
968 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Denoising Adversarial Autoencoders
Antonia Creswell and Anil Anthony Bharath

Abstract— Unsupervised learning is of growing interest because
it unlocks the potential held in vast amounts of unlabeled data to
learn useful representations for inference. Autoencoders, a form
of generative model, may be trained by learning to reconstruct
unlabeled input data from a latent representation space. More
robust representations may be produced by an autoencoder if
it learns to recover clean input samples from corrupted ones.
Representations may be further improved by introducing regu-
larization during training to shape the distribution of the encoded
data in the latent space. We suggest denoising adversarial autoen-
coders (AAEs), which combine denoising and regularization,
shaping the distribution of latent space using adversarial training.
We introduce a novel analysis that shows how denoising may be
incorporated into the training and sampling of AAEs. Experi-
ments are performed to assess the contributions that denoising
makes to the learning of representations for classification and
sample synthesis. Our results suggest that autoencoders trained
using a denoising criterion achieve higher classification perfor-
mance and can synthesize samples that are more consistent with
the input data than those trained without a corruption process.

Index Terms— Image analysis, pattern recognition, semisuper-
vised learning, unsupervised learning.

I. INTRODUCTION

MODELING and drawing data samples from complex,
high-dimensional distributions are challenging. Gener-

ative models may be used to capture an underlying statistical
structure from real-world data. A good generative model is not
only able to draw samples from the distribution of data being
modeled but should also be useful for inference.

Modeling complicated distributions may be made easier by
learning the parameters of conditional probability distributions
that map intermediate, latent, [2] variables from simpler dis-
tributions to more complex ones [4]. Often, the intermediate
representations that are learned can be used for tasks, such as
retrieval or classification [20], [24], [26], [30].

Typically, to train a model for classification, a deep neural
network may be constructed, demanding large labeled data
sets to achieve high accuracy [15]. Large labeled data sets
may be expensive or difficult to obtain for some tasks. How-
ever, many state-of-the-art generative models can be trained

Manuscript received July 3, 2017; revised January 3, 2018, March 17, 2018,
and June 24, 2018; accepted June 25, 2018. Date of publication August 16,
2018; date of current version March 18, 2019. This work was supported by
the Engineering and Physical Sciences Research Council through a Doctoral
Training Studentship under Grant EP/L504786/1. (Corresponding author:
Antonia Creswell.)

The authors are with the Biologically Inspired Computer Vision Group,
Imperial College London, London SW7 2AZ, U.K. (e-mail: ac2211@ic.ac.uk;
a.bharath@imperial.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2852738

without labeled data sets [9], [12], [14], [24]. For exam-
ple, autoencoders learn a generative model, referred to as
a decoder, by recovering inputs from corrupted [5], [12], [30]
or encoded [14] versions of themselves.

Two broad approaches to learning the state-of-the-art gen-
erative autoencoders that do not require labeled training data
include: 1) introduction of a denoising criterion [5], [30], [31],
where the model learns to reconstruct clean samples from
corrupted ones and 2) regularization of the latent space to
match a prior [14], [20]; for the latter, the priors take a simple
form, such as multivariate normal distributions.

The denoising variational autoencoder (DVAE) [12] com-
bines both denoising and regularization in a single generative
model. However, introducing a denoising criterion makes the
variational cost function—used to match the latent distribution
to the prior—analytically intractable. Reformulation of the cost
function makes it tractable but only for certain families of
prior and posterior distributions. We propose using adversarial
training [9] to match the posterior distribution to the prior.
Taking this approach expands the possible choices for families
of prior and posterior distributions.

When a denoising criterion is introduced to an adversarial
autoencoder (AAE), we have a choice to either shape the
conditional distribution of latent variables given corrupted
samples to match the prior (as was done using a variational
approach [12]) or to shape the full posterior conditional on
the original data samples to match the prior. Shaping the
posterior distribution over corrupted samples does not require
additional sampling during training, but trying to shape the
full conditional distribution with respect to the original data
samples does. We explore both the approaches using adver-
sarial training to avoid the difficulties posed by analytically
intractable cost functions.

In addition, a model that has been trained using the posterior
conditioned on the corrupted data requires an iterative process
for synthesizing samples, whereas using the full posterior
conditioned on the original data does not. Similar challenges
exist for the DVAE but were not addressed by Im et al. [12].
We analyze and address these challenges for AAEs, introduc-
ing a novel sampling approach for synthesizing samples from
trained models.

In summary, our contributions include: 1) two types of
denoising AAEs: one which is more efficient to train and one
which is more efficient to draw samples from; 2) methods to
draw synthetic data samples from denoising AAEs through
Markov chain (MC) sampling; and 3) an analysis of the
quality of features learned with denoising AAEs through their
application to discriminative tasks.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0003-1037-9395
https://orcid.org/0000-0001-8808-2714

CRESWELL AND BHARATH: DENOISING AAEs 969

II. BACKGROUND

A. Autoencoders

In a supervised learning setting, given a set of training data
{(yi , xi)}Ni=1, we wish to learn a model fψ(y|x) that maxi-
mizes the likelihood Ep(y|x) fψ(y|x) of the true label y given
an observation x . In the supervised setting, there are many
ways to calculate and approximate the likelihood because there
is a ground-truth label for every training data sample.

When trying to learn a generative model pθ (x) in the
absence of a ground truth, calculating the likelihood of the
model under the observed data distribution Ex∼p(x) pθ (x)
is challenging. Autoencoders introduce a two-step learning
process that allows the estimation pθ (x) of p(x) via an
auxiliary variable z. The variable z may take many forms,
and we shall explore several of these in this section. The two-
step process involves first learning a probabilistic encoder [14]
qφ(z|x) conditioned on observed samples and a second prob-
abilistic decoder [14] pθ (x |z) conditioned on the auxiliary
variables. Using the probabilistic encoder, we may form a
training data set {(zi , xi)}Ni=1 where xi is the ground truth
output for x ∼ p(x |zi) with the input being zi ∼ qφ(z|xi). The
probabilistic decoder pθ (x |z) may then be trained on this data
set in a supervised fashion. By sampling pθ (x |z) conditioning
on the suitable z values, we may obtain a joint distribution
pθ (x, z), which may be marginalized by integrating over
all z values to obtain to pθ (x). Note that a deterministic
autoencoder is a special case of a probabilistic one.

In some situations, the encoding distribution is chosen rather
than learned [5], and in other situations, the encoder and the
decoder are learned simultaneously [12], [14], [20].

B. Denoising Autoencoders

Bengio et al. [5] treat the encoding process as a local
corruption process that does not need to be learned. In the
corruption process, defined as c(x̃ |x) where x̃ , the corrupted x
is the auxiliary variable (instead of z). The decoder pθ (x |x̃)
is therefore trained on the data pairs {(x̃i , xi)}Ni=1.

By using a local corruption process (e.g., additive white
Gaussian noise [5]), both x̃ and x have the same number of
dimensions and are close to each other. This makes it very
easy to learn pθ (x |x̃). Bengio et al. [5] show how the learned
model may be sampled using an iterative process but does not
explore how representations learned by the model may transfer
to other applications such as classification.

Hinton and Salakhutdinov [11] show that when auxiliary
variables of an autoencoder have lower dimension than the
observed data, the encoding model learns representations that
may be useful for tasks, such as classification and retrieval.

Rather than treating the corruption process c(x̃, x) as
an encoding process [5]—missing out on potential ben-
efits of using a lower dimensional auxiliary variable—
Vincent et al. [30], [31] learn an encoding distribution qφ(z|x̃)
conditioned on the corrupted samples. The decoding distri-
bution pθ (x |z) learns to reconstruct images from encoded,
corrupted images, see the denoising autoencoders (DAEs)
in Fig. 1. Vincent et al. [30], [31] show that compared
with regular autoencoders, DAEs learn representations that

Fig. 1. Comparison of autoencoding models. Previous works include
DAEs [5], [30], VAEs [14], AAEs [20], and DVAEs [12]. Our contributions
are the DAAE and iDAAE models. Arrows represent mappings implemented
using trained neural networks.

are more useful and robust for tasks such as classification.
Parameters φ and θ are learned simultaneously by minimiz-
ing the reconstruction error for the training set {(x̃i , xi)}Ni=1,
which does not include zi . The ground truth zi for given
x̃i is unknown. The form of the distribution over z, to
which x samples are mapped, pφ(z) is also unknown, making
it difficult to draw novel data samples from the decoder
model pθ (x |z).

C. Variational Autoencoders

VAEs [14] specify a prior distribution, p(z) to which
qφ(z|x) should map all x samples, by formulating and
maximizing a variational lower bound on the log-likelihood
of pθ (x).

The variational lower bound on the log-likelihood of pθ (x)
is given by [14]

log pθ (x)≥Ez∼qφ(z|x)[log pθ (x |z)]−K L[qφ(z|x)||p(z)]. (1)

The term pθ (x |z) corresponds to the likelihood of a recon-
structed x value given the encoding z of a data sample x .
This formulation of the variational lower bound does not
involve a corruption process. The term K L[qφ(z|x)||p(z)]
is the Kullback–Leibler (KL) divergence between qφ(z|x)
and p(z). Samples are drawn from qφ(z|x) via a reparametri-
sation trick (see the VAE in Fig. 1).

If qφ(z|x) is chosen to be a parameterized multivariate
Gaussian N (μφ(x), σφ(x)) and the prior is chosen to be a
Gaussian distribution, then K L[qφ(z|x)||p(z)] may be com-
puted analytically. KL divergence may only be computed
analytically for certain (limited) choices of prior and posterior
distributions.

VAE training encourages qφ(z|x) to map observed samples
to the chosen prior p(z). Therefore, novel observed data
samples may be generated via the following simple sampling
process: zi ∼ p(z), xi ∼ pθ (x |zi) [14].

