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Abstract— The independent component analysis (ICA) is a
widely used method for solving blind separation problems. The
ICA assumes that the sources are independent of each other
and extracts them by maximizing their non-Gaussianity as the
objective function. There are the two types of non-Gaussianity of
the sources (the super-Gaussian type with the positive kurtosis
and the sub-Gaussian one with the negative kurtosis). In this
paper, we propose a new objective function unifying the two
types of non-Gaussianity naturally, which is derived by applying
the Gaussian approximation to the distribution of sources in the
second-order polynomial feature space. The proposed objective
function [called the adaptive ICA function (AIF)] is a simple form
given as a summation of weighted fourth-order statistics, where
the weights are adaptively estimated by the current kurtoses.
The first practical advantage of the AIF is that it can extract the
sources one by one in the descending order of the criterion of
non-Gaussianity. It can solve the permutation ambiguity problem.
The second and more important advantage is that it can estimate
the number of non-Gaussian sources by the Akaike information
criterion irrespective of the specific form of their distributions.
In order to utilize the above-mentioned advantages of the AIF, we
construct a new algorithm named the ordering ICA by extending
the fast ICA. Experimental results verify that the ordering ICA
can estimate the number of non-Gaussian sources correctly in
both artificial and real data sets.

Index Terms— Blind source separation, higher order statistics,
independent component analysis (ICA), signal denoising.

I. INTRODUCTION

THE independent component analysis (ICA) is a widely
used method for solving blind source separation prob-

lems [1], [2] and extracting features from given signals [3].
It assumes that the source signals are statistically independent
of each other and are given according to non-Gaussian distri-
butions. The linear model of the ICA is given as

x = As (1)

where x = (xi ) is the N-dimensional observed signal.
A = (ai j ) and s = (si ) are the N ×N invertible mixing matrix
and the N-dimensional source, respectively. Here, only the
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mixture x can be observed and the others are unknown. The
ICA can estimate A and s by regarding the non-Gaussianity
of the source s as the objective function and maximizing it.
The objective function of the ICA (often called the contrast
function) can be given without knowing the original source
distribution in advance. Actually, simple higher order statis-
tics such as kurtosis are effective as the objective function
irrespective of the accurate form of the source distribution.
This “simplicity” is one of the most significant advantages of
the ICA. However, there are two different types of the non-
Gaussian distributions, which are classified by the sign of the
kurtosis of the distribution. They are called the super-Gaussian
distribution with the positive kurtosis and the sub-Gaussian
one with the negative kurtosis. Though both of them are non-
Gaussian, they diverge from the Gaussian distribution in the
opposite directions. Therefore, the simplicity of the ICA in the
previous works is generally deteriorated when both the types
coexist in the sources. For example, the extended InfoMax [4]
switches different objective functions in the progress of the
estimation of sources. The fast ICA [5] implicitly switches the
minimization and the maximization of an objective function.
There is no “smooth” objective function in these methods.
Though joint approximation diagonalization of eigen-matrices
(JADE) [6] utilizes a smooth objective function consisting of
the squares of higher order statistics, its optimization process
is relatively complicated and time-consuming when there are
a large number of signals.

In this paper, we propose a new objective function of
the ICA unifying the super- and sub-Gaussian distributions
as possible as “natural,” which is named the adaptive ICA
function (AIF). The AIF is continuous with respect to almost
all the source distributions and does not include any non-
linear transformation of statistics. It is derived by applying
the Gaussian approximation to the second-order polynomial
feature space of sources where the fourth-order statistics are
naturally involved. The AIF has several significant practical
advantages over the previous objective functions. The AIF can
extract all the sources in the descending order of a criterion
of the non-Gaussianity no matter whether they are super-
or sub-Gaussian. It can resolve the permutation ambiguity,
which has been known to be one of the inherent problems
of the ICA. Moreover, it enable us to estimate the number of
non-Gaussian sources by a simple Gaussianity test, which is
based on the Akaike information criterion (AIC) in the feature
space and does not depend on any specific form of the source
distributions.
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This paper is organized as follows. In Section II, the related
works are explained. Section III describes the derivation of the
AIF and its mathematical properties including the criterion of
non-Gaussianity and the Gaussianity test. Section IV proposes
a new algorithm using the AIF named “the ordering ICA.”
Section V shows the experimental results on both artificial and
real data sets. Finally, this paper is concluded in Section VI.

This paper is an elaborated and extended version of our
previous papers [7]–[9]. The new contributions of this paper
consist of the following four parts. First, we unify the frag-
ments in our previous papers and clarify the significance
of the AIF by explicitly stating its relation to the classical
works on the ICA in Section II. Second, we propose a
new criterion for the Gaussianity test by utilizing the AIC
in Section II-C. Though a different criterion has been proposed
in [9] by the Fisher information, its scale parameter needs
to be set empirically. On the other hand, the new criterion
is deductively derived from the AIC and does not include
any arbitrary parameter. The proposed Gaussianity test can
estimate the number of non-Gaussian sources quite accurately
as shown in Section V. This is the most significant contri-
bution in this paper. Third, we show that the fast ICA using
kurtosis can maximize the AIF locally in Section IV. Then,
we propose a new efficient algorithm for maximizing the AIF
globally by multiple executions of the fast ICA. A stochastic
gradient algorithm was employed in our previous papers so
that the convergence was generally slow. Fourth, the numerical
experiments are carried out for various data sets in Section V.
Though only the natural images were employed as the sources
in the previous papers, we employ the three additional data
sets: generalized Gaussian signals, sine waves, and voices.
We also investigate the experimental results extensively for
generalized Gaussian signals by using various settings and
various evaluations.

II. RELATED WORKS

A. Objective Function of ICA

The objective function of the ICA is a criterion measuring
the independency among the estimated sources. As its maxi-
mization can extract independent sources, it is an essential part
of the ICA. Here, the previously proposed objective functions
are explained in brief. The following notation is introduced:

y = W x (2)

where y = (yi ) is an N-dimensional estimated source and
W = (wi j ) is an estimated separating matrix. When W is the
inverse of A, the accurate estimation of the source is achieved.
In addition, it is assumed for simplicity that x and y are
prewhitened. Then, A and W are assumed to be orthonormal,
because the independent source s is whitened. Though there
are various objective functions without the orthonormality
constraint (for example, the original InfoMax [10]), they are
omitted in this section, because we focus on the effects of
the form of the source distributions. In addition, we focus on
only the non-Gaussianity-based objective functions so that we
omit the cross-correlation-based methods. Then, the previously

proposed objective functions of the ICA are roughly classified
into the following three types.

