileexchange/27253-ecc-image-
alignment-algorithm–image-registration-

TABLE I

LIST OF PARAMETERS FOR LINE DETECTION

Fig. 6. (a) Frames reconstructed by plotting events happening within a 10-ms
window, showing the recording at three characteristic instants. (b) Output of
the normal flow algorithm: the flow is always normal to the local contours,
while its norm is smaller for the lines at smaller angles. (c) Output of the
line detection step. An index is assigned to each line as they are created, and
we plot each line index with a different color. The horizontal line can seldom
be tracked, as it generates very few events, preventing the computation of
their flow. We are able of keeping track of the rest of the lines for the whole
recording. (d) Output of the segment detection step. As the movement of the
lines changes its direction, we sometime lose track of part of the endpoints,
but we recover them again.

is around 60 px/s. Thus, the velocity in our scene varies by
more than a factor of 10. Analogously, from these ground truth
values, we can obtain the apparent acceleration of the object
on the image plane, denoted [αx , αy]T and expressed in px/s2,
which can be observed in Fig. 5 (bottom).

1) Line Detection: In the first place, we evaluate just the line
detection part of the algorithm, without performing segment
detection. The tuning parameters used in this experiment are
shown in Table I.

We show in Fig. 6(a) three snapshots depicting the recorded
scene at three characteristic instants, where frames are recon-
structed by plotting events happening within a 10-ms window.
Fig. 6(b) shows the output of the normal flow algorithm at
these same three instants, where the flow of each oriented
event is represented by a straight line whose length is pro-
portional to the norm of the flow. We verify that the flow is
always normal to the lines, while its norm is smaller for the
lines at smaller angles.
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Fig. 6(c) shows the output of the line detection step at the
same three instants, where active line models are superimposed
on the events using a different color for each line index.
In the leftmost snapshot, we show the state of the system
as the object starts its movement: we verify that all lines are
detected, except the ones at 0◦ and 7.5◦. This happens because
the activity of these lines has not reached the threshold, for
they are almost perpendicular to the direction of the movement
and they consequently generate very few events. However,
the norm of their flow is also smaller, which implies that their
activity follows a slower decay: consequently, as the movement
continues, the line at 7.5◦ reaches a sufficient level of activity
and it is correctly tracked. The horizontal line, however, can
seldom be detected. Let us remind the reader that the first step
of our algorithm is the computation of the visual flow of the
incoming events, which cannot be accomplished if the number
of recent events in the neighborhood of the current event is not
enough. A video showing the output of the algorithm for the
whole sequence is included as the Supplementary Material.

We display in Fig. 7 the evolution of the speed-tuned
activity Ak for five different lines: the ones oriented at 90◦,
75◦, 60◦, 45◦, 30◦, and 15◦ (the rest of the lines are not shown
for simplicity, but equivalent results are obtained). We verify
that the activity of the different lines is very similar, even
though the ones with greater angles generate many more
events. In the same way, the activity is stable for the different
velocities, which allows us to keep track of the lines for most
of the recording.

Additionally, we compare the results of the speed-tuned
decay activity to a constant decay one. The constant decay
function is given by e−�tk/τ , with τ a tuning parameter.
Here, we choose τ = 20 000 μs, which yields values for
the fixed decay activity in the same order of magnitude as
the speed-tuned one. The obtained values are displayed in
Fig. 7: we verify that the fixed decay activity is very sensitive
to the orientation and the apparent velocity of the lines, impos-
ing the need of adjusting the tuning parameter τ according to
the velocity and the direction of movement of the observed
objects. We show in Fig. 8 the percentage of time for which
the different lines are active when applying both the speed-
tuned and the fixed decay strategies with the current set of
parameters. As we can see, the speed-tuned strategy is more
reliable as it yields higher percentages.

However, we can observe in Fig. 7 that the activity decreases
during deceleration periods: this corresponds to the adaption
of the speed-tuned decay strategy (see Section II-C). This is
particularly significant when the apparent motion is globally
slower [in particular, when looking at the activity curve for
the line at 30◦ (see Fig. 7)], because the number of events
generated by the silicon retina is then smaller. The algorithm is
then more sensitive to error in velocity estimation and internal
noise of the sensors (mismatches, thermal noise, and so on).
These observations are confirmed regarding the errors in model
estimation.