Note that despite the benefits of the denoising cri-
terion shown by Vincent et al. [30], [31] for regular

970 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

autoencoders, no corruption process was introduced by
Kingma and Welling [14] for VAEs.

D. Denoising Variational Autoencoders

Adding the denoising criterion to a VAE is nontrivial
because the variational lower bound becomes intractable.

Consider the conditional probability density function
q̃φ(z|x) =

∫
qφ(z|x̃)c(x̃ |x)dx̃ , where qφ(z|x̃) is the proba-

bilistic encoder conditioned on the corrupted x samples x̃ , and
c(x̃ |x) is a corruption process. The variational lower bound
may be formed in the following way [12]:

log pθ (x)≥Eq̃φ(z|x) log

[
pθ (x, z)

qφ(z|x̃)
]

≥ Eq̃φ(z|x) log

[
pθ (x, z)

q̃φ(x |z)
]

.

If qφ(z|x̃) is chosen to be Gaussian, then in many cases,
q̃φ(z|x) will be a mixture of Gaussians. If this is the case,
there is no analytical solution for K L[q̃φ(z|x)||p(z)], and so
the denoising variational lower bound becomes analytically
intractable. However, there may still be an analytical solu-
tion for K L[qφ(z|x̃)||p(z)]. The DVAE therefore maximizes
Eq̃(x |z) log[(pθ (x, z)/qφ(z|x̃))]. We refer to the model which
is trained to maximize this objective as a DVAE (see Fig. 1).
Im et al. [12] show that the DVAE achieves lower negative
variational lower bounds than the regular VAE on the test data
set.

However, note that qφ(z|x̃) is matched to the prior p(z)
rather than q̃φ(z|x). This means that generating novel samples
using pθ (z|x) is not as simple as the process of generating
samples from a VAE. To generate novel samples, we should
sample zi ∼ q̃φ(z|x) and xi ∼ pθ (x |zi), which is difficult
because of the need to evaluate q̃φ(z|x). Im et al. [12] do not
address this problem.

For both DVAEs and VAEs, there is a limited choice
of prior and posterior distributions for which there exists
an analytic solution for the KL divergence. Alternatively,
adversarial training may be used to learn a model that matches
samples to an arbitrarily complicated target distribution—
provided that samples may be drawn from both the target and
model distributions.

III. RELATED WORK

In this section, we introduce adversarial training and AAEs,
on which this paper builds directly.

A. Adversarial Training

Adversarial training, as introduced by Goodfellow et al. [9],
involves learning a mapping from a latent sample v to a data
sample w. However, at a more abstract level, w may be thought
of as a sample from any chosen target distribution and v as a
sample from any distribution that we wish to map to w.

More formally, in adversarial training [9], a model gφ(w|v)
is trained to produce output samples w that match a target
probability distribution t (w). This is achieved by iteratively
training two competing models: a generative model gφ(w|v)
and a discriminative model dχ (w). The discriminative model
is fed with the samples either from the generator (i.e., “fake”
samples) or with samples from the target distribution

(i.e., “real” samples) and trained to correctly predict whether
the samples are “real” or “fake.” The generative model—fed
with input samples v, drawn from a chosen prior distribution
p(v)—is trained to generate output samples w that are indis-
tinguishable from target w samples in order to “fool” [24] the
discriminative model into making incorrect predictions. This
may be achieved by the following minimax objective [9]:

min
g

max
d

Ew∼t (w)[log dχ (w)] + Ew∼gφ(w|v)[log(1− dχ(w))].
It has been shown that for an optimal discriminative model,

optimizing the generative model is equivalent to minimizing
the Jensen–Shannon divergence between the generated and tar-
get distributions [9]. In general, it is reasonable to assume that,
during training, the discriminative model quickly achieves near
optimal performance [9]. This property is useful for learning
distributions for which the Jensen–Shannon divergence may
not be easily calculated.

The generative model is optimal when the distribution of
the generated samples matches the target distribution. Under
these conditions, the discriminator is maximally confused and
cannot distinguish “real” samples from “fake” ones. As a con-
sequence of this, adversarial training may be used to capture
very complicated data distributions and has been shown to be
able to synthesize images of handwritten digits and human
faces that are almost indistinguishable from real data [24].

B. Adversarial Autoencoders

Makhzani et al. [20] introduce the AAE, where qφ(z|x)
is both the probabilistic encoding model in an autoen-
coder framework and the generative model in an adversarial
framework.

A new discriminative model dχ(z) is introduced. This
discriminative model is trained to distinguish between latent
samples drawn from p(z) and qφ(z|x). The cost function used
to train the discriminator dχ(z) is

Ldis = − 1

N

N−1∑

i=0

log dχ(zi)− 1

N

2N−1∑

j=N

log(1− dχ (z j))

where zi=0:N−1 ∼ p(z) and z j=N :2N−1 ∼ qφ(z|x) and N is
the size of the training batch.

Adversarial training is used to match qφ(z|x) to an arbitrar-
ily chosen prior p(z). The cost function for matching qφ(z|x)
to prior p(z) is as follows:

Lprior = 1

N

N−1∑

i=0

log(1− dχ(zi)) (2)

where zi=0:N−1 ∼ qφ(z|x) and N is the size of a training
batch. If both Lprior and Ldis are optimized, qφ(z|x) will be
indistinguishable from p(z).

In Makhzani et al.’s [20] AAE, qφ(z|x) is specified by
a neural network whose input is x and whose output is z.
This allows qφ(z|x) to have arbitrary complexity, unlike the
VAE where the structure of qφ(z|x) is usually limited to a
multivariate Gaussian. In an AAE, the posterior does not have
to be analytically defined because an adversary is used to

CRESWELL AND BHARATH: DENOISING AAEs 971

match the prior, avoiding the need to analytically compute
a KL divergence.

Makhzani et al. [20] demonstrate that AAEs are able to
match qφ(z|x) to several different priors p(z) including a
mixture of 10 2-D Gaussian distributions. We explore another
direction for AAEs, by extending them to incorporate a
denoising criterion.

IV. DENOISING ADVERSARIAL AUTOENCODER

We propose denoising AAEs, DAEs, that use adversarial
training to match the distribution of auxiliary variables z to
a prior distribution p(z).

We formulate two versions of a denoising AAE, which are
trained to approximately maximize the denoising variational
lower bound [12]. In the first version, we directly match the
posterior q̃φ(z|x) to the prior p(z) using adversarial training.
We refer to this as an integrating denoising AAE (iDAAE).
In the second, we match the intermediate conditional proba-
bility distribution qφ(z|x̃) to the prior p(z). We refer to this
as a DAAE.

In the iDAAE, adversarial training is used to bypass ana-
lytically intractable KL divergences [12]. In the DAAE, using
adversarial training broadens the choice for prior and posterior
distributions beyond those for which the KL divergence may
be analytically computed.

A. Construction

The distribution of encoded data samples is given by
q̃φ(z|x) =

∫
qφ(z|x̃)c(x̃ |x)dx̃ [12]. The distribution of

decoded data samples is given by pθ (x |z). Both qφ(z|x) and
pθ (x |z) may be trained to maximize the likelihood of the
reconstructed sample, by minimizing the reconstruction cost
function Lrec = 1/N

∑N−1
i=0 log pθ (x |zi), where the zi values

are obtained via the following sampling process xi=0:N−1 ∼
p(x), x̃i ∼ c(x̃ |xi), and zi ∼ qφ(z|x̃i), and p(x) is the
distribution of the training data.

We also want to match the distribution of auxiliary
variables z to a prior p(z). When doing so, there is a choice
to match either q̃φ(z|x) or qφ(z|x̃) to p(z). Each choice has
its own tradeoffs either during training or during sampling.

1) iDAAE (Matching q̃φ(z|x) to a Prior): In DVAEs, there
is often no analytical solution for the KL divergence between
q̃φ(z|x) and p(z) [12], thus making it difficult to match
q̃φ(z|x) to p(z). Rather, we propose using adversarial training
to match q̃φ(z|x) to p(z), thus requiring samples to be drawn
from q̃φ(z|x) during training.

It is challenging to draw samples directly from
q̃φ(z|x) =

∫
qφ(z|x̃)c(x̃ |x)dx̃, but it is easy to draw

samples from qφ(z|x̃) and so q̃φ(z|x) may be approximated
by 1/M

∑M
j=1 qφ(z|x̃ j), x̃ j=1:M ∼ c(x̃ |x0), and x0 ∼ p(x)

(see Fig. 1). Matching is achieved by minimizing the
following cost function:

Lprior = 1

N

N−1∑

i=0

log(1− dχ (ẑi))

where ẑi=0:N−1 = (1/M)
∑M

j=1 zi, j , zi=0:N−1, j=1:M ∼
qφ(z|x̃i, j), x̃i=0:N−1, j=1:M ∼ c(x̃ |x j), and xi=0:N−1 ∼ p(x).

Fig. 2. Compare how iDAAE and DAAE match encodings to the prior when
trained on the CelebA data set. Encoding refers to qφ(z|x), prior refers to the
normal prior p(z), and encoded corrupted data refers to qφ(z|x̃). (a) DAAE:
encoded corrupted data samples match the prior. (b) iDAAE: encoded data
samples match the prior.

2) DAAE (Matching qφ(z|x̃) to a Prior): Since drawing
samples from qφ(z|x̃) is trivial, qφ(z|x̃) may be matched
to p(z) via adversarial training. This is more efficient
than matching q̃φ(z|x) since a Monte Carlo integration step
(in Section IV-A1) is not needed (see Fig. 1). In using adver-
sarial training in place of KL divergence, the only restriction
is that we must be able to draw samples from the chosen prior.
Matching may be achieved by minimizing the following loss
function:

Lprior = 1

N

N−1∑

i=0

log(1− dχ(zi))

where zi=0:N−1 ∼ qφ(z|x̃i).
Though more computationally efficient to train, there are

drawbacks when trying to synthesise novel samples from
pθ (x) if qφ(z|x̃)—rather than q̃φ(z|x)—is matched to the
prior. The effects of using a DAAE rather than an iDAAE
may be visualized by plotting the empirical distribution of
encodings of both data samples and corrupted data samples
with the desired prior, and these are shown in Fig. 2.