The first type is based on the entropy of the estimated
source, which is often called InfoMax. The entropy of each yi

(denoted by H (yi)) is given as

H (yi) = E(− log p(yi)) (3)

where E() is the expectation operator and p(yi) is the proba-
bility density function of yi . Though almost all non-Gaussian
approximations of H (yi) can extract arbitrary non-Gaussian
sources [11], the following two approximations are widely
used [5], namely, the kurtosis approximation:

H (yi) � ±E
(
y4

i

)
(4)

and the hyperbolic approximation:

H (yi) � ±E(log cosh yi ). (5)

The former is simple and efficient. Though the latter is
relatively complicated and inefficient, it is robust to outliers
(their differences are discussed further in the last paragraph of
this section). Then, the objective function is given as follows:

�1 =
∑

i

±E
(
y4

i

)
or

∑

i

±E(log cosh yi ). (6)

The sign of ± for each i depends on whether p(yi ) is
super-Gaussian or sub-Gaussian. In other words, the final
form of �1 cannot be decided in advance. Therefore, the
objective function is not smooth in the optimization process.
For example, the extended InfoMax [4] switches two different
hyperbolic functions depending on the currently estimated kur-
toses in the stochastic gradient-based optimization. Reference
[12] switches the signs of the kurtoses in the pairwise rotation-
based optimization. The fast ICA [5] implicitly switches the
maximization and minimization of the objective functions by
the fixed-point method. In summary, though the entropy-based
approach gives simple objective functions so that various
efficient optimization methods are applicable, there is no
unifying, smooth function when both sub-Gaussian and super-
Gaussian sources exist. Only the asymptotic analysis around
the solutions is available.

The second type of the objective function is based on rotated
cumulant matrices (also known as the joint diagonalization
approach). Here, let ci jkl and Ckl = (ci jkl ) be the fourth-order
cumulant on (xi , x j , xk, xl) and the klth cumulant matrix,
respectively. The rotated cumulant matrix C̃kl = (c̃i j kl ) is
defined by C̃kl = WCkl W T . It is proved in [13] that any
C̃kl is diagonal when W is the inverse of A. Therefore, the
following objective function can be derived:

�2 = −
∑

k,l≤k

∑

i, j<i

c̃2
i j kl . (7)

�2 can be maximized by pairwise rotations [6]. �2 unifies
the sub-Gaussian and super-Gaussian sources naturally. One
of the serious disadvantages of �2 is that its optimization is
too much time-consuming when the number of signals N is
large (for example, even N = 50 is intractable).
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The third type is based on the Edgeworth expansion of the
source distribution [14]. It gives the following quite simple
objective function:

�3 = (
E

(
y4

i

) − 3
)2 (8)

which is the sum of the squares of the kurtoses. �3 can be
maximized by pairwise optimizations [14], [15]. Removing the
uncertainty of the signs in �1 by squaring each term, it gives
a smooth objective function. Though it is a quite simple form
unifying the sub-Gaussian and super-Gaussian sources, it is
hardly used in practice, because its performance is generally
low. One of the reasons of its low performance is probably
that the squaring operation overestimates the influence of the
sources with high kurtoses and fails to extract the sources with
low kurtoses.

In this paper, we propose a new continuous objective func-
tion different from the above-mentioned three types, which
is a weighted sum of kurtoses and unifies sub-Gaussian and
super-Gaussian sources naturally without switching multiple
functions. One of the most significant advantages of this
non-switching function is that it can naturally include many
Gaussian noises in the sources. It is known to be hard for
the switching functions to manage multiple Gaussian noises
appropriately and to estimate the number of non-Gaussian
sources. It is essentially because the Gaussian noises are
presumed to be excluded in the derivation of such switching
functions. On the other hand, our proposed function can
estimate the number of non-Gaussian sources accurately by
a simple Gaussianity test (see Sections II-C and V).

Note again that the kurtosis approximation is sensitive to
the outliers, because it drastically amplifies extreme values
by its fourth power. On the other hand, other widely used
approximations are more robust to the outliers, because they
can constrain the effects of extreme values. For example,
the hyperbolic approximation log cosh converges to the linear
order for sufficiently large values. This lack of robustness
is known to be one of the serious problems in the kurtosis
approximation. As our proposed function is based on the
kurtosis, it is not expected to be so robust to outliers. Nev-
ertheless, the experimental results in Section V will show
that our proposed function is much more useful than the
hyperbolic approximation in the estimation of the number of
non-Gaussian sources. It may be promising to utilize a robust
method of the ICA after the number of non-Gaussian sources
is identified by our method.

B. Permutation Ambiguity in ICA

As shown in Section II-A, the objective functions of the ICA
are generally insensitive to the permutation of sources. In other
words, they are invariant with respect to the permutation of
the rows of W . Though some methods such as the fast ICA
can extract the sources one by one (known as the deflation
approach), their ordering is not unique [16]. Therefore, the
permutation ambiguity has been regarded as an unavoidable
problem in the ICA. Many of the solutions for fixing the
permutation utilize the characteristics of specific applications
other than non-Gaussianity (for example, [17] for audio sig-
nals and [18] for radio waves). On the other hand, a method

based on the fast ICA in [16] extracts the sources in a unique
order of non-Gaussianity. However, this method needs to know
the numbers of sub-Gaussian sources and super-Gaussian ones
in advance. In this paper, we propose a new method extracting
the sources one by one in a unique order without using any
prior knowledge.

C. Estimation of the Number of Non-Gaussian
Sources in ICA

The number of non-Gaussian sources (denoted by K )
is often less than the number of signals N (the so-called
undercomplete case). The estimation of K is usually carried
out by utilizing principal component analysis (PCA) in the
prewhitening phase. PCA can select the principal components
by neglecting the minor components whose variances are
below a given small threshold. However, the PCA-based esti-
mation is useful only when the variances of Gaussian sources
are assumed to be relatively small. PCA cannot directly detect
whether a source is Gaussian or not. Another approach has
been proposed, which employs an information criterion for
deciding the number of sources [19]. One of the widely used
information criteria is the AIC [20]. The AIC is defined as the
difference between the degree of freedom of the parameters
and the maximum log-likelihood. In the similar way as in (3),
the AIC of the ICA is given as

AIC = −
∑

i,t

log p(ŷit ) + V (9)

where ŷit is the optimum value of yi of the t th sample and
V ≤ N K is the degree of freedom of the separating matrix W .
The number of sources can be estimated by selecting K so
that the AIC is minimal. However, this approach strongly
depends on the form of each source distribution p(ŷit ). In this
paper, we propose a simple Gaussianity test by the AIC in the
second-order polynomial feature space. The test is carried out
easily and does not depend on any specific form of source
distributions. In our previous work [9], the Fisher information
was utilized for the Gaussianity test. However, it was hard to
control the significance level suitably. Though we proposed
another idea applying the AIC to the ICA in [21], it was used
only for deriving a threshold for Givens rotations in JADE.