Let us next numerically evaluate the error in the estimation
of the line parameters. Here, we evaluate ρ and θ
independently and we define two errors: ξρ (in pixels)
and ξθ (in degrees), given by the absolute value of the

Fig. 7. Evolution of the activity for five different lines. We display the
results obtained with both the speed-tuned decreasing strategy and the fixed
decreasing strategy. We verify that the speed-tuned strategy is much more
stable, in spite of the different orientations and apparent velocities. Dashed
line: threshold Aup .

Fig. 8. Percentage of the recording for which we are able of keeping track
of the lines, for both the speed-tuned and fixed decay strategies. We verify
that the speed-tuned method is more stable

difference between the estimated and ground truth values
of the corresponding parameters. We show in Fig. 9 the
obtained values for the lines oriented at 90◦, 75◦, 60◦, 45◦,
30◦, and 15◦, where the error is computed only when the
corresponding line is active. From this figure, we can extract
the following conclusions.

1) In general, the algorithm is capable of correctly esti-
mating the parameters of the observed lines. The values
of the errors remain small for all lines for the whole
duration of the recording.

2) Lines parallel to the motion are harder to detect and
track, since the motion is almost not triggering events.
This hampers the computation of the optical flow,
yielding less stable results.
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Fig. 9. Errors in the estimation of ρ and θ for six of the lines contained in
the scene. Results for almost horizontal lines are less stable, but we are still
able of correctly tracking these lines.

Fig. 10. Evolution of the mean error in the estimation of θ and ρ with the
orientation of the line. We verify that the best results are obtained for lines
oriented perpendicularly to the direction of the movement.

3) We lose lines at smaller angles more often. This usually
happens when the lines stop their movement.

In order to establish a clearer comparison between the
accuracy produced for the different orientations, let us plot
in Fig. 10 the values of the mean errors obtained for the differ-
ent lines for the whole duration of the recording. We verify that
these errors are bigger for smaller angles. As an example, for
the line at 90◦ (which moves perpendicularly to its contour),
we obtain mean errors of just 0.31◦ and 0.90 px.

2) Segment Detection: The parameters for the line detection
are the same used in the previous experiment (indicated
in Table I), while the extra parameters required for segment
detection are l = 10 px, A(px)

up = 1.5.
We show in Fig. 6(d) the output produced by the segment

detection step, where the tracked endpoints are indicated by
crosses in different colors for each endpoint. In the leftmost
snapshot, we observe the state of the detection as the object
initiates its movement: we verify that some of the endpoints
are not detected in this first instant, since their activity has
not reached its threshold yet. Like in the previous experiment,
as the object continues moving, we are capable of detecting the
missing endpoints. All endpoints, except the ones belonging to
the horizontal line, are correctly detected and tracked for the
whole duration of the recording. A video showing the sequence
is included as the Supplementary Material.

Fig. 11. Tracking results for the outer endpoints of the lines at 90◦, 45◦,
and 15◦.

Fig. 12. Accuracy of the endpoint tracking for the different endpoints.
We obtain more accurate results and greater percentage of active time for
lines with greater angles.

We next compare the obtained results with the ground truth
values. We plot in Fig. 11 the tracking results obtained for
three endpoints, namely, the outer endpoints of the lines at 90◦,
45◦, and 15◦. In the figure, ground truth values are indicated
with a dashed line and compared with the obtained results.
As we can see, they are very similar, allowing us to conclude
that our method can correctly detect the endpoints in this
simple scene.

We provide also a quantitative evaluation of the tracking
by showing the tracking error ξt (in pixels) as the distance
between the tracked endpoints and the corresponding ground
truth values. We only consider the instants when the endpoint
trackers are active. Consequently, we will also evaluate the per-
centage of the recording for which the endpoints are detected.
We show in Fig. 12 the mean tracking errors produced over
the whole recording for the different endpoints. As we can see,
errors are greater for smaller angles. As an example, the mean
tracking errors committed for the endpoints belonging to the
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vertical line are 1.49 px for the outer endpoint and 1.54 px
for the inner endpoint.

In the same way, the smaller the angle, the smaller the
percentage of the time that we can track the endpoints. We are
able of tracking the endpoints in the vertical line for 84.6%
of the time.

