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Robot Learning System Based on Adaptive Neural
Control and Dynamic Movement Primitives

Chenguang Yang™, Senior Member, IEEE, Chuize Chen, Wei He™, Senior Member, IEEE,

Rongxin Cui, Member, IEEE, and Zhijun Li

Abstract—This paper proposes an enhanced robot skill
learning system considering both motion generation and trajec-
tory tracking. During robot learning demonstrations, dynamic
movement primitives (DMPs) are used to model robotic motion.
Each DMP consists of a set of dynamic systems that enhances
the stability of the generated motion toward the goal. A Gaussian
mixture model and Gaussian mixture regression are integrated
to improve the learning performance of the DMP, such that
more features of the skill can be extracted from multiple
demonstrations. The motion generated from the learned model
can be scaled in space and time. Besides, a neural-network-based
controller is designed for the robot to track the trajectories
generated from the motion model. In this controller, a radial
basis function neural network is used to compensate for the effect
caused by the dynamic environments. The experiments have been
performed using a Baxter robot and the results have confirmed
the validity of the proposed methods.

Index Terms—Dynamic movement primitives (DMPs),
Gaussian mixture model (GMM), neural network (NN), robot
learning.

I. INTRODUCTION

ECENTLY, robots have been widely applied in various

fields, especially in manufacturing. Adaptable robots
are required due to the increasingly fast updates of the
manufactured products. Hence, it is necessary to develop
methods for enhancing robot learning. Robot learning from
demonstration (LfD) is a valuable technique to simplify the
strategy of robot learning [1], [2]. The human tutor shows the
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way to complete a task and then the robot learns, via motion
modeling, to reproduce the skill. Therefore, it is essential to
consider how to model motions effectively.

The dynamic system (DS) is a powerful tool for motion
modeling [3]. Compared to the conventional methods,
e.g., interpolation techniques, DS offers a flexible solu-
tion to model stable and extensible trajectories. In addition,
the motion encoded with the DS is robust to perturba-
tions. An approach based on DS was used to learn human
motions [4], where the unknown mapping of the DS was
approximated using a neural network (NN) called extreme
learning machine [5]. The learned model showed adequate
stability and generalization. However, this DS-based method
required considerable demonstration data for training. In con-
trast, the dynamic movement primitive (DMP), which is based
on a nonlinear DS [6], only requires one demonstration to
model motion; here, the DMP models the movement trajectory
as a spring-damper system integrated with an unknown func-
tion to be learned. The inherent property of the spring-damper
system enhances the stability and robustness (to perturbations)
of the generated motion.

DMPs have been often employed to solve robot learning
problems because of their flexibility. In [7], DMPs were
modified to model fast movement inherent in hitting motion.
Another study used reinforcement learning to combine DMP
sequences so that the robot could perform more complex
tasks [8]. While both these studies employed multiple DMPs
to compose a complete action, another study [9] used multiple
DMPs to model style-adaptive trajectory, where the style of the
generated motion could be changed by modulating the weight
parameters that were coupled with the goals. As mentioned
in [10], optimal demonstration is difficult to obtain and multi-
ple demonstrations can encode the ideal trajectory implicitly.
Therefore, we consider integrating multiple demonstrations
into one DMP model in this paper.

Probabilistic approaches have shown good performance in
motion encoding [11]-[13]. The inherent variability of the
demonstrations can be extracted, and thus, more features
of the demonstrations can be preserved. In [14], an LfD
framework using a Gaussian mixture model (GMM) and a
Bernoulli mixture model was used to extract the features
from multiple demonstrations. A new motion was generated
through Gaussian mixture regression (GMR). In contrast with
the above-mentioned methods, GMM combined with GMR
can provide additional motion information for robots when
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Fig. 1. Block diagram of the proposed system.

learning from multiple demonstrations. In [3], a learn-
ing approach named stable estimator of dynamical sys-
tems (SEDS) was proposed for motion modeling, where an
unknown function was modeled using GMR. DS-GMR is
another method that combines the DS with the statistical
learning approach [15]. Both methods exploit the robustness
and generalization capability of the DS as well as the excellent
learning performance of the probabilistic methods.