D. Other Related Methods in ICA

The kernel method using the feature mapping is a widely
used technique in machine learning (for example, a support
vector machine and kernel PCA) [22]. This technique has also
been applied to the ICA (named the kernel ICA in [23]). The
kernel ICA uses the wide classes of feature mapping for esti-
mating sources more accurately. On the other hand, we use the
Gaussian approximation in only the second-order polynomial
feature space for constructing a new simple objective function
of the ICA. The efficient FastICA [24] switches more than
two functions for separating more accurate sources. However,
it did not consider the Gaussian noises. More flexible models
of sources have been proposed in [25] and [26], which can
include the Gaussian noises as the sources. However, their
objective functions are too complicated to optimize easily.
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III. OBJECTIVE FUNCTION

A. Derivation

Here, we derive a new objective function of the ICA by
applying the Gaussian approximation to the distribution of
sources in the second-order polynomial feature space. The
detailed derivation is shown in [7]. We assume that each
independent source si is normalized [namely, E(si ) = 0
and E(si s j ) = δi j (the Kronecker delta)]. ϕ2(s) = (si s j )
for (i ≤ j) denotes the N(N + 1)/2-dimensional vector of
the sources in the second-order polynomial feature space.
The Gaussian approximation needs only the mean and the
covariance of ϕ2(s). The mean of si s j (denoted by μi j ) is
given as

μi j = E(si s j ) = δi j . (10)

The covariance between si s j and sksl (denoted by νi j,kl ) is
given as

νi j,kl = E(si s j sksl) − E(si s j )E(sksl)

=

⎧
⎪⎨

⎪⎩

αi + 2 (i = j = k = l)

1 (i = k, j = l, i �= j)

0 (otherwise)

(11)

where αi is an unknown parameter estimating the kurtosis of
si (denoted by κi = E(s4

i ) − 3). The vector of the parameters
is denoted by α = (αi ). Then, the Gaussian approximation of
the conditional distribution of ϕ2(s) given α is given as

Psource(ϕ2(s)|α) =
∏

i, j>i

gi j (si s j )
∏

i

gii
(
s2

i |αi
)

(12)

where gi j (u) is a Gaussian distribution given as

gi j (u) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
2π(αi + 2)

exp

(−(u − 1)2

2(αi + 2)

)
(i = j)

1√
2π

exp

(−u2

2

)
(i < j).

(13)

The ICA estimates the separating matrix W so that the
estimator of source y = W x is “nearest” to the true source s.
By regarding ϕ2(y) = (yi y j ) as the estimator of ϕ2(s), the
estimation of W is formulated by using a maximum likelihood
estimation of Psource(ϕ2(y|α)). The linear transformation from
ϕ2(x) = (xi x j ) to ϕ2(y) is given as

ϕ2(y) = E(W ⊗ W)Dϕ2(x) (14)

where ⊗ denotes the Kronecker product. E and D are
the elimination binary matrix extracting only the elements
with i ≤ j [namely, ϕ2(y) = E(y ⊗ y)] and the dupli-
cation matrix duplicating the symmetric elements [namely,
x ⊗ x = Dϕ2(x)]. Therefore, the conditional distribution of
ϕ2(x) given W and α is given as

P(ϕ2(x)|W,α) = Psource(ϕ2(y)|α)|E(W ⊗ W)D| (15)

where |U | denotes the determinant of any square matrix U .
The following equation holds (its proof is in Appendix A):

|E(W ⊗ W)D| = |W |N+1. (16)

Consequently, the expectation of the log-likelihood of
P(ϕ2(x)|W,α) is given as

E(log P(ϕ2(x)|W,α))

= −
∑

i, j>i E
(
y2

i y2
j

)

2
−

∑
i log(αi + 2)

2

−
∑

i

E
((

y2
i − 1

)2)

2(αi + 2)
+ (N + 1) log |W | (17)

where some constants are neglected. Note that every yi

depends on W . Finally, (17) is rewritten as the following
objective function 	 (W,α):

	(W,α)

= −
∑

i

log(αi + 2) + 2(N + 1) log |W |

−
∑

i, j

(
1 − δi j

2
+ δi j

αi + 2

)
E

((
yi y j − δi j

)2)
(18)

where the constant factor of 1/2 was removed. 	(W,α) is
called the AIF in this paper.

B. Mathematical Properties

Here, various mathematical properties of the AIF are shown
and proved. Though the derivation of the AIF needs the
“imprecise” approximation (for example, si s j never obey the
Gaussian distribution actually), we show that the AIF 	(W,α)
is an appropriate objective function of the ICA irrespective of
its derivation. The more details of the proofs are shown in
[7]–[9].

1) Adaptive Estimation of Kurtosis: The optimal α̂i for a
given W satisfies

∂	

∂αi
|αi=α̂i = − 1

α̂i + 2
+ E

((
y2

i − 1
)2)

(α̂i + 2)2 = 0. (19)

Thus, α̂i is given analytically as

α̂i = E
((

y2
i − 1

)2) − 2 (20)

which is the unique optimum of 	(W,α) with respect to αi .
It is worth noting that the optimal α̂i is given as

α̂i = E
(
y4

i

) − 3 (21)

under the normalization constraint E(y2
i ) = 1. In other words,

α̂i can be regarded as the adaptive estimator of the kurtosis. We
can define the following objective function �(W) depending
on only W as:

�(W) = 	(W, α̂)

= −
∑

i

log E
((

y2
i − 1

)2) + 2(N + 1) log |W |

−
∑

i, j �=i E
(
y2

i y2
j

)

2
. (22)

The optimal W of �(W) is equivalent to that of 	(W,α) if α

is optimal. Therefore, we often substitute �(W) for 	(W,α)
in the following analysis.



5634 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

2) Gaussian Case: In the simplest case where all the
sources are Gaussian with the mean 0, Theorem 1 holds.

Theorem 1: When every si is Gaussian with the mean 0
and A is invertible, �(W) of (22) is maximal if and only if y
is whitened.

See Appendix B for its proof. This theorem guarantees
that y is whitened without any constraints when the sources
are Gaussian. The optimal W is a saddle point, because any
orthonormal rotations preserve the optimal condition. It is
consistent with the previous ICA methods in the Gaussian
case.

3) Non-Gaussian Case Under Normalization Constraint:
Here, we analyze the cases where almost all the sources
are non-Gaussian under the relatively weak normalization
constraint [namely, E(yi) = 0 and E(y2

i ) = 1]. In addition,
we use the following three assumptions.

1) The simple linear ICA model x = As in the real domain
is assumed, where every source is normalized and A is
invertible.

2) All the sources are non-Gaussian except at most one
Gaussian source. In other words, they may include one
Gaussian source.

3) The kurtosis of any source is not equal to −2 (the
theoretical minimum of the kurtosis). In other words, any
source does not obey the uniform Bernoulli distribution.

Then, Theorem 2 holds.
Theorem 2: It is assumed that x is given by x = As in

the real domain, where A is invertible and s (with the mean
0) does not include more than one Gaussian signal nor any
uniform Bernoulli variable. Then, the solution of the ICA
(W = A−1) is a local maximum of �(W) of (22) under the
constraint E(y2

i ) = 1.
Its proof consists of the necessary condition and the suf-

ficient one. The necessary condition is equivalent to the
Karush–Kuhn–Tucker (KKT) condition of this constrained
optimization, which is proved by the first derivatives of �(W)
(see Appendix C). The sufficient condition corresponds to
the convergence analysis, which shows that the solution is a
local maximum in the constrained optimization. The bordered
Hessian matrix and the bordered determinantal criterion [27]
are used. See Appendix D for its proof. See also [7] for the
details of the proofs. This theorem guarantees that the AIF is
an appropriate objective function of the ICA. It is worth noting
that the optimal variance of yi under no constraint is not equal
to 1 in the non-Gaussian cases. It is easily shown for N = 1.
In other words, the normalization constraint is necessary in
the non-Gaussian cases. Theorem 2 is interesting, because the
extraction of the sources needs only the weak normalization
constraint instead of the usual orthonormality one. However,
we focus on the orthonormality constraint in the following
of this paper. It is because the orthonormality constraint
guarantees that the global optimality solves the permutation
ambiguity and estimates the number of non-Gaussian sources
appropriately.