V. SYNTHESIZING NOVEL SAMPLES

In this section, we review several techniques used to
draw samples from trained autoencoders and identify a
problem with sampling DAAEs, which interestingly, also
applies to DVAEs [12]. We propose a novel approach
to sampling DAAEs; we draw strongly on previous work
by Bengio et al. [4], [5].

A. Drawing Samples From Autoencoders

New samples may be generated by sampling a learned
pθ (x |z) value conditioning on z drawn from a suitable dis-
tribution. In the case of VAE [14] and AAE [20], the choice
of this distribution is simple, because during training, the dis-
tribution of auxiliary variables is matched to a chosen prior
distribution p(z). It is therefore easy and efficient to sample
both VAE and AAE via the following process: z ∼ p(z),
x ∼ pθ (x |z) [14], [20].

The process for sampling DAEs is more complicated. In the
case where the auxiliary variable is a corrupted image x̃ [3],
the sampling process is as follows: x0 ∼ p(x), x̃0 ∼ c(x̃ |x0),

972 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

x1 ∼ pθ (x |x̃0) [5]. In the case where the auxiliary variable
is an encoding [30], [31], the sampling process is the same,
with pθ (x |x̃) encompassing both the encoding and decoding
processes.

However, since a DAE [5] is trained to reconstruct corrupted
versions of its inputs, and the sample x1 is likely to be
very similar to x0. Bengio et al. [5] propose a method
for iteratively sampling DAEs by defining an MC whose
stationary distribution—under certain conditions—exists and
is equivalent, under certain assumptions, to training the data
distribution. This approach is generalized and extended by
Bengio et al. [4] to introduce a latent distribution with no
prior assumptions on z.

We now consider the implication for drawing samples from
denoising AAEs introduced in Section IV-A. By using the
iDAAE formulation (see Section IV-A1), where q̃φ(z|x) is
matched to the prior over z, then x samples may be drawn
from pθ (x |z), conditioning on z ∼ p(z). However, if we use
the DAAE—matching qφ(z|x̃) to a prior—sampling becomes
nontrivial.

On the surface, it may appear easy to draw samples from
DAAEs (see Section IV-A2), by first sampling the prior p(z)
and then sampling pθ (x |z). However, the full posterior dis-
tribution is given by q̃φ(z|x) =

∫
qφ(z|x̃)c(x̃ |x)dx̃ , but only

qφ(z|x̃) is matched to p(z) during training (see Fig. 2). The
implication of this is that when attempting to synthesize novel
samples from pθ (x |z), drawing samples from the prior p(z)
is unlikely to yield samples consistently with p(x). This will
become more clear in Section V-B.

B. Proposed Method for Sampling DAAEs

Here, we propose a method for synthesizing novel samples
using trained DAAEs. In order to draw samples from pθ (x |z),
we need to be able to draw samples from q̃φ(z|x).

To ensure that we draw novel data samples, we do not
want to draw samples from the training data at any point
during sample synthesis. This means that we cannot use data
samples from our training data to approximately draw samples
from q̃φ(z|x).

Instead, similar to Bengio et al. [5], we formulate an MC,
which we show that it has the necessary properties to converge
and that the chain converges to P(z) = ∫

q̃φ(z|x)p(x)dx .
Unlike Bengio’s formulation, our chain is initialized with a
random vector of the same dimensions as the latent space,
rather than a sample drawn from the training set.

We define an MC by the following sampling process:

z(0) ∼ R
a, x (t) ∼ pθ (x |z(t)

x̃ (t) ∼ c(x̃ |x (t)), z(t+1) ∼ qφ(z|x̃ (t))
t ≥ 0. (3)

Notice that our first sample is any real vector of dimen-
sion a, where a is the dimension of the latent space. This
MC has the transition operator

Tθ,φ(z
(t+1)|z(t))
=

∫
qφ(z

(t+1)|x̃ (t))c(x̃ (t)|x (t))pθ (x
(t)|z(t))dxdx̃ . (4)

We will now show that under certain conditions, this transi-
tion operator defines an ergodic MC that converges to P(z) =∫

q̃φ(z|x)p(x)dx in the following steps: 1) we will show
that there exists a stationary distribution P(z) for z(0) drawn
from a specific choice of initial distribution (see Lemma 1);
2) the MC is homogeneous, because the transition operator is
defined by a set of distributions whose parameters are fixed
during sampling; 3) we will show that the MC is also ergodic
(see Lemma 2); and 4) since the chain is both homogeneous
and ergodic, there exists a unique stationary distribution to
which the MC will converge [22].

Step 1) shows that one stationary distribution is P(z), which
we now know by 2) and 3) to be the unique stationary
distribution. So the MC converges to P(z).

In this section, only we use a change of notation, where the
training data probability distribution, previously represented
as p(x), is represented as P(x); this is to help make distinc-
tions between “natural system” probability distributions and
the learned distributions. Furthermore, note that p(z) is the
prior, while the distribution required for sampling P(x |z) is
P(z) such that

P(x) =
∫

P(x |z)P(z)dz ≈
∫

pθ (x |z)P(z)dz. (5)

P(z) =
∫

q̃φ(z|x)P(x)dx

=
∫ ∫

qφ(z|x̃)c(x̃ |x)dx̃P(x)dx . (6)

Lemma 1: P(z) is a stationary distribution for the
MC defined by the sampling process in (3).

For proof, see the Appendix.
Lemma 2: The MC defined by the transition operator

Tθ,φ(zt+1|zt) (4) is ergodic, provided that the corruption
process is additive Gaussian noise and that the adversarial
pair qφ(z|x̃) and dχ(z) are optimal within the adversarial
framework.

For proof, see the Appendix.
Theorem 1: Under the assumptions that pθ (x |z) = P(x |z)

and that the adversarial pair qφ(z|x) and dχ(x) are optimal,
the transition operator Tθ,φ(z(t+1)|z(t)) defines an MC whose
stationary distribution is P(z) = ∫

q̃φ(z|x)P(x)dx .
Proof: This follows from Lemmas 1 and 2. �

This sampling method uncovers the distribution P(z) on
which samples drawn from pθ (x |z) must be conditioned in
order to sample pθ (x). Assuming that pθ (x |z) = P(x |z), this
allows us to draw samples from P(x).

For completeness, we would like to acknowledge that there
are several other methods that use MCs during the training
of autoencoders [2], [21] to improve the performance. Our
approach for synthesizing samples using the DAAE is focused
on sampling only from trained models; the MC sampling is
not used to update model parameters.

VI. IMPLEMENTATION

The analyses of Sections IV and V were deliberately gen-
eral; they did not rely on any specific implementation choice to
capture the model distributions. In this section, we consider a
specific implementation of denoising AAEs and apply them to

CRESWELL AND BHARATH: DENOISING AAEs 973

the task of learning models for image distributions. We define
an encoding model that maps corrupted data samples to a
latent space Eφ(x̃) and Rθ (z) which maps samples from a
latent space to an image space. These, respectively, draw
samples according to the conditional probabilities qφ(z|x̃) and
pθ (x |z). We also define a corruption process C(x), which
draws samples according to c(x̃ |x).

The parameters θ and φ of models Rθ (z) and Eφ(x̃) are
learned under an autoencoder framework; the parameter φ is
also updated under an adversarial framework. The models are
trained using large data sets of unlabeled images.

A. Autoencoder

Under the regular (nondenoising) autoencoder framework,
Eφ(x) is the encoder, and Rθ (z) is the decoder. We used neural
networks for both the encoder and the decoder. Rectifying
linear units (ReLUs) were used between all intermediate layers
to encourage the networks to learn representations that capture
multimodal distributions. In the final layer of the decoder
network, a sigmoid activation function is used so that the
output represents the pixels of an image. The final layer of the
encoder network is left as a linear layer so that the distribution
of encoded samples is not restricted.

As described in Section IV-A, the autoencoder is trained to
maximize the log-likelihood of the reconstructed image given
the corrupted image. Although there are several ways in which
one may evaluate this log-likelihood, we chose to measure
pixelwise binary cross entropy between the reconstructed
sample x̂ and the original samples before corruption x . During
training, we aim to learn parameters φ and θ that minimize the
binary cross entropy between x̂ and x . The training process is
summarized by lines 1–9 in Algorithm 1 in the Appendix.

The elements of the vectors that output by the encoder may
take any real values, and so minimizing reconstruction error
is not sufficient to match either qφ(z|x̃) or q̃φ(z|x) to the
prior p(z). For this, parameter φ must also be updated under
the adversarial framework.

B. Adversarial Training

To perform adversarial training, we define the discriminator
dχ(z), described in Section III-A to be a neural network, which
we denote Dχ (z). The output of Dχ (z) is a “probability”
because the final layer of the neural network has a sigmoid
activation function, constraining the range of Dχ (z) to be
between (0, 1). Intermediate layers of the network have ReLU
activation functions to encourage the network to capture highly
nonlinear relations between z and the labels, {‘real’, ‘fake’}.

How adversarial training is applied depends on whether
q̃φ(z|x) or qφ(z|x̃) is being fit to the prior p(z). zfake refers
to the samples drawn from the distribution that we wish to
fit to p(z), and zreal samples drawn from the prior p(z). The
discriminator Dχ (z) is trained to predict whether the values
of z are “real” or “fake.” This may be achieved by learning
the parameters χ that maximize the probability of the correct
labels being assigned to zfake and zreal. This training procedure
is shown in Algorithm 1 on lines 14–16.