To take advantage of the performance of the DS and
the probabilistic approach, we integrate DMP and GMM
into our proposed system, where the nonlinear function of
DMP is modeled with GMM and its estimate is retrieved
through GMR. This modification enables the robot to extract
more features of the motions from multiple demonstrations
and to generate motions that synthesize these features. The
original DMP was learned using the locally weighted regres-
sion (LWR) [16], and the locally weighted projection regres-
sion [17] was employed to optimize the bandwidth of each
kernel of LWR. Despite the added complexity of the learning
procedure, these methods enable the DMP to learn from
only one demonstration. Reservoir computing [18] is another
method used to approximate the nonlinear function, but its
computing efficiency is less than that of GMR.

The imitation performance of robots also depends on the
accuracy of the trajectory tracking controller that involves the
robot dynamics. Generally, a model-based control performs
better if the model is accurate enough [19]. However, an accu-
rate dynamic model of a manipulator cannot be obtained in
advance due to some uncertainties, e.g., unknown payload. The
approximation-based controllers have been designed to over-
come such uncertainties. They utilize function approximation
tools to learn the nonlinear characteristics of the robot dynam-
ics. NNs have been widely used in controller design because
of their approximation ability [20]-[22]. In [23], the backprop-
agation NN (BPNN) was utilized to approximate the unknown
nonlinear function in the model of the vibration suppression
device, while in [24], the radial basis function NN (RBFNN)
was utilized to approximate the unknown nonlinearity of the
telerobot system. Compared to BPNN, the learning procedure
of RBFNN is based on local approximation; thus, RBFNN
can avoid getting stuck in the local optimum and has a faster

convergence rate. Besides, the number of hidden layer units of
RBFNN can be adaptively adjusted during the training phase,
making NN more flexible and adaptive. Therefore, RBFNN is
more appropriate for the design of real-time control.

In this paper, an NN-based controller is designed to guaran-
tee the tracking performance of the manipulator in joint space,
where RBFNN is employed to approximate the nonlinear
functions of the robot dynamics. The stability of the controller
is guaranteed by the Lyapunov stability theory. As shown
in Fig. 1, the robot learning system consists of the motion
generation component and the trajectory tracking component.
The former utilizes the motion model based on DMP to learn
and generalize motion skills; these, in turn, are represented
as a set of trajectories in joint space. The latter employs the
adaptive controller to track the trajectories generated from the
former, and RBFNN is incorporated to compensate for the
uncertain dynamics.

Here, we present a novel and complete robot learning
framework that considers the performance of both motion gen-
eration and trajectory tracking. The SEDS presented in [3] is
similar to our DMP-based model. However, the constraints that
guarantee the stability of SEDS are derived by the Lyapunov
theory that increases the complexity of the learning. In contrast
to [3] and [25] which considered only motion modeling, our
system is enhanced by an NN-based controller and the effect
caused by the dynamic environments can be compensated by
neural learning. This design enables the robot to perform the
learned motions steadily and more robustly in the real world.

The remainder of this paper is organized as follows.
Section II introduces the DMP and its relevant characteristics.
The learning process of the motion model is introduced in
Section III. In Section IV, the concept of RBFNN is intro-
duced, and the controller using RBFNN is designed with the
proof of stability. The experiments are presented in Section V.
Section VI concludes this paper.

II. BASIC MODEL OF DISCRETE MOVEMENT

Motion skills can be classified into point-to-point and
periodic movements in accordance with brain activation [1].
While using DS to model motions, these two types corre-
spond to point attractor and limit cycle attractor, respectively.
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Fig. 2. (a) Accelerations of the original spring-damper part in (1) and the
modified one in (4). (b) Evolutions of the systems (1) and (4) without an
external forcing term (f = 0).

In this paper, we focus on point-to-point movements and
use the discrete DMP as the basic motion model, which is
composed of a spring-damper system and a nonlinear function.

DMP can be employed to model motions in joint
space or Cartesian space. The motions in both spaces are
regarded as a set of 1-D trajectories, and each trajectory is
represented as one DMP model. For concision, we only discuss
the modeling problem of the motions in joint space.