4) Non-Gaussian Case Under Orthonormality Constraint:
Here, we analyze the non-Gaussian cases under the orthonor-
mality constraint [namely, E(yi ) = 0 and E(yi y j ) = δi j ].

Under this constraint, the AIF of (18) is simplified into

	(W,α) =
∑

i

	i (wi1, . . . , wi N , αi ) (23)

where

	i = − log(αi + 2) +
(

1

2
− 1

αi + 2

)
E

(
y4

i − 1
)
. (24)

The proof is described in Appendix E. The local optimality
of (23) is guaranteed under the orthonormality constraint,
because it is a special case of Theorem 2. The optimal α̂i

is given as the currently estimated kurtosis in the same way
as in (21). Then, the following equivalent objective function
�i is derived:

�i (wi1, . . . , wi N ) = − log E
(
y4

i − 1
) + E

(
y4

i

)

2
. (25)

	i can be replaced with �i , because the maximum point of
	i with respect to (wi1, . . . , wi N ) is equal to that of �i .
In addition, it is worth noting that 	i is given as follows if αi

is the accurate kurtosis κi :
	i (αi = κi ) =

(
1

2
− 1

κi + 2

)
E

(
y4

i

)
. (26)

Therefore, the weight (1/2)−(1/(κi + 2)) is positive for super-
Gaussian source (κi > 0) and negative otherwise (κi < 0). It
is consistent with the previous ICA framework as shown in
�1 = ∑

i ±E(y4
i ) of (6).

5) Gram–Schmidt Orthonormalization: Here, we analyze
the cases where 	i of (24) is maximized for each i in
the Gram–Schmidt orthonormalization. It is called the defla-
tion approach in the fast ICA. The Gram–Schmidt ortho-
normalization constrains each yi to satisfy E(yi y j ) = δi j

for j ≤ i . Consequently, it is proved that all the non-Gaussian
sources are extracted in the descending order of a criterion
of non-Gaussianity if each 	i is globally maximized in the
Gram–Schmidt orthonormalization. Rigorously, the Theorem 3
holds.

Theorem 3: We assume the linear ICA model, where
x = As in the real domain, E(si ) = 0, E(si s j ) = δi j , κi > −2
(no uniform Bernoulli source), and A is invertible. Then, all
the non-Gaussian sources are extracted in descending order
of ϒ(κi ) if each 	i of (24) is globally maximized in the
Gram–Schmidt orthonormalization, where ϒ(κ) is a criterion
of non-Gaussianity given as

ϒ(κ) = κ − 2 log
κ + 2

2
. (27)

This theorem is proved by using the convexity of �i of (25)
with respect to E(y4

i − 1). See Appendix F for the details of
the proof. Note that ϒ(κi ) takes the minimum (= 0) only for
κi = 0 (a Gaussian source). Therefore, ϒ(κi ) is regarded as a
criterion of non-Gaussianity. This theorem guarantees that the
maximization of the AIF in the Gram–Schmidt orthonormal-
ization can find all the non-Gaussian sources. It can resolve
the permutation ambiguity, because the sources are sorted
by ϒ(κi ). In addition, it can reduce the time for estimating
only the non-Gaussian sources by terminating the optimization
once any Gaussian source is found. These advantages of
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Fig. 1. Comparison of the three criteria of non-Gaussianity along the kurtosis
κ [ϒ(κ) = κ − 2 log((κ + 2)/2), the absolute value |κ|, and the square κ2].

the AIF in the Gram–Schmidt orthonormalization are verified
experimentally in Section V.

C. Criteria of Non-Gaussianity

Section III-B5 shows that ϒ(κ) = κ − 2 log((κ + 2)/2)
of (27) is regarded as a criterion of non-Gaussianity of a
source. Here, we compare this criterion derived from the
AIF with the usual two criteria shown in Section II-A. The
first usual criterion is the absolute value of the kurtosis |κ |
derived from �1 of (6), where ± is removed. The second
usual criterion is the square of the kurtosis κ2 from �3 of (8).
Fig. 1 shows the three criteria along the kurtosis κ from
−2 to 5. They take the minimum 0 at κ = 0 (the Gaussian
source). Moreover, they are larger as κ is further from 0. It
shows that all of them can be regarded as reasonable criteria of
non-Gaussianity. However, there are some differences in detail.
For example, as |κ | is not differentiable at κ = 0, it causes the
problem of switching from sub-Gaussian to super-Gaussian.
On the other hand, κ2 and the proposed criterion ϒ(κ) =
κ−2 log((κ + 2)/2) are always differentiable. Moreover, while
|κ | and κ2 have small upper bounds in the sub-Gaussian area,
ϒ(κ) diverges to the infinity in both sub-Gaussian and super-
Gaussian areas. In other words, ϒ(κ) emphasizes the sub-
Gaussian sources in comparison with the usual criteria.

D. Gaussianity Test by AIC

As shown in Section III-B5, if the currently estimated com-
ponent is Gaussian, every succeeding component is Gaussian.
By terminating the estimation process when we find the first
Gaussian component, the process is expected to be much more
efficient if there are only a few non-Gaussian sources. Here, a
threshold for the Gaussianity test is proposed by utilizing the
AIC [20] in the second-order polynomial feature space. Now,
the Gaussianity of the currently extracted i th component is
tested. It is assumed that yi is constrained to be normalized
and orthogonal to the preceding i −1 components. Under these
constraints, the log-likelihood of (17) is given as

i (wi1, . . . , wi N , αi )

= − M log(αi + 2)

2
+

(
1

4
− 1

2(αi + 2)

) M∑

t=1

(
y4

it − 1
)

(28)

where M is the sample size and yit is the value of yi of the
tth sample. It is derived in the similar way of the derivation

of (24) by keeping the constant factor 1/2 and replacing
the expectation with the summation over the samples. The
constant factor 1/2 is not neglected in order to keep the scale
of the original log-likelihood. Then, the maximum of i is
given as the following form depending on only αi :

̂i (α̂i ) = M(α̂i − 2 log(α̂i + 2))

4
(29)

where some constant terms are neglected and α̂i is the optimal
value of αi maximizing i given as

α̂i =
∑M

t=1 ŷ4
it

M
− 3. (30)

ŷit is the optimal value of yit . Though i has N+1 parameters,
the degree of freedom is reduced by i , because (wi1, . . . , wi N )
is constrained to be normalized and orthogonal to the pre-
ceding i − 1 sources. By maximizing the log-likelihood of
the succeeding N − i sources similarly, the maximum of
the log-likelihood and the degree of freedom for all the
remaining N − i + 1 components are given as