Drawing samples zreal involves sampling some prior distrib-
utions p(z), often a Gaussian. Now, we consider how to draw
fake samples zfake. How these samples are drawn depends on
whether qφ(z|x̃) (DAAE) or q̃φ(z|x) (iDAAE) is being fit to
the prior. Drawing samples zfake is easy if qφ(z|x̃) is being
matched to the prior, as these are simply obtained by mapping
corrupted samples though the encoder: zfake = Eφ(x̃).

However, if q̃(z|x) is being matched to the prior, we must
use Monte Carlo sampling to approximate zfake samples (see
Section IV-A1). The process for calculating zfake is given by
Algorithm 2 in the Appendix and detailed in Section IV-A1.

Finally, in order to match the distribution of zfake samples
to the prior p(z), adversarial training is used to update para-
meters φ while the holding parameters χ fixed. Parameter φ
is updated to minimize the likelihood that Dχ (·) correctly
classifies zfake as being “fake.” The training procedure is laid
out in lines 18 and 19 of Algorithm 1.

Algorithm 1 shows the steps taken to train an iDAAE.
To train a DAAE instead, all lines in Algorithm 1 are the same
except Line 11, which may be replaced by zfake = Eφ(x̃).

Algorithm 1 Algorithm for Training an iDAAE. This
Algorithm May Be Altered for DAAE Training, by
Replacing Line 11 With z f ake = Eφ(x̃).

1 # Draw a batch of samples from the training data:
2 x = {x0, x2, . . . , xN−1} ∼ p(x)
3 for k = 1 to NoEpoch do
4 x̃ = C(x) # Corrupt all samples
5 z = Eφ(x̃) # Encode all corrupted samples
6 x̂ = Rθ (z) # Reconstruct
7 # Minimize reconstruction cost
8 Lrec = − 1

N

∑N−1
i=0 (x̂i log xi + (1− x̂i) log(1− xi))

9 φ← φ − α∇φLrec

10 θ ← θ − α∇θLrec

11 # Match q̃φ(z|x) to p(z) using adversarial training
12 z f ake = approx_z(x) # Draw samples for q̃φ(z|x)
13 zreal ∼ p(z) # Draw samples from prior p(z)
14 # Train the discriminator:
15 Ldis = − 1

N

[∑N−1
i=0 log Dχ (zreali) +

16
∑N−1

i=0 log(1− Dχ (z f akei
))

]

17 χ ← χ − α∇χLdis

18 # Train the decoder to match the prior:
19 Lprior = 1

N

∑N−1
i=0 log(1− Dχ (z f akei))

20 φ← φ − α∇φLprior

21 end

C. Sampling

Although the training process for matching q̃φ(z|x) to p(z)
is less computationally efficient than matching qφ(z|x̃) to p(z),
it is very easy to draw samples when q̃φ(z|x) is matched to the
prior (iDAAE). We simply draw a random z(0) value from p(z)
and calculate x (0) = Rθ (z(0)), where x (0) is a new sample.
When drawing samples, parameters θ and φ are fixed.

If qφ(z|x̃) is matched to the prior (DAAE), an iterative
sampling process is needed in order to draw new samples

974 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

from p(x). This sampling process is described in Section V-B.
To implement this, sampling process is trivial. A random
sample z(0) is drawn from any distribution; the distribution
does not have to be the chosen prior p(z). New samples z(t+1)

are obtained by iteratively decoding, corrupting, and encoding
z(t), such that z(t+1) is given by: z(t+1) = Eφ(C(Rθ (z(t)))).

In Section IV, we evaluate the performance of denoising
AAEs on three image data sets: a synthetic color image data set
of tiny images (Sprites) [25], a complex data set of handwritten
characters [17], and color faces (CelebA) [19]. Some results
on handwritten digits (MNIST) are presented in the Appendix.
The denoising and nondenoising AAEs are compared for tasks,
such as reconstruction, generation, and classification.

VII. EXPERIMENTS AND RESULTS

A. Code Available Online

We make our PyTorch [23] code available at the following
link: https://github.com/ToniCreswell/pyTorch_DAAE.1

B. Data Sets

We evaluate our denoising AAE on three image data sets
of varying complexity. Here, we describe the data sets and
their complexity in terms of variation within the data set,
the number of training examples, and the size of the images.

1) Data Sets (Omniglot): The Omniglot data set is a
handwritten character data set consisting of 1623 categories
of character from 50 different writing systems, with only
20 examples of each character. Each example in the data
set is 105 × 105 pixels, taking values {0,1}. The data set
is split such that 19 examples from 964 categories make
up the training data set, while one example from each of
those 964 categories makes up the testing data set. The
20 characters from each of the remaining 659 categories make
up the evaluation data set. This means that experiments may be
performed to reconstruct or classify samples from categories
not seen during training of the autoencoders.

2) Data Sets (Sprites): The sprites data set is made up of
672 unique humanlike characters. Each character has seven
attributes, including hair, body, armor, trousers, arm, and
weapon type, as well as gender. For each character, there
20 animations consisting of 6–13 frames each. There are
between 120 and 260 examples of each character; however,
every example is in a different pose. Each sample is 60 × 60
pixels and is in color. The training, validation, and test data
sets are split to have frames from 500, 72, and 100 unique
characters each, with no two sets having frames containing
the same character.

3) Data Sets (CelebA): The CelebA data set consists of
250k images of faces in color. Though a version of the data
set with tightly cropped faces exists, we use the uncropped
data set. We use 1000 samples for testing and the rest for
training. Each example has dimensions 64 × 64 and a set

1An older version of our code in Theano available at
https://github.com/ToniCreswell/DAAE_ with our results presented in
iPython notebooks. Since this is a revised version of this paper and Theano
is no longer being supported, our new experiments on the CelebA data sets
were performed using PyTorch.

of labeled facial attributes, for example, “No Beard,” “Blond
Hair,” and “Wavy Hair.” This face data set is more complex
than the Toronto Face data set used by Makhzani et al. [20]
for training the AAE.

C. Architecture and Training

For each data set, we detail the architecture and training
parameters of the networks used to implement each of the
denoising AAEs. For each data set, several DAAEs, iDAAEs,
and AAEs are trained. In order to compare models trained on
the same data sets, the same network architectures, batch size,
learning rate, annealing rate, and size of latent code are used
for each.

Each set of models were trained using the same optimization
algorithm. The trained AAE [20] models act as a benchmark,
allowing us to compare our proposed DAAEs and iDAAEs.

1) Architecture and Training (Omniglot): The decoder,
encoder, and discriminator networks consisted of 6, 3, and 2
fully connected layers, respectively, each layer having
1000 neurons. We found that deeper networks than those
proposed by Makhazni et al. [20] (for the MNIST data
set) led to better convergence. The networks are trained for
1000 epochs, using a learning rate of 10−5, a batch size of 64,
and the Adam [13] optimization algorithm. We used
a 200-D Gaussian for the prior and additive Gaussian noise
with a standard deviation of 0.5 for the corruption process.
When training the iDAAE, we use M = 5 steps of Monte
Carlo integration (see Algorithm 2 in the Appendix).

2) Architecture and Training (Sprites): Both the encoder
and the discriminator are two-layer fully connected neural
networks with 1000 neurons in each layer. For the
decoder, we used a three-layer fully connected network with
1000 neurons in the first layer and 500 in each of the last
layers, and this configuration allowed us to capture complexity
in the data without overfitting. The networks were trained
for 5 epochs, using a batch size of 128, a learning rate
of 10−4, and the Adam [13] optimization algorithm. We used
an encoding 200 units, 200-D Gaussian for the prior, and
additive Gaussian noise with a standard deviation of 0.25 for
the corruption process. The iDAAE was trained with M = 5
steps of Monte Carlo integration.

3) Architecture and Training (CelebA): The encoder and
the decoder were constructed with convolutional layers,
rather than fully connected layers since the CelebA data
set is more complex than the Toronto face data set use by
Makhzani et al. [20]. The encoder and the decoder consisted of
four convolutional layers with a similar structure to that of the
deep convolutional generative adversarial network proposed
by Radford et al. [24]. We used a three-layer fully connected
network for the discriminator. Networks were trained for 100
epochs with a batch size of 64 using RMSprop with a learning
rate of 10−4 and a momentum of ρ = 0.1 for training the
discriminator. We found that using smaller momentum values
leads to more blurred images, and however, larger momentum
values prevented the network from converging and made
training unstable. When using Adam instead of RMSprop (on
the CelebA data set specifically), we found that the values in

CRESWELL AND BHARATH: DENOISING AAEs 975

the encodings became very large and were not consistent with
the prior. The encoding was made up of 200 units, and we used
a 200-D Gaussian for the prior. We used additive Gaussian
noise for the corruption process. We experimented with dif-
ferent noise levels σ between [0.1, 1.0], finding several values
in this range to be suitable. For our classification experiments,
we fixed σ = 0.25, and for synthesis from the DAAE,
to demonstrate the effect of sampling, we used σ = 1.0.
For the iDAAE, we experimented with M = 2, 5, 20, 50.
We found that M < 5 (when σ = 1.0) was not sufficient
to train an iDAAE. By comparing the histograms of encoded
data samples to histograms of the prior (see Fig. 2), for an
iDAAE trained with a particular M value, we are able to see
whether M is sufficiently larger or not. We found M = 5 to
be sufficiently large for most experiments.

D. Sampling DAAEs and iDAAEs

Samples may be synthesized using the decoder of a trained
iDAAE or AAE by passing latent samples drawn from the
prior through the decoder. On the other hand, if we pass
samples from the prior through the decoder of a trained
DAAE, the samples are likely to be inconsistent with the
training data. To synthesize more consistent samples using
the DAAE, we draw an initial z(0) value from any random
distribution—we use a Gaussian distribution for simplicity2—
and decode, corrupt, and encode the sample several times
for each synthesized sample. This process is equivalent to
sampling an MC where one iteration of the MC includes
decoding, corrupting, and encoding to get a z(t) value after
t iterations. The sample z(t) may be used to synthesize a novel
sample, which we call x (t). x (0) is the sample generated when
z(0) is passed through the decoder.