The DMP model is defined as follows [26]:

Tsél = 62
1,6 =110y — &) —héE + O —00)Ef(E) (1)
1.8 = —a1 (2

where & € R represents the joint position and & /7, € R and
& /15 € R denote the joint velocity and the joint acceleration,
respectively. &3 > 0 is regarded as a phase variable that
is exponentially decaying. [y, l», and «a; are the positive
constants. ¢ is the start position, ¢, is the goal, and (8, — tp)
serves as the spatial scaling term. z; > 0 is the time constant.
The nonlinear term f : R — R is assumed to be a continuous
bounded function in terms of &3.

The system (1) is a spring-damper system perturbed by a
nonlinear term. Generally, we choose /] = l% /4 to make the
former critically damped. The initial state of system (2) can
be chosen as &y = 1. The stability of the whole model is clear;
the nonlinear term will converge to zero since the state &3 will
converge to zero and the nonlinear function f(¢&3) is bounded.
Then, the system (1) becomes a stable spring-damper system,
whose state converges to the goal 0.

The large initial acceleration of the original spring-damper
part [Fig. 2(a)] is not desirable for robots in practice. More-
over, the large variation in the acceleration will lead to a
complex external forcing term, which is adverse to the learning
of the model. Therefore, we replace the goal ¢, in the spring-
damper part with the state of another exponential decay
system [27]

¢y = —0a (s — ) A3)

where o, is a positive constant and the initial value of &, is set
as 6. Consequently, the system (1) is rewritten as follows [27]:

Tséél = 52
1.6 =1(& — &) —hé + 0, —00)5 (&), ()
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Fig. 3. (a) Actual acceleration of the spring-damper part and the expected
acceleration to reproduce the demonstration (a sine curve). (b) Difference
between two accelerations in (a), which is compensated by the nonlinear
function f(&3).

As shown in Fig. 2(a), the acceleration of the modified system
becomes moderate. The evolution of the system (4) with f =0
is shown in Fig. 2(b). Since the state &4 will converge to 6,,
the modified model is still stable toward the goal.

The DMP model is chosen as the basic motion model
because of its concise formulation and excellent generaliz-
ability. Since the DMP model is always stable toward #,,
the motion modeled can be scaled spatially by modulating 0,
and 6y without destabilizing the model. The spatial scaling
term (6, — 6p) ensures that the profile of the motion is
maintained and its duration can be changed by modulating .

III. LEARNING OF THE MOTION MODEL

A. Problem Description

DMP assumes that the motion is generated from the
nonlinear DS (4), whose uncertain part is the nonlinear
function f(&3). Therefore, the learning problem of DMP is
how to approximate this function, which compensates for
the difference between the actual acceleration of the spring-
damper part and the expected acceleration to reproduce the
demonstrated movement (Fig. 3). Assuming that a 1-D demon-
stration trajectory is captured and encoded as a time series
{0:,0,,0,) | t = 1,2,...,T}, where 6;, 0,, and 0, describe
the position, velocity, and acceleration of the trajectory at time
step ¢, respectively, and T is the duration of the demonstration,
the expected value of f at time step 7 is computed using the
following equation [26]:

f= TS2 O — (11 (Eap — 0) — Lty
! Or — 01)E3,

(5)

where &3, and &4, are the values of &3 and & at time
step ¢, respectively. Equation (5) is an inverse process of the
reproduction. Since f(&3) is a function of &3, we can exploit
the data set {(&3,, f;) |t = 1,2,...,T} to approximate the
function.