∑
i i and

(N − i + 2)(N − i + 1)/2, respectively. Consequently, the
AIC in the estimation of the current i th component is given
as

AIC = −
N∑

k=i

̂k(α̂k) + (N − i + 2)(N − i + 1)

2
. (31)

On the other hand, if the current i th and the succeeding
components are assumed to be Gaussian, the log-likelihood
is given as (N − i + 1)̂(0) with the degree of freedom of 0.
Therefore, the difference of the AIC between the two models
is given as

�AIC

= −
N∑

k=i

̂k(α̂k) + (N − i + 2)(N − i + 1)

2
+(N −i +1)̂(0)

= − M
∑N

k=i ϒ(α̂k)

4
+ (N − i + 2)(N − i + 1)

2
(32)

where ϒ is the criterion of non-Gaussianity defined in (27).
As the model with a smaller AIC is preferable, the condition
for preferring the Gaussian model is given as

− M
∑N

k=i ϒ(α̂k)

4
+ (N − i + 2)(N − i + 1)

2
> 0. (33)

Unfortunately, the summation of ϒ(α̂k) over the remaining
components needs the estimation of all the components with-
out termination. Considering that ϒ(α̂i ) is the maximum over
the remaining components, we propose the following simple
condition:

ϒ(α̂i ) <
2(N − i + 2)(N − i + 1)

M
(34)

which is employed as the termination condition in this paper.
Though this approximation increases the possibility that a non-
Gaussian source is decided to be Gaussian incorrectly, the
experimental results in Section V show the usefulness of this
condition.

Here, some properties of the proposed termination condition
are discussed. As ϒ(u) � u2/4 holds for a small u value by



5636 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

the Taylor series approximation, this condition is simplified as
follows:

α̂2
i <

8(N − i + 2)(N − i + 1)

M
. (35)

It depends on the number of unestimated components
(N + 1 − i ) unlike a usual constant threshold. It seems
plausible, because the fluctuation of the maximum over mul-
tiple Gaussian sources depends on the number of unestimated
Gaussian sources. It is worth noting that this condition does
not depend on any form of the source distributions, because
it depends on only the Gaussian approximation in the second-
order polynomial feature space. Moreover, it does not depend
on any arbitrary parameters such as the significance level.
It is also worth noting that this condition does not estimate
the accurate number of non-Gaussian sources but avoids futile
estimation according to the sample size. While the estimated
number of non-Gaussian sources may be inaccurate if the
sample size is limited, it is expected to be appropriate for the
sample size. Though this condition is applicable to the usual
ICA methods, such as fast ICA and JADE, by sorting all the
extracted components in the descending order after the total
estimation, it was not so useful in the numerical experiments
(see Section V).

Note that the AIC is not theoretically appropriate if the true
distribution cannot be represented by the parametric model.
Takeuchi information criterion (TIC) is more appropriate in
such cases [20]. Therefore, the TIC is expected to be more
suitable for our proposed model, where si s j never obey the
Gaussian distribution actually. However, the TIC is much more
complicated than the AIC. In addition, the AIC is known to
give a good approximation of TIC in many cases. Thus, we
employed the AIC instead of the TIC.

IV. ALGORITHM

Here, we describe an algorithm for maximizing the AIF
of (23) in the Gram–Schmidt orthonormalization. Though our
previous works used the combination of the stochastic gradient
algorithm and the fast ICA [9], we do not use the stochastic
gradient but extend the deflation approach of the fast ICA
using the kurtosis in this paper. If αi is given appropriately, the
maximization of 	i is equivalent to the maximization or the
minimization of E(y4

i ) [see (26)]. Therefore, we can utilize
the fast ICA using the kurtosis. The complete algorithm is
described as follows.

1) Initialization: Prewhiten the observed signals X = (xit )
and initialize i = 1.

2) Optimization of i th Component:

a) Initialization of Multiple Candidates: Initialize L
different candidates of (wi1, . . . , wi N ) randomly.

b) Fast ICA for Each Candidate: Repeat the following
steps until the solution converges or the number
of iterations exceeds a given maximum for each
candidate.

i) Calculate yit = ∑
k wik xkt .

ii) Update wik :=
∑

t xkt y3
it

M − 3wik for k =
1, . . . , N .

iii) Orthonormalize (wi1, . . . , wi N ) by wik :=
wik − ∑

j<i

(∑
l wilw j l

)
w j k and wik :=

wik/
√∑

l w2
il .

c) Selection of the Best Estimation From the Can-
didates: Select the estimation with the highest
criterion of non-Gaussianity ϒ(α̂i ) = α̂i − 2 log
((α̂i − 2)/2), where α̂i = ∑

t y4
it /M − 3.

3) Termination Decision: If ϒ(α̂i ) < (2(N + 2 − i)
(N + 1 − i)/M) [see (34)], estimate the number of non-
Gaussian sources K to be i − 1 and terminate the
algorithm. Otherwise, let i be i +1 (the next component)
and return to Step 2 (optimization) if i ≤ N .

It is almost equivalent to the deflation approach of the orig-
inal fast ICA [5] except for the selection from the multiple
candidates and the termination decision. The original fast ICA
corresponds to a single candidate selection (L = 1) without the
termination decision (the algorithm is terminated only when
it fails to converge). Here, we call this method “the ordering
ICA,” because it extracts the independent components in a
unique order. The ordering ICA essentially repeats the fast
ICA L times. The time complexity of an iteration of the
fast ICA for each component is O(N M). Moreover, the fast
ICA is guaranteed to converge quadratically [5]. Letting the
averaged number of iterations until the convergence be R, the
time complexity of the ordering ICA is O(N2 M L R). It can
be accelerated by employing an efficient matrix multiplication
algorithm. Moreover, the appropriate termination may reduce
the calculation time drastically if there are only a few non-
Gaussian sources. In addition, the candidates can be processed
in parallel. Its actual computational cost is investigated by the
numerical experiments in Section V. It is also worth noting
that the criterion of non-Gaussianity can be replaced with the
other criteria such as the square of the kurtosis. In Section V, it
was shown that the proposed criterion of non-Gaussianity was
better than the square of kurtosis in the numerical experiments.

V. RESULTS

A. Methods of ICA

Here, we describe the settings of the following five methods
of the ICA in the numerical experiments: the ordering ICA
in Section IV (denoted by ordering-ICA); the ordering ICA
using κ2 instead of ϒ(κ) (ordering-kurt). Note that the usage
of κ2 is completely equivalent to that of |κ | in this method;
the fast ICA using the kurtosis [5] (fast-kurt); the fast ICA
robust to outliers using hyperbolic tangent function [5] (fast-
tanh); and JADE [6]. In ordering-ICA and ordering-kurt
(using multiple candidates), the convergence of the fast ICA
for each candidate was determined by the Euclidean dis-
tance between the preceding estimation and the current one
(smaller than 10−6) and the maximum number of iterations
was set to 100. The settings of these conditions did not have
a strong effect on the results. In fast-kurt and fast-tanh (using
a single candidate), the convergence determination was the
same in ordering-ICA and ordering-kurt. However, a more
complicated termination decision was used. The algorithm
was terminated only if a component did not converge within
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Fig. 2. Comparison of the five ICA methods in blind separation of artificial sources in the complete case (N = K = 8). The following five methods were
applied: the ordering ICA (denoted by ordering-ICA), the ordering ICA using the square of kurtosis (ordering-kurt), fast ICA using kurtosis (fast-kurt), fast
ICA using tanh (fast-tanh), and JADE. (a) E . (b) E∗. (c) Calculation time.