To conclude about endpoint detection, their spatial impre-
cision around 1 pixel can be explained by the attribution
of the events to the lines, related to the matching between
the visual flow computed around them and the line model
(see Section II-B.3). The proposed computation of the optical
flow is indeed less robust at the endpoints, due to the weaker
number of events (or to events belonging to other edges) in
the spatiotemporal neighborhood of ending points than around
other points along the edges. Thus, events corresponding to
endpoints are sometimes not attributed to the line, which
implies a weaker local activity, and consequently the impreci-
sion of the endpoints’ locations. About robustness, essentially
for the same reasons, the algorithm fails when the apparent
motion is too weak (and the number of attributed events is
therefore also weak).

Despite this extreme condition, we have proven that the
algorithm behaves similarly whatever the speed or orientation
of lines.

3) Comparison to Other Event-Based Methods: In the
ELiSeD paper, the accuracy of their line tracking step is
measured by the vertical distance (in pixels) between the
estimated y position of two horizontal bars moving vertically
and the corresponding value produced by the original LSD
algorithm. This scenario is equivalent to a vertical line moving
horizontally, and their metric therefore corresponds to our
mean error ξρ for the line at 90◦. In this condition, they report
an error of 1.36 px, while ours is just 0.90 px. Let us note that
they do not give any numerical evaluation for their segment
detection step, and consequently no fair comparison can be
established.

B. Real Scenes

We next show the output of the algorithm applied to
two real scenes. Both the recordings were performed with a
handheld ATIS camera moving in circles. We process them
using the same parameters as in the previous case, except for
the maximum number of line models, which is increased to
N = 1000. In this case, we do not provide any quantitative
measurement of the accuracy produced, as ground truth values
are not easily attainable. Instead, these results are just shown
as a qualitative demonstration of what can be achieved with
our algorithm (videos of each experiment are included as the
Supplementary Material). This is also a key opportunity to
discuss some properties of the proposed method, regarding its
potential applications.

1) Urban Environment: We first apply the method to a
recording of an urban landscape, which contains a large
number of lines.4 We show in Fig. 13(a) three snapshots recon-
structed from the recording, while Fig. 13(b) depicts the output

4A video showing the results obtained for this outdoors scene can be found
here: https://www.youtube.com/watch?v=PVuR5trZ1Aw.

Fig. 13. (a) Frames reconstructed from the recording. (b) Output of the line
detection step. (c) Output of the segment detection step.

of the line detection step. We observe that horizontal or vertical
lines tend to predominate depending on the direction of the
movement at the corresponding instant.

In Fig. 13(c), the output of the segment detection is also
shown. For visibility reasons, we do not display any crosses
marking the endpoints’ positions. We verify that our algorithm
is capable of recovering an important part of the segments
present in the recorded scene. A video showing the output of
both the line detection and segment detection steps is included
as the Supplementary Material.

2) Office: The second real scene tested with the detection/
tracking algorithm is the recording of an office.5 Fig. 14(a)
shows three snapshots obtained from the recording: we observe
that the scene contains a great number of lines, whose lengths
are smaller than in the urban scene recording. As we can see
in Fig. 14(b), many of these short segments are not detected,
because their activities are not normalized with respect to their
lengths, which causes the longer segments to be more likely
to be detected.

We show in Fig. 14(c) the output of the segment detec-
tion algorithm when processing this scene with the same
set of parameters as for the urban environment. We verify
that many of the small segments are not detected. Indeed,
the proposed method tends to emphasize long and highly
contrasted contours, because they generate more events. This
characteristic, common to most segment detection algorithms
(frame or event-based), is often required when considering
the motion of a camera relative to its environment (as it is
the case in robotics and navigation applications). In this type
of visual scenes, long and contrasted segments provide robust
information, as high contrast and long size make them visible
for long periods of time, even if the global illumination and/or
the point of view vary.

5A video showing the results obtained for this indoors environment is
available here: https://www.youtube.com/watch?v=HaJqSHeXkg4.
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Fig. 14. (a) Frames reconstructed from the recording. (b) Output of the line
detection step of the algorithm. (c) Output of the segment detection part of
the algorithm. (d) Output of the segment detection part of the algorithm after
tweaking the parameters.