In the original DMP model, the function f(&3) is defined
as [26]

Ns
F&) =D rigi(&) (6)

i=1
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Fig. 4. (a) Demonstrations. (b) Data set {{;, f,} calculated from (a). (c) Data
set is encoded with the GMM. (d) Estimate of the function f(&3) is retrieved
using the GMR.

where y; € R is the weight of ¢;(s) and ¢;(s) is the
normalized Gaussian basis function, defined as

exp (—hi(& — ¢i)?)
> exp(—hj(& —cj)?)

where h; > 0 is the width and ¢; > O is the center of the
ith Gaussian functions; N is the number of the Gaussian
functions. With this formulation, the LWR can be employed to
learn the model. Nevertheless, the solution is only applicable
to a single demonstration, and multiple demonstrations will
be encoded as multiple independent DMP models. Thus,
the features of the demonstrations of multiple specific tasks
cannot be integrated into one DMP model. To solve this
problem, GMM is introduced to model the intermediate data,
and then GMR is employed to estimate the nonlinear function.

$i(&3) = )

B. Learning From Multiple Demonstrations

Given N; demonstrations {(Ht,,,,é,,n,é,,n) | + =
,2,...,T;n = 1,2,...,Ng} of a specific task,
we can obtain the data set {(&3,, fin) | ¢ = 1,2,...,T;
n=1,2,..., Ny} using (5). Then, we need to take advantage
of the whole data set to estimate the function f(&3) of one
DMP model. The learning procedures can be broken down
into two steps, as shown in Fig. 4. For concision, we use
{&, fo} to denote the data set.

Step 1: Use GMM to encode the data set {&, f,}. This
model assumes that the data set is generated from multiple
Gaussian distributions. The joint probability density of GMM
is defined as follows [28]:

K
P&, fo) = D aN(&, for ks Zk) ®)
k=1
where
K
> =1 )
k=1

and

Zéifu,k:| (10)

ek Xk
= ! N E =
Hx I:ﬂfo,k:| ‘ [Zfofi,k Lok
and A is the Gaussian probability distribution defined as
follows:

N(§i9 fO’ lLtk’ Zk)

_expl=0.5&, fol =) = (&, fol” = )] an
27 /1 2k '
Here, K is the number of Gaussian distributions, a; > 0 is
the weight, and ux € R**! and X; € R**? denote the mean
and the covariance matrix of the kth Gaussian component.
ak, Uk, and X are the parameters to be learned. We can
estimate their values and learn GMM from the given data set
using the following procedures.

1) Parameter Initialization: The expectation—-maximization
(EM) algorithm used for parameter estimation is sensitive to
the initial values. Hence, the k-means algorithm [29] is utilized
to initialize the unknown parameters oy, ur, and Xj. This
algorithm divides the data set into multiple sets and aims to
find a partition D = {Dq, D3, ..., Dk} to minimize the sum
of the squared deviation of each set [29]

K
D= argminz Z [lx — mk||2
D

k=1 xeDy

(12)

where x = [x1, x2]7 € R%*1 is the data vector corresponding
to [&3,, f,,n]T, mi € R**! is the mean of the data distributed
in Dy, and Ule Dy = {&, fo}. The algorithm repeats the
assignment and update steps until that partition no longer
changes. Then, the initial values of the unknown parameters
are assigned as [14]

. (13)

K
Zi=1 |Di|
lexzi|
EX2 xeDy

Uk = mp, Xk = [

2) Parameter Estimation: The EM algorithm is an appro-
priate method for estimating the parameters of GMM. This
algorithm aims to find parameters 7y = (ax, r, k) SO as to
maximize the log-likelihood function [30]

)P

Exle

(14)

#x = argmaxlog(p(&, folmi)). (15)
Tk

3) Model Selection: The number of the Gaussian compo-
nents will affect the fitting performance of GMM. GMM can
represent the data set better if more components are selected,
but it may lead to overfitting and too many parameters.
A compromise is reached using the Bayesian information
criterion (BIC) to determine the number of components. The
BIC score is defined as follows [14]:

Sprc(K) = —=2log(p(&, folmik)) + (6K — 1) log(Na)

where N is the size of the data set and K represents the
number of components. The number of components is finally
selected as K, = argmin Sp;c(K), and the upper bound of
K5 is determined by the designer.