TABLE I

PARAMETERS AND STATISTICS OF GENERALIZED GAUSSIAN

DISTRIBUTIONS: RELATIVE RANKS IN ϒ(κ) AND κ2 ARE ALSO SHOWN

five runs, each of which consists of 1000 iterations for a
different random initialization. As the original fast ICA uses
only a single candidate, the termination needs to be determined
carefully and the settings of the conditions had a strong effect
on the results. The simplicity of the termination decision is one
advantage of the ordering ICA in comparison with the original
fast ICA. In JADE, the convergence is determined when every
Givens rotation is lower than a small threshold, which did not
have a strong effect on the results. In addition, the number of
candidates L in ordering-ICA and ordering-kurt was set to 100.

B. Generalized Gaussian Distribution

Here, the results on an artificial data set are shown.
We employed the generalized Gaussian distributions as the
sources, whose probability density function is given as

p(u) = ρ

2β�(1/ρ)
exp(−(|u|/β)ρ)) (36)

where β and ρ are the parameters, and � is the gamma
function. β was set so that the variance is 1. ρ is the parameter
determining the kurtosis. The distribution is super-Gaussian
for ρ > 2 and sub-Gaussian for ρ < 2. ρ was set to the
eight different values. The parameter and the statistics of each
generalized Gaussian distribution are shown in Table I, where
the case for ρ = 21 is excluded, because it is Gaussian. The
two ranks in the descending order of ϒ(κ) and κ2 are similar
but not the same in the sixth and seventh places.

In the first experiment, we show the results on the separation
of the eight sources without Gaussian noise, where the number
of sources N is 8. The termination decision was not used. The
mixing matrix A was generated randomly, each element of
which is given by a Gaussian distribution. The five methods in

Section V-A were applied to estimate the separating matrix W .
Two types of error on Q = (qi j ) = W A were employed
for evaluating the results. The first type is the usual Amari’s
separating error [28]

E = 1

2N(N − 1)

∑

i, j

( |qi j |
maxk |qik | + |qi j |

maxk |qkj |
)

(37)

which is insensitive to permutation. The second type is the
difference between Q and the identity matrix

E∗ = 1

N2

∑

i, j

∣∣|qiι( j )| − δiι( j )
∣∣ (38)

where ι( j) is the index of the true source corresponding to
the j th largest ϒ(κ). It is sensitive to permutation, because
it is small only if the estimated sources are sorted by ϒ(κ).
Fig. 2 shows the averaged results (E , E∗, and the calculation
time) over 100 runs for various sample sizes. Fig. 2(a) shows
that all the methods could separate the sources appropriately
according to a given sample size. Though fast-tanh achieved
the best results, ordering-ICA and the other methods were
not so inferior. Fig. 2(b) shows that ordering-ICA could
estimate the sorted sources without the permutation ambiguity.
It is not so surprising but verifies that the proposed simple
extension of the fast ICA using multiple candidates is useful.
Fig. 2(c) shows that ordering-ICA and ordering-kurt were
about L = 100 times as slow as the other methods, which
is expected in Section IV. In summary, the ordering ICA is
not so inferior to the other widely used methods of the ICA on
the separation accuracy but is too slow in the complete case.

In the second experiment, we use the undercomplete cases
where the number of non-Gaussian sources (K = 8) is less
than the total number of signals N . In other words, N − K
sources were given according to the Gaussian distribution.
N was set to 20, 30, and 40. Here, the estimated sources in
every method were sorted by ϒ(κ̂) (where κ̂ is the kurtosis
of a separated source). Then, the number of non-Gaussian
sources was estimated by applying the AIC-based Gaussianity
test in Section III-D to the sorted sources. The estimated
number of sources is denoted by KAIC. As is expected, KAIC
of ordering-ICA and that of ordering-kurt were equal to the
number of extracted sources in their optimization process.
On the other hand, KAIC of the fast ICA and JADE was
often smaller than the number of extracted sources, because
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Fig. 3. Comparison of the five ICA methods in blind separation of artificial sources in the undercomplete case (N > K ). Each row corresponds to
N = 20, N = 30, and N = 40. Each column corresponds to (a) estimated number of non-Gaussian sources (KAIC), (b) errors sensitive to permutation (E∗),
and (c) calculation time.

their non-Gaussianity may be below the AIC-based threshold.
We also used an extension of E∗ of (38) as the separating error,
which is defined as the difference between the nonsquare Q
and the corresponding nonsquare identity matrix because of
K < N . Though K can be estimated as KAIC, it was set
to the true value 8 if KAIC > 8, because the overestimation
of K drastically increases the separating error. Fig. 3 shows
the averaged results over 10 runs for N = 20, 30, and 40.
Fig. 3(a) shows the results about KAIC. Though ordering-
ICA and ordering-kurt underestimated K for the small sample
size, KAIC approaches the true value K = 8 as the sample
size becomes larger. In addition, ordering-ICA approached
K = 8 slightly better than ordering-kurt for a small sample
size. On the other hand, the other methods (the fast ICA and
JADE) always overestimated K . Fig. 3(b) shows the results
about the separating error E∗. Ordering-ICA and ordering-kurt
outperformed the other methods for a small sample size. It is
probably because the ordering ICA extracts only a few sources
for such a small sample size and neglects the other sources
which are not estimated accurately. All the methods achieved
similar performance for a large sample size. Considering that it
is hard to estimate the true number of sources for the fast ICA
and JADE, it suggests that ordering-ICA and ordering-kurt
achieve the best performance. Fig. 3(c) shows the calculation
time. Ordering-ICA and ordering-kurt became relatively faster
as the total number N became larger. It is surprising that
ordering-ICA was faster than fast-tanh and was not so inferior

Fig. 4. Histogram of the kurtoses of the 44 original images: three images
with the kurtoses beyond 10 are omitted here.

to fast-kurt for N = 40 while it needs to estimate all the
L = 100 candidates. It is because the ordering ICA can
terminate its optimization process when a Gaussian source is
detected. On the other hand, the fast ICA is quite slow when
all the sources are Gaussian. In summary, the ordering ICA can
estimate the number of non-Gaussian sources appropriately in
the undercomplete case and can separate them accurately for
various sample sizes and various total numbers of signals. In
addition, the ordering ICA is not slower than the other methods
though it uses a large number of candidates.

C. Various Data Sets

Here, we focus on the estimation of the number of non-
Gaussian sources. We used the following three data sets.
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Fig. 5. Comparison of the ICA methods for estimating the number of non-Gaussian sources in various source separation problems (sine waves, voices, and
images) for N = 10, N = 20, and N = 30. Each black dotted line corresponds to the true number of non-Gaussian sources, which was set from 0 to 10.
(a) Sine waves. (b) Voices. (c) Images.