It is also possible to adjust the parameters, reducing the
activity threshold A(L)

up and the length of the window l.
We show in Fig. 14(d) the output produced after tuning
the parameters: as we can see, we are able to detect a
greater number of small segments. Of course, the algorithm’s
parameters can be automatically adjusted, requiring a given
number of lines and a maximum number of segments allowed
per line.

C. Computational Time

Let us next evaluate the computational time required by
our current C++ implementation of the algorithm. These tests
were performed in a standard computer running Debian Linux,
equipped with an Intel Core i7-4790 processor. The code was
not parallelized and just one core was used.

In order to characterize the computational time required
by the algorithm, we measure the time it takes to process
the previously presented recordings. To that end, we measure
the processing time for every time period of one millisecond
(without overlapping) and compute the ratio of processing time
to the length of the considered periods (i.e., the number of
milliseconds it takes to process one millisecond of events).
Thus, if this ratio is smaller than 1, the algorithm can process
the corresponding event stream online without increasing
latency (i.e., in “real-time video”).

In order to obtain stable values, we process each recording
10 times and average the obtained results.

Let us show in Fig. 15 the ratio of processing time to the
length of the recording, obtained when processing the first

Fig. 15. We measure the processing time every time periods of 1 ms and
compute the ratio of processing time to the length of the considered periods.
We show the results obtained when processing the first recording (simple
scene) for both line and segment detections. Because this ratio is always
smaller than 1, we can conclude that we are processing this event stream
faster than we acquire it (in “real-time video”). The computational time is
related to the speed of the object, because faster moving objects generate
greater number of events.

simple scene; see Section IV-A2 and Figs. 4 and 6) with
the set of parameters given in Table I. Let us note that we
are considering the processing time required by the whole
processing chain: this includes reading the recording file,
preprocessing the recording for noise removal, and computing
the visual flow of the incoming events, in addition to the line
(or segment) detection. We display at the top of Fig. 15 the
computational time required to perform line detection, while
the results for segment detection are shown at the bottom.

From Fig. 15, we can observe the following.
1) The ratio of processing time to the length of the record-

ing is always smaller than 1. This implies that we are
processing the event stream faster than we acquire it
(both for segment and line detection).

2) The segment detection algorithm is around 10% more
computationally demanding, on average.

3) This ratio is clearly correlated with the speed of the
object (see Fig. 5). This can be easily explained, because
faster moving objects generate a bigger number of events
that need to be processed.

According to this last point, it is more interesting to display
the ratio of processing time as a function of the event rate,
as in [34]. Let us next study the computational time required
to process the urban environment recording, which contains
a greater number of events. We show in Fig. 16 the ratio of
processing time for three different values of the parameter N
(i.e., the maximum number of lines that can be initialized).
We verify that the computational time is increasing with the
number of events, and can be approximated by a linear func-
tion. This allows us to extrapolate and compute the maximum
rate of events that can be processed online (i.e., faster than we
acquire them) by our algorithm, depending on the value of N .

We then show in Fig. 17 the evolution of the maximum
event rate that can be processed online by the algorithm,
both for line detection (top) and segment detection (bottom).
Indeed, we verify that, even for big values of N , we are
able to process big event rates in “real-time video.” As an
example, for N = 500, we can perform online line detection
for event rates up to 760 ev/ms, and online segment detection
for event rates up to 684 ev/ms.
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Fig. 16. Computational time per ms as a function of the number of
events per ms. Top: line detection. Bottom: segment detection. The required
computational time increases with the event rate: regressions of these data
are represented as dashed lines in order to highlight their linear dependence,
related to the parameter N (i.e., the number of considered line models).

Fig. 17. Maximum event rate that can be processed online, as a function of
the parameter N . Top: line detection. Bottom: segment detection.

Note that, if bigger event rates are required for a given
application, a parallelization of the proposed algorithm can be
easily envisioned: for example, the updating of the N model
lines (and segments) could be shared by several different cores.

V. CONCLUSION

We have presented a new event-based line and segment
detection algorithm. Based on an iterative process, our
approach is fully event-based, as each event is used to update
the current model and forgotten afterward. This latter is
obtained by applying a speed-tuned exponential decay to
the contribution of each event to the line model, and then
to the segment model. Our approach considers the dynamics
of the visual information through a local computation of the
optical flow, ensuring that the models are essentially estimated
on the current visual information. The proposed line detection
is based on an iterative least squares fitting scheme that is
compatible with the asynchronous data.