(16)
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Step 2: Use GMR to estimate the function f(&3). According
to [28], the probability density (8) can be rewritten as

K
i, fo) = ZakN(fo§ ik, 62 )N (&5 pek, Tex) (A7)

k=1
where
(&) = gk + Zhax(Ean) (G — uer) (18)
and
8¢ = Zhok = Lpak(Za0)” Za gk (19)
The marginal density of & is calculated as follows [28]:
p@) = [ pG. tdt,
K
= > aN@&: ue ks Zak)- (20)
k=1

According to (17) and (20), the conditional probability density
of f, given & is

K
P(fol&) = D BN (for fixs 67)

(21)
k=1
where
N (&5 pee ks e k)
Pr(&) = . (22)
T S KGN G gk Tak)
Then, we can obtain the GMR function as follows [28]:
K
R(&) = E(fol&) = D A& (&) (23)
k=1
In addition, the estimate of function f(&3) is
R K
f&) =D A& (). (24)
k=1

In comparison to (6), this estimate is multiplied by an
additional term 7%(&3) in form; thus, this method enables
the motion model to extract more features from multiple
demonstrations.

IV. ADAPTIVE NEURAL CONTROL
OF THE ROBOT MANIPULATOR

In practice, robot manipulators have to interact with various
payloads. To account for the influence of the unknown pay-
load on the manipulator dynamics, an NN-based controller is
designed to track the reference trajectory generated from the
motion model in joint space.

A. Dynamics Description

The dynamics of a robot manipulator with rn-link is
described as follows:

M©@)6 + C©0,0)0 + Go(®) + 1, =1 (25)

where @ € R", 0 € R", and § € R" are the joint position,
joint velocity, and joint acceleration, respectively. 7 is the
control torque and 7, is the torque caused by the payload.
M (@) € R denotes the inertia matrix, which is symmetric
positive definite. C(0, ) € R"™ " represents the Coriolis and
centripetal torque matrix and Go(f) € R" is the gravity vector.
According to [31], the matrices M(6) and C (8, §) satisfy

sT(M —2C)s =0, Vs e R" (26)

B. RBFNN

RBFNN is an effective tool to approximate any continuous
function g : R™ — R as follows [32]:

g() = WIS@) +e@@), VI e€Qy (27)

where 9 € Qg <C R™ denotes the input vector,
W = [w,o,...,onv]T € RN is the ideal NN weight
vector, and N is the number of NN nodes. The approximation
error ¢(19) is bounded. S(¥) = [s1(F), s2(9), ..., sy ()]
is a nonlinear vector function, where s;(}) is defined as the
Gaussian function

W —x)T (9 —xi)
%

s,-(19):exp|:— :|, i=1,2,...,N (28)
where ki = [ki1, ki2, - .., Kim]T € R™ represents the center of
the Gaussian function and ){1.2 is the variance. The ideal weight
vector W is defined as follows:

W = argmin{ sup |g() — WT S(9)|}
WERN 196919

(29)
which minimizes the approximation error for all ¥ € Qy.

C. Controller Design

The controller design includes the design of the joint
position controller and the joint velocity controller, as shown
in Fig. 1. RBFNN is used in the latter to approximate the
uncertain dynamics.

1) Joint Position Controller: The joint position tracking
error is defined as e, = [e,1, €p2, .. .,ep,,]T =0 — 0,, where
04 = (641,042, ...,04n]" € R" is the reference trajectory,
which is smooth and bounded. The error transformation func-
tion [33] is introduced as follows:

epi(t) = 0(t) H; (L,- (eg’(t(;))) i=1,2.....n (30)

where 5(1) = (Jp — Joo)e™ ™ + doo represents the tracking
performance requirement, and H;(z) is defined as

e —o

—— €i(0)>=0
74
Hi@ =114 (31
W, ep,-(O) <0
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and L;(z) is the inverse function of H;(z)
z+o

1
miTL e,0) <o,
o —Z

In , €pi(0)>0

Li(z) = (32)

The parameters dy, doo < 0o, a, and o are the positive
constants, which are used to adjust the control performance.
The joint position controller is used to generate the desired
joint velocity, which is designed as [24]

)epl (1) (33)

St
(1)

) 7 epi(t)
¢i(t) = L; ( o0 )

According to [24], if ¢;(t) is bounded, then the following is
obtained:

{—aé(t) < epilt) < (1),

vai = —k19(t)i (t) + 04i (1) +

where

(34)

epi(0) > 0

ei(0) < 0. (35)

—0(t) < epi(t) <ad(t),
Therefore, the function J(¢) determines the bound of error
epi(t) and the transient performance of the controller.