To evaluate the quality of some synthesized samples, we cal-
culated the log-likelihood Lθ of real (hold-out) samples under
the model [20]. This is achieved by fitting a Parzen window
to a number of synthesized samples. Further details of how
the log-likelihood is calculated for each data set are given
in Appendix G.

We expect initial samples x (0) values drawn from the DAAE
to have a lower (worse) log-likelihood than those drawn from
the AAE, and however, we expect MC sampling to improve
synthesized samples, such that x (t) for t > 0 should have
larger log-likelihood than the initial samples. It is not clear
whether x (t) for t > 0 drawn using a DAAE will be better
than samples drawn from an iDAAE. The purpose of these
experiments is to demonstrate the challenges associated with
drawing samples from denoising AAEs and show that our
proposed methods for sampling a DAAE and training iDAAEs
allow us to address these challenges. We also hope to show
that iDAAE and DAAE samples are competitive with those
drawn from an AAE.

1) Sampling (Omniglot): Here, we explore the Omniglot
data set, where we look at the log-likelihood score on both the
testing and evaluation data sets. Recall (see Section VII-B1)
that the testing data set has samples from the same classes as

2Which happens to be equivalent to our choice of prior

Fig. 3. Omniglot mean log-likelihood Lθ compared on the testing and
evaluation data sets. The training and evaluation data sets have samples
from different handwritten character classes. All models were trained using a
200-D Gaussian prior. The training and testing data sets have samples from
the same handwritten character classes. Error bars denote the standard error.

the training data set and the evaluation data set has samples
from different classes.

First, we discuss the results on the evaluation data set. The
results, as shown in Fig. 3, are consistent with what is expected
of the models. The iDAAE outperformed the AAE, with a
higher (better) log-likelihood. The initial samples drawn using
the DAAE had more smaller (worse) log-likelihood values than
samples drawn using the AAE. However, after one iteration of
MC sampling, the synthesized samples have increasing (better,
i.e., moving away from −∞) log-likelihood values than those
from the AAE. Additional iterations of MC sampling led to
worse results, possibly because synthesized samples tending
toward multiple modes of the data generating distribution,
appearing to be more like samples from classes represented
in the training data.

The Omniglot testing data set consists of one example of
every category in the training data set. This means that if
multiple iterations of MC sampling cause synthesized samples
to tend toward modes in the training data, the likelihood
score on the testing data set is likely to increase. The results
shown in Fig. 3 confirm this expectation; the log-likelihood
for the fifth sample is higher (better) than for the first
sample. These apparently conflicting results (in Fig. 3)—
whether sampling improves or worsens synthesized samples—
highlights the challenges involved with evaluating generative
models using the log-likelihood, discussed in more depth by
Theis et al. [29]. For this reason, we also show qualitative
results.

Fig. 4(a) shows an set of initial samples (x (0)) drawn from a
DAAE and samples synthesized after nine iterations (x (9)) of
MC sampling in Fig. 4(b), and these samples display good
variation, capturing multiple modes of the data generating
distribution.

2) Sampling (Sprites): In alignment with expectation,
the iDAAE model synthesizes samples with higher (better)
log-likelihood 2122 ± 5 than the AAE 2085 ± 5. The initial
image samples drawn from the DAAE model underperform
compared with the AAE model 2056± 5, and however, after
just one iteration of sampling, the synthesized samples have

976 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Fig. 4. Omniglot MC sampling. (a) Initial sample x(0) and (b) corresponding
samples x(9) after nine iterations of MC sampling. The chain was initialized
with z(0) ∼ N (0, I).

Fig. 5. CelebA iDAAE samples. (a) AAE (no noise) with ρ = 0.1.
(b) iDAAE (with noise) with ρ = 0.1, σ = 0.25, and M = 5.

Fig. 6. DAAE face samples σ = 1.0. (a) x(0). (b) x(5). (c) x(20).

higher log-likelihood than samples from the AAE. Results
also show that the synthesized samples drawn using the
DAAE after one iteration of MC sampling have higher log-
likelihood 2261± 5 than the samples drawn using either the
iDAAE or AAE models.

When more than one step of MC sampling is applied,
the log-likelihood decreases, in a similar way to results on
the Omniglot evaluation data set. This may be related to how
the training and test data are split; each data set has a unique
set of characters, so combinations seen during training will
not be presented in the testing data set. These results further
suggest that MC sampling pushes synthesized samples toward
the modes in the training data.

3) Sampling (CelebA): In Fig. 5, we compare the samples
synthesized using an AAE to those synthesized using an
iDAAE trained using M = 5 integration steps. Fig. 5(b) shows
the samples drawn from the iDAAE, which improve upon
those drawn from the AAE model.

In Fig. 6, we show samples synthesized from a DAAE
using the iterative approach described in Section V-B for
M = {0, 5, 20}. We see that the initial samples x (0) have
blurry artifacts, while the final samples x (20) are sharper and
free from the blurry artifacts.

When drawing samples from iDAAE and DAAE mod-
els trained on CelebA, a critical difference between the

two models emerges: samples synthesized using a DAAE have
good structure but appear to be quite similar to each other,
while the iDAAE samples have poorer structure but appear to
have variation. The lack of variation in the DAAE samples
may be related to the sampling procedure, which according to
theory presented by Alain and Bengio [1], would be similar
to taking steps toward the highest density regions of the
distribution (i.e., the mode), explaining why samples appear
to be quite similar.

When comparing DAAE or iDAAE samples to samples
from other generative models such as GANs [9], we may
notice that samples are less sharp. However, GANs often suffer
from “mode collapse”; this is where all synthesized samples
are very similar. The iDAAE does not suffer mode collapse
and does not require any additional procedures to prevent
mode collapse [26]. Furthermore, (vanilla) GANs do not offer
an encoding model. Other GAN variants, such as Bi-GAN
[6] and adversarially learned inference (ALI) [7], do offer
encoding models, but the fidelity of reconstruction is very poor.
The AAE, DAAE, and iDAAE models are able to reconstruct
samples faithfully. We will explore fidelity of reconstruction in
Section VII-E and compare with the state-of-the-art ALI that
has been modified to have improved reconstruction fidelity,
known as Adversarially Learned Inference With Conditional
Entropy (ALICE) [18].

We conclude this section on sampling by making the
following observations; samples synthesized using iDAAEs
outperformed AAEs on all data sets, where M = 5. It is
convenient that relatively small M yields improvement, as the
time needed to train an iDAAE may increase with M
(see Fig. 11 in the Appendix). We also observed that initial
samples synthesized using the DAAE are poor, and in all
cases, even just one iteration of MC sampling improves image
synthesis.

Finally, evaluating generated samples is challenging: log-
likelihood is not always reliable [29], and qualitative analysis
is subjective. For this reason, we provided both the quantitative
and qualitative results to communicate the benefits of introduc-
ing MC sampling for a trained DAAE and the advantages of
iDAAEs over AAEs.

E. Reconstruction

The reconstruction task involves passing a sample from
the test data set through the trained encoder and decoder to
recover a sample similar to the (uncorrupted) original. The
reconstruction is evaluated by computing the mean squared
error between the reconstruction and original samples.

We are interested in reconstruction for several reasons. The
first is that if we wish to use encodings for downstream
tasks, for example, classification, a good indication of whether
the encoding is representing the sample well is to check the
reconstructions. For example, if the reconstructed image is
missing certain features that were present in the original,
it may be that this information is not preserved in the encoding.
The second reason is that checking sample reconstructions is
also a method to evaluate whether the model has overfit to
training samples. The ability to reconstruct samples not seen
during training suggests that a model has not overfit. The final

CRESWELL AND BHARATH: DENOISING AAEs 977

TABLE I

RECONSTRUCTION SHOWS THE MEAN SQUARED ERROR FOR
RECONSTRUCTIONS OF CORRUPTED TEST DATA SAMPLES.
THIS TABLE SERVES TWO PURPOSES: 1) TO DEMONSTRATE

THAT IN MOST CASES, THE DAAE AND IDAAE ARE

BETTER ABLE TO RECONSTRUCT IMAGES COMPARED
WITH THE AAE AND 2) TO MOTIVATE WHY WE ARE

INTERESTED IN AAES, AS OPPOSED TO OTHER

GAN [9] RELATED APPROACHES. WE COMPARE
RECONSTRUCTION ERROR ON MNIST FOR THE

STATE-OF-THE-ART GAN VARIANT, ALICE [18],
DESIGNED TO IMPROVE RECONSTRUCTION

FIDELITY IN GAN-LIKE MODELS. THE
MNIST DATA SET AND EXPERIMENTS

ARE DESCRIBED IN THE APPENDIX

reason is to further motivate AAE, DAAE, and iDAAE models
as alternatives to GAN-based models that are augmented with
encoders [18], for downstream tasks that require good sample
reconstruction.

We expect that adding noise during training would both
prevent overfitting and encourage the model to learn more
robust representations; therefore, we expect that the DAAE
and iDAAE would outperform the AAE.

1) Reconstruction (Omniglot): Table I compares the recon-
struction errors of the AAE, DAAE, and iDAAE trained on
the Omniglot data set. The reconstruction errors for both the
iDAAE and the DAAE are less than the AAE. The results
suggest that using the denoising criterion during training helps
the network learn more robust features compared with the
nondenoising variant. The smallest reconstruction error was
achieved by the DAAE rather than the iDAAE; qualitatively,
the reconstructions using the DAAE captured small details
while the iDAAE lost some. This is likely to be related to the
multimodal nature of q̃φ(z|x) in the DAAE compared with the
unimodal nature of q̃φ(z|x) in an iDAAE.

2) Reconstruction (Sprites): Table I shows the reconstruc-
tion error on samples from the sprite test data set for models
trained on the sprite training data. In this case, only the iDAAE
model outperformed the AAE and the DAAE performed as
well as the AAE.