1) Sine Waves: Several sine waves were generated randomly
by sin(100θ1t + 2πθ2), where θ1 and θ2 were given according
to the uniform distribution over [0, 1). t ranged over (0, 10] at
intervals of 0.001. Therefore, the sample size M was 10 000.
These sine waves have an identical negative (sub-Gaussian)
kurtosis whose theoretical value is −1.5.

2) Voice Separation: The original data set consists of 160
voices of the DARPA TIMIT Acoustic-Phonetic Continuous
Speech Corpus. The sequence of 20 000 sampling points was
extracted from the head for each voice (namely, M = 20 000).
Their kurtoses were always positive (super-Gaussian) around
from 0.1 to 120 (their mean was 14.2).

3) Image Separation: The original data set consists
of 44 images in the USC-SIPI image database (Volume 3:
Miscellaneous). They were transformed into grayscale images
of 256 × 256 pixels. Each pixel corresponds to a sample.
M was set to 256×256 = 65 536 (the total number of pixels).
The distributions of the source images are quite diverse.
Fig. 4 shows the histogram of the kurtoses of the 44 images.
This histogram shows that there are various source distri-
butions: 25 of the kurtoses are positive (super-Gaussian)
and 19 of them are negative (sub-Gaussian).

The experiment with the following common setting was
carried out for each data set. We set the number of non-
Gaussian sources K from 0 to 10. K sources were selected
randomly from the data set in each run of the experiment.
The total number of signals N was set to 10, 20, and 30.

In other words, N − K Gaussian sources (noises) were given.
The N × N mixing matrix A was randomly initialized in
each run. Fig. 5 shows the averaged results of the estimated
numbers of sources (KAIC) over 10 runs for each data set.
There seems to be no distinct difference among the three data
sets. The accurate estimation is achieved if KAIC is on the
black dotted line. It shows that the ordering ICA could estimate
K accurately especially for K � N (strongly undercomplete).
Even if K is near to N , the estimation was roughly appropriate.
On the other hand, the fast ICA overestimated K with large
fluctuations. JADE always estimated KAIC � N . In summary,
the ordering ICA can estimate the number of non-Gaussian
sources appropriately even if the sources consists of actual
signals with various distributions. It is surprising that the
proposed Gaussianity test is effective without any parameter
setting for such a variety of sources and data sets.

VI. CONCLUSION

In this paper, we constructed a new objective function of the
ICA named the AIF by applying the Gaussian approximation
to the second-order polynomial feature space of sources.
Various mathematical analysis guarantees that the AIF is
an appropriate objective function of the ICA. In addition,
we proposed a simple Gaussianity test in the feature space.
We also constructed a new method named the ordering ICA
by extending the fast ICA simply. It can estimate the num-
ber of non-Gaussian sources accurately and efficiently in
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undercomplete problems. Experimental results verified that
the ordering ICA is useful in various data sets, including
both artificial and real problems. Our proposed method is
promising for other practical applications, such as the analysis
of fMRI data (needing to estimate the number of sources)
and the multiple sound source tracking (needing to fix the
permutation). The essential advantage of our approach based
on the second-order polynomial feature space is that it has
both simplicity and flexibility. Its simplicity leads to the simple
Gaussianity test, and its flexibility leads to the applicability
to various sources. We are planning to utilize the simplicity
further by using other statistical techniques, such as a Bayesian
approach. In addition, we are planning to improve our method
in various ways, such as the postprocessing by the hyperbolic
function instead of the kurtosis, the extension to the complex
domain, and the utilization of the TIC.

Note again that our proposed model is not consistent with
the true model. Nevertheless, the important properties for an
objective function of the ICA are guaranteed mathematically
and experimentally. We are planning to investigate further the
appropriateness of our proposed model.

APPENDIX A
PROOF OF (16)

First, W is triangularized to W = P�P−1, where
� = (

λi j
)

is an upper triangular matrix. Note that |W | is
equal to

∏
i λii . Second, the following equation is utilized:

E(A ⊗ A)DE(B ⊗ B)D = E(A ⊗ A)(B ⊗ B)D (39)

where E and D are the elimination and duplication matrices
defined in Section III-A. A and B are any N × N matrices.
Equation (39) is proved by expanding each element on both
sides. Then, the left-hand side of (16) is rewritten as

|E(W ⊗ W)D|
= |E(P ⊗ P)D||E(P−1 ⊗ P−1)D||E(� ⊗ �)D|
= |E(� ⊗ �)D| =

∏

i, j≥i

λii λ j j . (40)

As each λii is multiplied N + 1 times in
∏

i, j≥i λii λ j j , the
following equation holds:

∏

i, j≥i

λii λ j j =
(

∏

i

λii

)N+1

= |W |N+1. (41)

�

APPENDIX B
PROOF OF THEOREM 1

First, x is assumed to be prewhitened without loss of
generality, because A is invertible. Then, (22) is rewritten as

�(�) = −
∑

i

log
(
3σ 2

ii − 2σii + 1
) −

∑

i, j �=i

σii σ j j + 2σ 2
i j

2

+ (N + 1) log |�| (42)

where � = (
σi j

)
is the covariance matrix of y. We also utilize

� = W W T , because x is whitened. Equation (42) is rewritten

further as

�(σ11, . . . , σN N , τ1, . . . , τN )

= −
∑

i

log
(
3σ 2

ii − 2σii + 1
) −

(∑
i τi

)2 + 2
∑

i τ 2
i

2

+ 3
∑

i σ 2
ii

2
+ (N + 1)

∑

i

log τi (43)

where τi is the i th eigenvalue of �. We also utilize
∑

i τi =∑
i σii and

∑
i τ 2

i = ∑
i, j σ 2

i j . The KKT condition shows that
the following equation holds at the maximum of � of (43)
with respect to every τi under the constraint

∑
i τi = ∑

i σii :

−2τi + N + 1

τi
=

∑

i

τi + λ (44)

where λ is a Lagrange multiplier. Because the left-hand side
of (44) does not depend on i and −2τi + (N + 1/τi ) is
monotonically decreasing, every τi value must be the same as
the τ value. Therefore, � should be a diagonal matrix where
σi j = τδi j . Consequently, (43) is given as

�(τ)=− log(3τ 2 − 2τ + 1) − (N − 1)τ 2

2
+ (N + 1) log τ

(45)

where the constant factor N is neglected. It is shown
that τ = 1 is a solution maximizing �(τ) because
of (∂�(τ)/∂τ)|τ=1 = 0. Moreover, it is shown that
(∂2�(τ)/∂τ 2) is always negative. Thus, τ̂ = 1 is the
unique solution. �

APPENDIX C
NECESSARY CONDITION ON THEOREM 2

Here, it is shown that the KKT condition of the constrained
optimization in Theorem 2 is satisfied when W = A−1. The
following equation always holds:

E
(
y2

i y2
j

)=
∑

k

b2
ikb2

j kκk +
∑

k

b2
ik

∑

k

b2
j k + 2

(
∑

k

bikb jk

)2

(46)

where B = (bi j ) is defined as B = W A, and κk is the kurtosis
of sk . By

∑
k b2

ik = 1 for every i [derived from E
(
y2

i

) = 1],
(22) is equivalent to

�(B) = −
∑

i

(

log

(
∑

k

b4
ikκk + 2

)

−
∑

k b4
ikκk

2

)

−
∑

k

(∑
i b2

ik

)2
κk

2
−

∑

i, j

(
∑

k

bikb jk

)2

+ 2(N + 1) log |B| (47)

where it is utilized that log |A| is a constant. By using that
bi j = δi j is the solution of the ICA, the KKT condition is
given as (∂L(bi j , λi )/∂bi j )|bi j =δi j = 0 where

L = �(B) +
∑

l

λl

(
∑

k

b2
lk − 1

)

(48)
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and λi is the i th Lagrange multiplier. It is rewritten as

∂L(bi j , λi )

∂bi j
|bi j =δi j =

(
− 4κ j

κi + 2
+ 2N − 2 + 2λi

)
δi j = 0.

(49)

It is satisfied for

λ̂i = −N + 1 + 2κi

κi + 2
. (50)

�

APPENDIX D
SUFFICIENT CONDITION ON THEOREM 2

Here, the convergence of the solution of the ICA in the
constrained optimization in Theorem 2 is proved by using
the bordered Hessian matrix. The N2 × N2 Hessian matrix
H = (

hi j,pq
)

of L of (48) at bi j = δi j (bpq = δpq ) and
λi = λ̂i of (50) is given as

hi j,pq

= ∂2L(B, λi )

∂bi j ∂bpq
|bi j =δi j ,bpq=δpq ,λi=λ̂i

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−4N − 12 + 16κi

(κi + 2)2 − 8κi

κi + 2
(i = j = p = q)

−2N − 6 − 2κ j + 4κi

κi + 2
(i �= j, i = p, j =q)

−2N − 6 (i �= j, i = q, j = p)

0 otherwise.

(51)

Using the first derivative of each constraint
∑

l b2
kl − 1, an

N × N2 matrix G = (gk,pq) is defined as

gk,pq = ∂
(∑

l b2
kl − 1

)

∂bpq
|bkq=δkq = −2δkpδkq . (52)

Consequently, the bordered Hessian matrix H̃ is given as

H̃ =
(

0 G
GT H

)
=

⎛

⎝
0 −2I 0

−2I �1 0
0 0 �2

⎞

⎠. (53)

Here, I is the N × N identity matrix. 0 is a matrix of zeros.
�1 is a diagonal matrix, each diagonal element of which is
hii,ii . �2 is a block diagonal matrix given as

�2 =

⎛

⎜⎜
⎜
⎝

J12 0 · · · 0
0 J13 · · · 0
...

...
. . .

...

0 0 · · · J (N−1)N

⎞

⎟⎟
⎟
⎠

, (54)

each diagonal block of which [denoted by J i j (i �= j )] is
given as

J i j =
(

hi j,i j hi j, j i

h j i,i j h j i, j i

)
(55)

where hi j,pq is given in (51). Then, Lemma 4 holds.
Lemma 4: � (r) is defined as the determinant of the square

submatrix consisting of the first r rows and the first r columns
of H̃ . If κi > −2 holds for every i and κi �= 0 holds

except at most one i , (−1)N+k � (2N + k) > 0 holds for
0 ≤ k ≤ N2 − N .

Proof: Here, we show only the outline of the proof. The
rigorous mathematical induction is described in [7]. For k = 0,
� (2N) is given as

� (2N) =
∣
∣
∣∣

0 −2I
−2I �1

∣
∣
∣∣ . (56)

This matrix is transformed into an upper triangular matrix
whose diagonal elements are −2 by interchanging the rows
suitably at N times. Therefore, this matrix is transformed
into a matrix whose diagonal elements are the same and
constant (−2). Therefore, the following inequality holds:

(−1)N �(2N) = (−1)N (−1)N (−2)2N > 0. (57)

For k > 0, the following two inequalities holds:
hi j,i j < −2N − 6 + 4 + 4 = −2N + 2 ≤ 0 (58)

because of κi > −2 and

|J i j | = 4(N − 1)((κi + 2)κ2
j + (κ j + 2)κ2

i )

(κi + 2)(κ j + 2)

+ 4(κiκ j + 2κi + 2κ j )
2

(κi + 2)(κ j + 2)
> 0 (59)

because at least one of κi and κ j is not equal to 0. They mean
that � (2N + k) is negative if k is odd and positive if k is even.
Therefore, � (2N + k) (−1)N+k > 0 holds for any k ≥ 0. �

The constrained optimization theory guarantees that a criti-
cal point of an objective function under some constraints is a
local maximum if (−1)N+k � (2N + k) > 0 holds for every
k ≥ 1, which is called the bordered determinantal criterion
(see [27]). This criterion is satisfied by Lemma 4. �

APPENDIX E
PROOF OF (24)

Under the orthonormality constraint of y = W x where
E (yi) = 0 and E

(
yi y j

) = δi j , x is prewhitened without
loss of generality and W is constrained to be orthonormal.
Therefore, |W | is a constant of 1. In addition,

∑
i y2

i = ∑
i x2

i
always holds so that

∑
i, j y2

i y2
j is a constant. Thus, (18) is

rewritten as

	(W,α) =
∑

i

(
− log(αi + 2)+

(
1

2
− 1

αi + 2

)
E(y4

i − 1)

)

(60)

where constant terms are neglected. �

APPENDIX F
PROOF OF THEOREM 3

Here, we show the outline of the proof. See [8] for the more
rigorous proof. We employ �i (free of αi ) instead of 	i as
the objective function and B = (

bi j
) = W A instead of W

as the parameters. B is orthonormal under the orthonormality
constraint. Then, �i of (25) is rewritten as

�i (bi1, . . . , bi N ) = − log(Z + 2) + Z

2
(61)
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where

Z =
∑

k

b4
ikκk . (62)

Note that Z > −2 holds because of κk > −2. Now,
Lemmas 5 and 6 hold.

Lemma 5: �i is globally maximized if and only if Z is
globally maximized or minimized.

Lemma 6: We assume that there is at least one κk �= 0.
Then, Z is globally maximized or minimized if and only if
b1p = ±1 and b1q = 0 for q �= p, where p corresponds to
the largest or the smallest value of κp .

Lemma 5 is easily proved, because �i (Z) = − log(Z +
2) + Z/2 is a convex function with respect to Z if Z > −2.
Lemma 6 is easily proved by

∑
k b2

1k = 1. These lemmas
guarantee that the pth source with the largest �1(Z = κp)
is extracted as the first component. They also guarantee that
the qth source with the second largest �2(Z = κq) is
extracted under the orthonormality constraint. Therefore, the
mathematical induction guarantees that all the non-Gaussian
sources are extracted in the descending order of ϒ(κk)
if each �i is globally maximized in the Gram–Schmidt
orthonormalization. �
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