2) Joint Velocity Controller: The joint velocity controller
aims to generate the control torque so as to track the desired
joint velocity vg = [v41, V42, - - -, van]T . Let us define the joint
velocity error as e, = 0 — vg and G(0) = Go(0) + 7p. Then,
the control torque is designed as follows [24]:

T = —kpe, — (G0N0} +Mbg+Cog+G+7  (36)
o(t)
where
0(p (1)) = diag(L1 (Hi(¢1(1)))s - . . » Ln(Hu($(1))))
(1) = [p1(1), o (1), ..., P (D] (37)

The matrices M(G), 6‘(9,9), é(@), and 7(0,0,vq,0q) are
the estimates of M(0), C(0,60), G(@), and r(8,0,v4,04),
respectively, where r (6, 0, v4, 0q) is defined later in (40).

Substituting (36) into (25), we can obtain the closed-loop
dynamics equation

060

o)
= —(M — M)bg — (C — Cyog — (G — G).

Mé, + Ce, + kae, +
(3%)

Then, RBFNN is utilized to approximate M (@), C ((9,6"),
G(0), and r(0,0,v4,0a)

M@©) = WSy ©®) +en
C©0,0) = WESc(©,0)+ ec
GO) = WLSc(0) + e

r(ea 6.9 Ddaéd) = WrTSr(ea 6.9 Ddaéd) +8r (39)

where Wy, € R"™WX" We € R¥"NX" Wg € R"™W X" and W, €
R*NX1 are the ideal NN weight matrices. Sy (0) € R"™*",
Sc(8,0) € R*N>" §5(0) € R™N>" and S,(8,0,vq,0q) €
RNxn gre the RBF matrices. &y, ¢, €G, and &, are the

approximation errors. The function r(6, 0,04, 0q) is defined
as

(0,0, v4,94) = emba + ecva + 6. (40)
The estimates of M, C, G, and r are written as follows:

M©) = WL Sy ©®)

C,0) = Wrsc,0)
GO) = WES©)

7(0,0,04,0a) = WES:(0,0,04,04). (41)

Substituting (41) into (38) and defining W(.) =Wy - W(.),
we have
(PP ()
o)
= —W;,SMﬁd — Wgscvd — WGTSG — WrTSr —&r.

Mé, + Cey + kae, +

(42)

D. Stability Analysis

We follow the stability analysis in [24] to prove the stability
of the designed controller. Consider a Lyapunov function as
follows:

V=Vi+W (43)
with
1 T
Vi= Eéb ()@ (1) (44)
and
1 1 . - - -
Va = ey Mey + Etr(w,@r,j W + WET ' We)

1 S -
+ 5tr(W(T;r(;lWG +WIT W) @49)

where I';,, F_ I 1, and I’y I are the positive definite
matrices.
Taking the derivatives of V1 and V>, we have

o
v =20 Q;‘ft;’”e“ D g 006080

(46)

and

T _¢T(I)Q(¢(t))eu(t)
o)
SMvde +T,, WM)]

—_~ o~ —
%)
a
<
U
N
+

"—J
s
SN—"
e

—tu[W] (Srel + T, W,)] (47)

Let us design the update law of the NN weights as follows:

S8
|

= —FM(SMI')deDT +pMWM)
We = —T'c(Scoael +PCWC)

We = —T¢g (SGeUT +PGWG)
W, = =T, (Srel + p, W,) (48)
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where py, pc, pG, and p, are the positive constants. Then,
the derivative of V is written as follows:
V = —elkae, —ele, —kip" ()0 (p (1)) (1)
+ tr[ py Wiy Wi | + e[ pc WE We ]
+tr[p WE W | + te[ o, W W, ]. (49)

We can obtain the following inequality according to the
definition of Q(¢(1)):