3) Reconstruction (CelebA): Table I shows the reconstruc-
tion error on the CelebA data set. We compare AAE, DAAE,
and iDAAE models trained with momentum ρ = 0.1, where
the DAAE and iDAAE have corruption σ = 0.1 and the
iDAAE is trained with M = 10 integration steps. We also
experimented with M = 5 but better results were obtained
using M = 10. While the DAAE performs similarly well to
the AAE, the iDAAE outperforms both. Fig. 7 shows examples
of reconstructions obtained using the iDAAE. Although the
reconstructions are slightly blurred, they are highly faithful,
suggesting that facial attributes are correctly encoded by the
iDAAE model.

Fig. 7. CelebA reconstruction with an iDAAE. (a) Original.
(b) Reconstructions.

TABLE II

OMNIGLOT CLASSIFICATION ON ALL 964 TEST SET

CLASSES AND ON 20 EVALUATION CLASSES

F. Classification

We are motivated to understand the properties of the repre-
sentations (latent encoding) learned by the DAAE and iDAAE
trained on the unlabeled data. A particular property of interest
is the separability, in latent space, between objects of different
classes. To evaluate separability, rather than training in a
semisupervised fashion [20], we obtain class predictions by
training an SVM on top of the representations, in a similar
fashion to that of Kumar et al. [16].

1) Classification (Omniglot): Classifying samples in the
Omniglot data set is very challenging: the training and testing
data sets consists of 946 classes, with only 19 examples of
each class in the training data set. The 946 classes make up
30 writing systems, where symbols between writing systems
may be visually indistinguishable. Previous work has focused
on only classifying 5, 15, or 20 classes from within a single
writing system [8], [17], [27], [32]; instead, we attempt to
perform classification across all 946 classes. The Omniglot
training data set is used to train SVMs [with radial basis
function (RBF) kernels] on encodings extracted from the
encoding models of the trained DAAE, iDAAE, and AAE
models. Classification scores are reported on the Omniglot
evaluation data set (see Table II).

Results show that the DAAE and iDAAE outperform the
AAE on the classification task. The DAAE and iDAAE also
outperform a classifier trained on encodings obtained by
applying principle component’s analysis (PCA) to the image
samples, while the AAE does not, further showing the benefits
of using denoising.

We perform a separate classification task using only
20 classes from the Omniglot evaluation data set (each class
has 20 examples). This second test is performed for two key
reasons: 1) to study how well autoencoders trained on only
a subset of classes can generalize as feature extractors for

978 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

classifiers of classes not seen during autoencoder training
and 2) to facilitate performance comparisons with previous
work [8]. A linear SVM classifier is trained on the 19 samples
from each of the 20 classes in the evaluation data set and tested
on the remaining one sample from each class. We perform
the classification 20 times, leaving out a different sample
from each class, in each experiment. The results are shown
in Table II. For comparison, we also show classification scores
when PCA is used as a feature extractor instead of a learned
encoder.

Results show that the DAAE model outperforms the AAE
model, while the iDAAE performs less well, suggesting that
features learned by the DAAE transfer better to new tasks than
those learned by the iDAAE. The AAE, iDAAE, and DAAE
models also outperform PCA.

2) Classification (CelebA): We perform a more extensive
set of experiments to evaluate the linear separability of
encodings learned on the celebA data set and compare to
the state-of-the-art methods, including the VAE [14] and the
β-VAE3 [10].

We train a linear SVM on the encodings of a DAAE
(or iDAAE) to predict labels for facial attributes, for example,
“Blond Hair” and “No Beard.” In our experiments, we com-
pare classification accuracy on 12 attributes obtained using
the AAE, DAAE, and iDAAE to previously reported results
obtained for the VAE [14] and the β-VAE [10], and these are
shown in Fig. 8. The results for the VAE and β-VAE were
obtained using a similar approach to ours and were reported
by Kumar et al. [16]. We used the same hyperparameters to
train all models and a fixed noise level of σ = 0.25, and the
iDAAE was trained with M = 10. Fig. 8 shows that the AAE,
iDAAE, and DAAE models outperform the VAE and β-VAE
models on most facial attribute categories.

To compare models more easily, we ask the question,
“On how many facial attributes does one model outperform
another?” in the context of facial attribute classification.
We ask this question for various combinations of model pairs,
and the results are shown in Fig. 9. Fig. 9(a) and (b), compar-
ing the AAE to DAAE and iDAAE, respectively, demonstrates
that for some attributes, the denoising models outperform the
nondenoising models. Moreover, the particular attributes for
which the DAAE and iDAAE outperform the AAE are (fairly)
consistent, and both DAAE and iDAAE outperform the AAE
on the (same) attributes: “Attractive,” “Blond Hair,” “Wearing
Hat,” and “Wearing Lipstick.” The iDAAE outperforms on an
additional attribute, “Arched Eyebrows.”

There are various hyperparameters that may be chosen to
train these models; for the DAAE and iDAAE, we may choose
the level of corruption, and for the iDAAE, we may addition-
ally choose the number of integration steps M used during
training. We compare attribute classification results for three
vastly different choices of parameter settings. The results are
presented as a bar chart in Fig. 10 for the DAAE. Additional
results for the iDAAE are shown in the Appendix (see Fig. 15).

3The β-VAE [10] weights the K L term in the VAE cost function with
β > 1 to encourage better organization of the latent space, factorizing the
latent encoding into interpretable, independent components.

Fig. 8. Facial Attribute Classification. Comparison of classification scores
for an AAE, DAAE, and iDAAE compared with the VAE [14] and
β-VAE [10]. A Linear SVM classifier is trained on encodings to demon-
strate the linear separability of representation learned by each model. The
attribute classification values for the VAE and β-VAE were obtained from
Kumar et al. [16].

Fig. 9. On how many facial attributes does one model outperform another?
For each chart (a)–(d), each portion shows the number of facial attributes that
each model outperforms the other model in the same chart. The number of
attributes is shown in brackets.

Figs. 10 and 15 show that the models perform well under
various different parameter settings. Fig. 10 suggests that
the model performs better with a smaller amount of noise
σ = {0.1, 0.25} rather than with σ = 1.0, and however,
it is important to note that a large amount of noise does not
“break” the model. These results demonstrate that the model
works well for various hyperparameters, and fine-tuning is not
necessary to achieve reasonable results (when compared with
the VAE for example). It is possible that further fine-tuning
may be done to achieve better results, and however, a full
parameter sweep is highly computationally expensive.

CRESWELL AND BHARATH: DENOISING AAEs 979

Fig. 10. DAAE Robustness to hyperparameters.

From this section, we may conclude that with the exception
of three facial attributes, AAEs and variations of AAEs are
able to outperform the VAE and β-VAE on the task of facial
attribute classification. This suggests that AAEs and their vari-
ants are interesting models to study in the setting of learning
linearly separable encodings. We also show that for a specific
set of several facial attribute categories, the iDAAE or DAAE
performs better than the AAE. This consistency suggests that
there are some specific attributes that the denoising variants
of the AAE learn better than the nondenoising AAE.

G. Tradeoffs in Performance

The results presented in this section suggest that both
the DAAE and the iDAAE outperform the AAE models
on most generation and some reconstruction tasks and sug-
gest that it is sometimes beneficial to incorporate denoising
into the training of AAEs. However, it is less clear which
of the two new models, DAAE or iDAAE, are better for
classification. When evaluating which one to use, we must
consider both the practicalities of training and for generative
purposes, the practicalities—primarily computational load—of
each model.

The integrating steps required for training an iDAAE means
that it may take longer to train than a DAAE (see Fig. 11 in
the Appendix). On the other hand, it is possible to perform
the integration process in parallel, provided that the sufficient
computational resource is available. Furthermore, once the
model is trained, the time taken to compute encodings for
classification is the same for both the models. Finally, results
suggest that using as few as M = 5 integrating steps during
training leads to an improvement in classification score. This
means that for some classification tasks, it may be worthwhile
to train an iDAAE rather than a DAAE.

For generative tasks, neither the DAAE nor the iDAAE
model consistently outperforms the other in terms of log-
likelihood of synthesized samples. The choice of model may

be more strongly affected by the computational effort required
during training or sampling. In terms of log-likelihood on the
synthesized samples, an iDAAE using even a small number
of integration steps (M = 5) during training of an iDAAE
leads to better quality images being generated, and similarly,
using even one step of sampling with a DAAE leads to better
generations.

Conflicting log-likelihood values of generated samples
between testing and evaluation data sets means that these
measurements are not a clear indication of how the number
of sampling iterations affects the visual quality of samples
synthesized using a DAAE. In some cases, it may be necessary
to visually inspect samples in order to assess the effects of
multiple sampling iterations (see Fig. 4).

VIII. CONCLUSION

We propose two types of DAEs, where a posterior is
shaped to match a prior using adversarial training. In the first,
we match the posterior conditional on corrupted data samples
to the prior; we call this model a DAAE. In the second,
we match the posterior, conditional on original data samples,
to the prior. We call the second model an iDAAE because
the approach involves using Monte Carlo integration during
training.

Our first contribution is the extension of AAEs to denois-
ing AAEs (DAAEs and iDAAEs). Our second contribution
includes identifying and addressing challenges related to syn-
thesizing data samples using the DAAE models. We propose
synthesizing data samples by iteratively sampling a DAAE
according to an MC transition operator, defined by the learned
encoder and decoder of the DAAE model, and the corruption
process used during training.

Finally, we present results on three data sets for three tasks
that compare representations of both DAAE and iDAAE to
AAE models. The data sets include: handwritten characters
(Omniglot [17]), a collection of humanlike sprite characters
(Sprites [25]), and a data set of faces (CelebA [19]). The tasks
are reconstruction, classification, and sample synthesis.

APPENDIX A
CLASSIFICATION RESULTS

Table III shows the numerical facial attribute classification
results, corresponding to Fig. 8.