These properties are validated through an experimental
protocol, involving a simple scene for which ground truth
values are available. This allows us to assess the accuracy
and robustness of the algorithm in a controlled environment.
Indeed, the mean accuracy obtained for the line model para-
meters, i.e., the distance to the origin and the angle, is in
most cases lower than 1 pixel and 1◦, respectively. The results
for the segment endpoints are also accurate: for example, the
mean tracking errors committed for a line perpendicular to
the motion are around 1.5 pixels. In addition, a complete
analysis of the computational time required by the proposed

algorithms is presented. This analysis shows that our current
implementation is able to process online event streams. The
method could be easily parallelized in further developments
for demanding applications.

These characteristics make our event-based line and seg-
ment detection algorithms suitable for real-time applications,
such as navigation of robotic platforms in real environments
(particularly for line-based SLAM algorithms [14]–[16]).
Due to their event-based processing, fully exploiting the
neuromorphic cameras’ quasi-continuous acquisition of visual
information, the proposed methods make particularly a fitting
for high-speed applications, because they are not constrained
by sampled acquisition as in frame-based vision.

APPENDIX A
OPTIMIZATION STRATEGY

Let us rewrite (13) dropping the superindices, in order to
lighten the notation

ak sin(2θk)+ bk cos(2θk) = 0. (23)

From this, we obtain

±ak

√

1− cos2(2θk) = −bk cos(2θk)

which yields

a2
k (1− cos2(2θk)) = b2

k cos2(2θk)⇒ cos2(2θk) = a2
k

a2
k + b2

k

.

From this, we get

cos(2θk) = βk (24)

where βk = ±((a2
k /(a2

k + b2
k)))

1/2.
Next, we insert into (24) the following trigonometric iden-

tities: cos(2θ) = 2 cos2(θ) − 1 and cos(2θ) = 1 − 2 sin2(θ).
We obtain

cos(θk) =
√

βk + 1

2
, sin(θk) = ±

√

1− βk

2
. (25)

where we only keep the positive sign for the cosinus, because
θk ∈ [−π/2, π/2].

APPENDIX B
DISAMBIGUATION

Let us define γ1, γ2

γ1 =
√

1− |βk|
2

, γ2 =
√

1+ |βk |
2

. (26)

From (19), we obtain four possible combinations for cos θk ,
sin θk (where we drop the superindex indicating the line in
order to lighten the notation)

{

if βk = +|βk| ⇒ sin(θk) = ±γ1, cos(θk) = γ2

if βk = −|βk| ⇒ cos(θk) = γ1, sin(θk) = ±γ2.
(27)

Next, we need to disambiguate for the sign of the sinus.
Here, we consider that tan 2θk = (−bk/ak). Then, as one can
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Fig. 18. Sign of the sinus can be disambiguated from the value of λ and
cos(θk).

see in Fig. 18, the following rule applies:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

if
−bk

ak
> 0

{

if cos(θk) < cos(π/4)⇒ sin(θk) < 0

if cos(θk) > cos(π/4)⇒ sin(θk) > 0

if
−bk

ak
< 0

{

if cos(θk) < cos(π/4)⇒ sin(θk) > 0

if cos(θk) > cos(π/4)⇒ sin(θk) < 0.

(28)

This leaves us with two possible combinations, which cor-
respond to the two perpendicular lines yielding the maximum
and the minimum error. We disambiguate between them by
choosing the value of cos(θk) closest to the previous one.
Here, we choose to compare the cosinus, because for almost
horizontal lines, we have θk ≈ ±π/2. Values of θk close to
π/2 or −π/2 will have a similar cosinus, allowing for the line
to change from one to another.

Alternatively, it is possible to disambiguate between the two
combinations by imposing the second derivative to be greater
than zero. This yields the following condition:

0 < cos(2θk)(ŷyk − x̂ xk)− 2 sin(2θk)x̂ yk

+ ρk (̂xk cos(θk)+ ŷk sin(θk)). (29)

In our implementation, we choose to select the value closest
to the previous one, as this method is less computationally
demanding.
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