¢ ()01 (t) = (1 o)
Using Young’s inequality, we have

T I ()II* — ( 1)n 12+
- e w
- (1+) 2 )"
2 PC = 12
——2 ||WM||F——2 IWell%

lp@)11*. (50)

PG = Pr =
—~ 7||Wc||% - gnwru% (51)

with
PM pc PG
@ = THIWlly + S IWels + =2 IWell

P 1
+ 7’||Wr||% + ~k? (52)

2
where x, is t'he upper bound of [|&,|| over €.
We have V <0 if Wy, We, Wg, Wy, ¢(t), and e, satisfy
the inequality as follows:

2k
d+0) + kz—— ley |1 +—||WM||F

pC
+7||Wc||%+

Q:

PG
THWG”F‘F?”Wr”sz- (53)

According to the LaSalles theorem, all closed-loop sig-
nals of the DS composed of (25), (36), and (48) are semi-
global uniformly bounded if the input signals 6; and 6, are
bounded. Besides, ¢ (¢) and e, will converge to an invariant set
Q; € Q [24]

Q; = {1, llew I, IWarll, IWcll,

IWall, IW:Dle/w < 1} (54)

Since the signal ¢ (¢) is bounded, the transient performance
and the stability of the controller are guaranteed.

V. EXPERIMENTS

The proposed system is tested by two groups of experi-
ments: the test of the NN-based controller and the test of the
DMP-based motion model.

A. Test of the NN-Based Controller

In this group of experiments, the performance of NN
learning is tested, which compensates for the uncertain manip-
ulator dynamics caused by the payload. The experiments are
performed on the Baxter robot that has two seven degrees-of-
freedom arms. The joints from the shoulder to end-effector
are named as s0, sl1, €0, el, w0, wl, and w2 in this
paper. The experiment setup is shown in Fig. 5. The pay-
load is attached using the left gripper of the robot, which

Fig. 5. Experimental setup for testing the NN-based controller.

| A C AT A\
N N N S N N N N N U N
SNIANAAINANANANANANANANN,

1 PN AVAVAVAVAVAVAVAVAAAUAVA

0 12 24 36 48 60
Time(s)
(b)

Fig. 6. Reference joint angles (dashed lines) and actual joint angles
(solid lines) when NN learning is (a) disabled and (b) enabled. The lines
of different colors represent different joints.

weighs 0.94 kg. The robot is required to track a circular
trajectory defined as [X,Y,Z] = [0.65 + 0.1sin(2xt/4),
0.2 4+ 0.1cos(2nt/4),0.2](m) with the orientation fixed. The
corresponding trajectories in joint space are obtained through
the inverse kinematics, which are taken as the inputs of the
proposed controller.

We select three nodes for each input dimension of NN, and
the centers of the nodes are distributed evenly within the limits
of the joint position and joint velocity. There are N = 2187
NN nodes selected for M (0) and G (6), 2N nodes for C(8, 6),
and 4N nodes for 7(8, 0, Od, 0q). In addition, the NN weight
matrices are initialized as WM = 0 € R"Nxn Wc =0 ¢
RNV Jig = 0 € R™M, and W, = 0 € R¥N" with
n = 7. The parameters of the error transformation function
are set as ) = 0.2, 000 = 0.04, a =1, and ¢ = 1.

The manipulator is controlled by the controller without NN
learning in the first experiment, and the actual joint angles
are recorded. Then, the controller with the proposed NN
learning is employed to control the manipulator in the second
experiment. The reference and actual joint angles in both
experiments are shown in Fig. 6, and the corresponding
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Fig. 8. (a) Compensation torque. (b) Norm of each column of the weight
matrix Wg.

tracking errors are shown in Fig. 7. The tracking errors are
relatively high when NN learning is disabled, which is caused
by the payload that the gripper holds, while in the second
experiment, each joint of the manipulator tracks the refer-
ence trajectory very well and all tracking errors reduce into
the interval [—0.04, 0.04](rad) with the compensation torque
increasing, which is shown in Fig. 8(a). The gravity term of the
manipulator dynamics is the main part that the payload affects,
and hence, we particularly show the norm of each column of
WG in Fig. 8(b). We can see that the norm of each column
vector of the weight matrix We rises incrementally because
the torque generated by NN still cannot compensate for the

Fig. 9. Demonstration process of a pouring task.
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Fig. 10. Learning results using the DMP-based motion model in a pouring
task of (a) joint s0, (b) joint el, (c) joint w0, and (d) joint w]1.

effect of the unknown dynamics. However, the rising speeds of
all norms decrease with the increment in torque compensation.