APPENDIX B
TIME COMPARISON FOR VARIOUS M VALUES

Fig. 11 shows the average times taken to run a 100 training
iterations of batch size 128 for an iDAAE with different
numbers of integration steps M . Note that for M = 1,
the iDAAE is equivalent to the DAAE. Models were trained
on a Linux machine running Ubuntu 14.0, using an Nvidia
Tesla K80 GPU (11.4GB) and CUDA 8.0.61.

APPENDIX C
PROOFS

Lemma 1: P(z) is a stationary distribution for the
MC defined by the sampling process in (3).

980 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

TABLE III

FACIAL ATTRIBUTE CLASSIFICATION RESULTS. COMPARISON OF (%)
CLASSIFICATION SCORES FOR AN AAE, DAAE, AND IDAAE

COMPARED WITH THE VAE [14] AND β-VAE [10].
A LINEAR SVM CLASSIFIER IS TRAINED ON ENCODINGS

TO DEMONSTRATE THE LINEAR SEPARABILITY OF
REPRESENTATION LEARNED BY EACH MODEL.
THE ATTRIBUTE CLASSIFICATION VALUES FOR

THE VAE AND β-VAE WERE OBTAINED
FROM KUMAR et al. [16]

Fig. 11. Time take to run experiments for the iDAAE. M is the number of
integration steps. Note that an iDAAE with M = 1 is equivalent to a DAAE.
The batch size used in these experiments was 128.

Proof: Consider the case where z(0) ∼ P(z). x (0) ∼
pθ (x |z(0)) is from P(x), by (5). Following the sampling
process, x̃ (0) ∼ c(x̃ |x (0)), z(0) ∼ qφ(z|x̃ (0)), z(1) is also from
P(z), by (6). See Bengio et al. [4] for a related argument.
Therefore, P(z) is a stationary distribution of the MC defined
by (3). �

Lemma 2: The MC defined by the transition operator
Tθ,φ(zt+1|zt) (4) is ergodic, under the assumption that the
corruption process is additive Gaussian noise and that the
adversarial pair qφ(z|x̃) and dχ(z) are optimal within the
adversarial framework.

Proof: Consider X = {x : P(x) > 0}, X̃ = {x̃ : c(x̃ |x) >
0}, and Z = {z : P(z) > 0}, where Z ⊆ {z : p(z) > 0} and
X ⊆ X̃ . We make the following assumptions:

1) Assuming that pθ (x |z) is a good approximation of
the underlying probability distribution P(x |z), then
∀x j ∼ P(x) ∃ zi ∼ P(z), such that pθ (x j |zi) > 0.

2) Assuming that adversarial training has shaped the dis-
tribution of qφ(z|x̃) to match the prior p(z), then ∀zi ∼
p(z) ∃ x̃ j , such that qφ(zi |x̃ j) > 0. This holds because

Fig. 12. Examples of synthesized samples. Examples of randomly synthe-
sized data samples.

if not all points in p(z) could be visited, qφ(z|x̃) would
not have matched the prior.

1) suggests that every point in X may be reached from a point
in Z and 2) suggests that every point in Z may be reached
from a point in X̃ .

Under the assumption that c(x̃ |x) is an additive Gaussian
corruption process, then x̃i is likely to lie within a (hyper)
spherical region around xi . If the corruption process is suffi-
ciently large such that (hyper) spheres of nearby x samples
overlap, for xi and xi+m ∃ a set {xi+1, . . . , xi+m−1} such that
supp(c(x̃ |xi))∩supp(c(x̃ |xi+1)) �= ∅,∀i = 1, . . . , (m−1) and
where supp is the support.

Then, it is possible to reach any zi from any z j (including
the case j = i). Therefore, the chain is both irreducible and
positive recurrent.

To be ergodic, the chain must also be aperiodic: between
any two points xi and x j , there is a boundary, where x values
between xi and the boundary are mapped to zi , and the points
between x j and the boundary are mapped to z j . By apply-
ing the corruption process to x (t) = xi , followed by the
reconstruction process, there are always at least two possible
outcomes, because we assume that all (hyper) spheres induced
by the corruption process overlap with at least one other
(hyper) sphere: either x̃ (t) is not pushed over the boundary
and z(t+1) = zi remains the same, or x̃ (t) is pushed over
the boundary and z(t+1) = z j moves to a new state. The
probability of either outcome is positive, and so there is
always more than one route between two points, thus avoiding
periodicity provided that for xi �= x j and zi �= z j . Considering
the case where for xi �= x j and zi = z j , then it would not
be possible to recover both xi and x j using P(x |z), and so if
P(xi |z) > 0, then P(x j |z) = 0 (and vice versa), which is a
contradiction to 1). �

APPENDIX D
EXAMPLES OF SYNTHESIZED SAMPLES

See Fig. 12.

CRESWELL AND BHARATH: DENOISING AAEs 981

APPENDIX E
ALGORITHM FOR MONTE CARLO INTEGRATION

See Algorithm 2.

Algorithm 2 Drawing Samples From q̃φ(z|x)
1 function: approx_z({x0, x2, . . . xN−1})
2 for i = 0 to N − 1 do
3 ẑi+1 = []
4 for j = 1 to M do
5 x̃i, j = C(xi)
6 zi+1, j = Eφ(x̃ j)
7 end
8 ẑi+1 = 1

M

∑M
j=1 z j

9 end
10 return ẑ = {ẑ1, ẑ2 . . . ẑN }

APPENDIX F
MNIST RESULTS

A. Data Sets (MNIST)

The MNIST data set consists of gray-scale images of
handwritten digits between 0 and 9, with 50k training samples,
10k validation samples, and 10k testing samples. The train-
ing, validation, and testing data sets have an equal number
of samples from each category. The samples are 28 × 28
pixels. The MNIST data set is a simple data set with a
few classes and many training examples, making it a good
data set for proof-of-concept. However, because the data set
is very simple, it does not necessarily reveal the effects of
subtle, but potentially important, changes to algorithms for
training or sampling. For this reason, we consider two data
sets with greater complexity.

B. Architecture and Training (MNIST)

For the MNIST data set, we train a total of five models
detailed in Table IV. The encoder, decoder, and discrimi-
nator networks each have two fully connected layers with
1000 neurons each. For most models, the size of the encoding
is 10 units, and the prior distribution that the encoding is being
matched to is a 10-D Gaussian.

All networks are trained for 100 epochs on the training data
set, with a learning rate of 0.0002 and a batch size of 64. The
standard deviation of the additive Gaussian noise used during
training is 0.5 for all iDAAE and DAAE models.

An additional DAAE model is trained using the same
training parameters and networks as described earlier but
with a mixture of 10 2-D Gaussians for the prior. Each
2-D Gaussian with a standard deviation of 0.5 is equally
spaced with its mean around a circle of radius 4 units. This
results in a prior with 10 modes separated from each other
by large regions of very low probability. This model of the
prior is very unrealistic, as it assumes that MNIST digits
occupy distinct regions of image probability space. In reality,
we may expect two numbers that are similar to exist side-by-
side in image probability space, and for there to exist a smooth

TABLE IV

MODELS TRAINED ON MNIST. FIVE MODELS ARE TRAINED ON
THE MNIST DATA SET. CORRUPTION INDICATES THE STANDARD

DEVIATION OF GAUSSIAN NOISE ADDED DURING THE

CORRUPTION PROCESS c(x̃|x). PRIOR INDICATED THE

PRIOR DISTRIBUTION IMPOSED ON THE LATENT
SPACE. M IS THE NUMBER OF MONTE CARLO

INTEGRATION STEPS (SEE ALGORITHM 2
IN THE APPENDIX) USED DURING

TRAINING—THIS APPLIES

ONLY TO THE IDAAE

TABLE V

MNIST RECONSTRUCTION. RECON. SHOWS THE MEAN SQUARED ERROR

FOR RECONSTRUCTIONS OF CORRUPTED TEST DATA SAMPLES
ACCOMPANIED BY THE STANDARD ERROR. CORRUPTION IS THE

STANDARD DEVIATION OF THE ADDITIVE GAUSSIAN

NOISE USED DURING TRAINING AND TESTING

transition between handwritten digits. As a consequence of
this, this model is intended specifically for evaluating how well
the posterior distribution over latent space may be matched to
a mixture of Gaussians—something that could not be achieved
easily by a VAE [14].

C. Reconstruction (MNIST)

Table V shows the reconstruction error on samples from
the testing data set, for each of the models trained on the
MNIST training data set. Reconstruction error for the DAAE
and iDAAE trained with a 10-D Gaussian prior does not
outperform the AAE. However, the reconstruction task for the
AAE model was less challenging than that of the DAAE and
iDAAE models because samples were not corrupted before
the encoding step. The best model for reconstruction was
the iDAAE with M = 5, increasing M to 25 led to worse
reconstruction error, as reconstructions tended to appear more
like mean samples.

Reconstruction error for the DAAE trained using a
2-D mixture of 10 Gaussians underperformed compared with
the rest of the models. All reconstructions looked like mean
images, which may be expected given the nature of the prior.

D. Sampling (MNIST)

To calculate the log-likelihood of samples drawn from
DAAE, iDAAE, and AAE models trained on the MNIST data

982 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

TABLE VI

MNIST LOG-LIKELIHOOD Lθ . TO CALCULATE THE LOG-LIKELIHOOD Lθ

OF A MODEL pθ (x), A PARZEN WINDOW WAS FIT TO 104 GENERATED
SAMPLES AND THE MEAN LOG-LIKELIHOOD WAS REPORTED FOR

THE TESTING DATA SET. THE BANDWIDTH USED FOR

THE PARZEN WINDOW WAS DETERMINED USING
A VALIDATION SET. THE TRAINING, TEST, AND

VALIDATION DATA SETS HAD

DIFFERENT SAMPLES

set, a Parzen window is fitted to 1 × 104 generated samples
from a single trained model. The bandwidth for construct-
ing the Parzen window was selected by choosing one of
10 values, evenly space along a log axis between −1 and 0,
that maximizes the likelihood on the validation data set.
The log-likelihood for each model was then evaluated on the
test data set.