B. Test of the DMP-Based Motion Model

The second group of experiments aims to validate the
DMP-based motion model. The ability of generalization
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Fig. 11.  Generalization results using the DMP-based motion model in a
pouring task of (a) joint s0, (b) joint el, (c) joint w0, and (d) joint wl.

and the learning performance are tested. In these experi-
ments, the demonstrations are performed by guiding the robot
manipulator.

1) Ability of Generalization: In this experiment, the tutor
demonstrates how to pour water into a cup placed on the table,
as shown in Fig. 9. The demonstration process is repeated
five times. The joints w0, wl, s0, and el are moved while
the others are fixed. The joint angles are recorded and used
for learning the modified DMP. The parameters of the DMP
model are set as 7, = 1,11 =25,/ =10, and o] = ap = 8.

The learning results are shown in Fig. 10. The motions
of the four joints are reproduced from the demonstrations,
which synthesize the features of these demonstrations and
enable the robot to complete the pouring task successfully.
Subsequently, the target of the motion is modulated to the other

b

(®)

Fig. 12. (a) Robot performs the pouring task with the regenerated motion.
(b) Robot pours water into the other cup with the generalized motion.

(b)

Fig. 13.  (a) Experiment setup for the drawing task. (b) Demonstration
trajectories of the drawing task.

Fig. 14.  Robot performs the drawing task with the learned motion.

cup. As shown in Fig. 11, the movement trajectory of each
joint angle converges to the new goal and the profile of each
reproduction is retained. We test the reproduced motion and
the generalized motion on the robot. As shown in Fig. 12(a),
the robot completes the pouring task successfully, and as
shown in Fig. 12(b), the robot can pour water into the other
cup.
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Fig. 15. (a) Learning result using the DMP-based motion model in a drawing
task. The motions are modeled in the task space. (b) Result of drawing.
The blue curve is drawn by the robot after learning.

2) Learning Performance: To further validate the learning
performance of the DMP-based motion model, we design a
drawing task for the robot; the experimental setup is shown
in Fig. 13(a). Here, the robot is required to draw an image of
a sinusoid on paper after the tutor demonstrates the task five
times. As shown in Fig. 13(b), the demonstrations are defective
and the curves are irregular. One of the reasons is that the
demonstrator is drawing on this paper indirectly by holding
the robot’s wrist, which affects the exertion of the drawing
skill. The demonstrations are modeled in the task space, and
the robot performs the drawing task after learning (Fig. 14).
As shown in Fig. 15(a), a smooth curve is reproduced by the
motion model given multiple demonstrations. We can also see
that the recorded trajectories are distorted due to measurement
errors of the sensors. As shown in Fig. 15(b), the curve that
the robot draws is smoother than those of the demonstrations,
thus validating the learning performance of the DMP-based
motion model.

VI. CONCLUSION

In this paper, a novel robot learning system comprised
of motion generation and trajectory tracking is developed.
A DMP model is chosen as the basis of the motion model
because of its generalization ability. To improve the learning
performance, GMM and GMR are employed for estimating the
nonlinear function of the motion model. With this modifica-
tion, the model can extract more motion features from multiple
demonstrations of a specific task and generate motions that
synthesize these additional features. Besides, an NN-based
controller is designed to overcome the impact of the unknown
payload so that the manipulator is able to track the gener-
ated motions more accurately. Several experiments have been
performed on the Baxter robot to test the performance of
our proposed methods, which can be used to facilitate robot

learning at a higher level. In the future work, we will further
integrate the reinforcement learning into our system to improve
the learning capacity of the robot.
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