Table VI shows the log-likelihood on the test data set for
samples drawn from models trained on the MNIST train-
ing data set. First, we will discuss models trained with a
10-D Gaussian prior. The best log-likelihood was achieved
by the iDAAE with M = 5. Synthesized samples generated
by MC sampling from the DAAE model caused the log-
likelihood to decrease. This may be because the samples
tended toward mean samples and dropping modes, causing the
log-likelihood to decrease. Initial samples and those obtained
after five iterations of sampling are shown in Fig. 13. The
samples in 13(d) are clearer than in 13(c). Although mode
dropping is not immediately apparent, note that the digit 4 is
not present after five iterations.

Now, we consider the DAAE model trained with a 2-D,
10-Gaussian mixture model prior. Samples drawn from the
prior are shown in Fig. 14(a). The purpose of this experiment
was to show the effects of MC sampling, where the distribution
from which initial samples of z0 are drawn is significantly
different to the prior. Samples of z0 were drawn from a normal
distribution and passed through the decoder of the DAAE
model to produce initial image samples [see Fig. 14(c)]. A fur-
ther nine steps of MC sampling were applied to synthesize the
samples shown in Fig. 14(d). As expected, the initial image
samples do not look like MNIST digits, and the MC sampling
improves samples dramatically. Unfortunately, many of the
samples appear to correspond to the samples at modes of
the data distribution. In addition, several modes appear to be
missing from the model distribution. This may be attributed
to the nature of the prior since we did not encounter this
problem to the same extent when using a 10-D Gaussian prior
(see Fig. 13).

Synthesizing MNIST samples is fairly trivial since there are
many training examples and a few classes. For this reason, it is
difficult to see the benefits of using DAAE or iDAAE models

Fig. 13. MNIST MC sampling with 10-D Gaussian prior. (a) Two dimensions
of the 10-D Gaussian prior used to train the DAAE. (b) Samples drawn
from qφ(z|x̃), projected into 2-D space, and color coded by the digit
labels. (c) Initial samples x(0) generated from the prior illustrated by (a).
(d) Corresponding samples after five iterations of MC sampling. Notice how
the highlighted “1” changes to a “2” after five iterations of MC sampling.

Fig. 14. MNIST MC sampling. (a) 2-D Gaussian mixture prior used to train
a DAAE. (b) Samples drawn from qφ(z|x̃) and color coded by the digit labels.
(c) Initial sample x(0) generated by a normal distribution. (d) Corresponding
samples generated after nine further iterations of MC sampling.

compared with AAE models. Now, we focus on the two more
complex data sets, Omniglot and Sprites. We find that iDAAE
models and correctly sampled DAAE models may be used to
synthesize samples with higher log-likelihood than samples
synthesized using an AAE.

1) Classification (MNIST): The MNIST data set consists
of ten classes [0, 9], and the classification task involves

CRESWELL AND BHARATH: DENOISING AAEs 983

TABLE VII

MNIST CLASSIFICATION: SVM CLASSIFIERS WITH RBF KERNELS WERE
TRAINED ON ENCODED MNIST TRAINING DATA SAMPLES. THE

SAMPLES WERE ENCODED USING THE ENCODER OF THE

TRAINED AAE, DAAE, OR IDAAE MODELS.
CLASSIFICATION SCORES ARE GIVEN FOR

THE MNIST TEST DATA SET

Fig. 15. iDAAE—Robustness to hyperparameters.

correctly predicting a label in this interval. For the MNIST
data set, the SVM classifier is trained on encoded samples
from the MNIST training data set and evaluated on encoded
samples from the MNIST testing data set; results are shown
in Table VII.

First, we consider the results for DAAE, iDAAE, and AAE
models trained with a 10-D Gaussian prior. Classifiers trained
on encodings extracted from the encoders of trained DAAE,
iDAAE, or AAE models outperformed classifiers trained on
PCA of image samples. Classifiers trained on the encodings
extracted from the encoders of learned DAAE and iDAAE
models outperformed those trained on the encodings extracted
from the encoders of the AAE model.

The differences in classification score for each model on the
MNIST data set are small; this might be because it is relatively
easy to classify MNIST digits with very high accuracy [28].

APPENDIX G
DETAILS FOR CALCULATING LOG-LIKELIHOOD

A. Omniglot

To calculate log-likelihood of samples, a Parzen window
was fit to 1× 103 synthesized samples, where the bandwidth
was determined on the testing data set in a similar way to that
in Appendix F-D. The log-likelihood was evaluated on both the

evaluation data set and the testing data set. To compute the log-
likelihood on the of the testing data set, a Parzen window was
fit to a new set of synthesized samples, different to those used
to calculate the bandwidth. The results are shown in Fig. 3.

B. Sprites

To calculate log-likelihood of samples, a Parzen window
was fit to 1 × 103 synthesized samples. The bandwidth was
set as previously described in Appendix F-D; we found the
optimal bandwidth to be 1.29.

APPENDIX H
IDAAE ROBUSTNESS TO HYPERPARAMETERS

See Fig. 15.

ACKNOWLEDGMENT

The authors would like to thank K. Arulkumaran for inter-
esting discussions and managing the compute cluster on which
many experiments were performed. They would like to thank
Dr. L. Hadjilucas for discussions on the SVM results. They
would also like to thank N. Pawlowski and M. Rajchl for
additional help with cluster access.

REFERENCES

[1] G. Alain and Y. Bengio, “What regularized auto-encoders learn from
the data-generating distribution,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 3563–3593, 2014.

[2] P. Bachman and D. Precup, “Variational generative stochastic networks
with collaborative shaping,” in Proc. 32nd Int. Conf. Mach. Learn., 2015,
pp. 1964–1972.

[3] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[4] Y. Bengio, É. Thibodeau-Laufer, G. Alain, and J. Yosinski, “Deep
generative stochastic networks trainable by backprop,” in Proc. 31st Int.
Conf. Mach. Learn., vol. 32, 2014, pp. II-226–II-234.

[5] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising
auto-encoders as generative models,” in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 899–907.

[6] J. Donahue, P. Krähenbühl, and T. Darrell. (2016). “Adversarial feature
learning.” [Online]. Available: https://arxiv.org/abs/1605.09782

[7] V. Dumoulin et al. (2016). “Adversarially learned inference.”
[Online]. Available: https://arxiv.org/abs/1606.00704

[8] H. Edwards and A. Storkey. (2016). “Towards a neural statistician.”
[Online]. Available: https://arxiv.org/abs/1606.02185

[9] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[10] I. Higgins et al., “β-VAE: Learning basic visual concepts with a
constrained variational framework,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2017.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[12] D. J. Im, S. Ahn, R. Memisevic, and Y. Bengio, “Denoising criterion for
variational auto-encoding framework,” in Proc. 31st AAAI Conf. Artif.
Intell., 2017, pp. 2059–2065.

[13] D. P. Kingma and L. J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2014.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[16] A. Kumar, P. Sattigeri, and A. Balakrishnan. (2017). “Variational
inference of disentangled latent concepts from unlabeled observations.”
[Online]. Available: https://arxiv.org/abs/1711.00848

984 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 4, APRIL 2019

[17] B. M. Lake, R. Salakhutdinov, and J. B. Tenebaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[18] C. Li et al., “Alice: Towards understanding adversarial learning for joint
distribution matching,” in Proc. Neural Inf. Process. Syst. (NIPS), 2017,
pp. 5495–5503.

[19] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Proc. Int. Conf. Comput. Vis. (ICCV), 2015, pp. 3730–3738.

[20] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and
B. Frey. (2015). “Adversarial autoencoders.” [Online]. Available:
https://arxiv.org/abs/1511.05644

[21] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and
J. Yosinski. (2016). “Plug & play generative networks: Conditional
iterative generation of images in latent Space.” [Online]. Available:
https://arxiv.org/abs/1612.00005

[22] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Sampling
(Markov Chain Convergence). Harrisburg, PA, USA: Harrisburg Univ.
Sci. Technol., 2005, ch. 1, p. 5.

[23] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. Adv.
Neural Inf. Process. Syst., 2017.

[24] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2016.

[25] S. E. Reed, Y. Zhang, Y. Zhang, and H. Lee, “Deep visual analogy-
making,” in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 1252–1260.

[26] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen. (2016). “Improved techniques for training GANs.”
[Online]. Available: https://arxiv.org/abs/1606.03498

[27] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap.
(2016). “One-shot learning with memory-augmented neural networks.”
[Online]. Available: https://arxiv.org/abs/1605.06065

[28] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for
convolutional neural networks applied to visual document analysis,” in
Proc. ICDAR, vol. 3, Aug. 2003, pp. 958–962.

[29] L. Theis, A. van de Oord, and M. Bethge, “A note on the evaluation of
generative models,” in Proc. Int. Conf. Learn. Represent., 2015.

[30] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
ACM 25th Int. Conf. Mach. Learn., 2008, pp. 1096–1103.

[31] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Dec. 2010.

[32] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 3630–3638.

Antonia Creswell received the M.Eng. degree
in biomedical engineering from Imperial College
London, London, U.K., where she is currently pur-
suing the Ph.D. degree with the Department of
Bioengineering.

Anil Anthony Bharath received the B.Eng. degree
in electronic and electrical engineering from Univer-
sity College London, London, U.K., in 1988, and
the Ph.D. degree in signal processing from Imperial
College London, London, in 1993.

He was an Academic Visitor with the Sig-
nal Processing Group, University of Cambridge,
Cambridge, U.K., in 2006. He is a Co-Founder of
Cortexica Vision Systems, London. He is currently
a Reader with the Department of Bioengineering,
Imperial College London, where he is also a fellow

of the Data Science Institute. His current research interests include deep
architectures for visual inference.

Dr. Bharath is a fellow of the Institution of Engineering and Technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

