
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018 5475

Deep Cascade Learning
Enrique S. Marquez , Jonathon S. Hare, and Mahesan Niranjan

Abstract— In this paper, we propose a novel approach for
efficient training of deep neural networks in a bottom-up fashion
using a layered structure. Our algorithm, which we refer to as
deep cascade learning, is motivated by the cascade correlation
approach of Fahlman and Lebiere, who introduced it in the con-
text of perceptrons. We demonstrate our algorithm on networks
of convolutional layers, though its applicability is more general.
Such training of deep networks in a cascade directly circum-
vents the well-known vanishing gradient problem by ensuring
that the output is always adjacent to the layer being trained.
We present empirical evaluations comparing our deep cascade
training with standard end–end training using back propagation
of two convolutional neural network architectures on benchmark
image classification tasks (CIFAR-10 and CIFAR-100). We then
investigate the features learned by the approach and find that
better, domain-specific, representations are learned in early layers
when compared to what is learned in end–end training. This
is partially attributable to the vanishing gradient problem that
inhibits early layer filters to change significantly from their
initial settings. While both networks perform similarly overall,
recognition accuracy increases progressively with each added
layer, with discriminative features learned in every stage of the
network, whereas in end–end training, no such systematic feature
representation was observed. We also show that such cascade
training has significant computational and memory advantages
over end–end training, and can be used as a pretraining
algorithm to obtain a better performance.

Index Terms— Adaptive learning, cascade correlation,
convolutional neural networks (CNNs), deep learning, image
classification.

I. INTRODUCTION

DEEP convolutional networks have recently shown impres-
sive results in a range of hard problems in AI, such

as computer vision. However, there is still not clear under-
standing regarding how, and what, they learn. These models
are typically trained end–end to capture low- and high-level
features on every convolutional layer. There are still a number
of problems with these networks that have yet to be overcome
in order to obtain even better performance in computer vision
tasks. In particular, one current community-wide trend is
to build deeper and deeper networks; during training, these
networks fall foul of an issue known as the vanishing gradient
problem. The vanishing gradient problem manifests itself in

Manuscript received August 14, 2017; revised December 7, 2017; accepted
January 30, 2018. Date of publication March 6, 2018; date of current version
October 16, 2018. This work was supported by the Department of Electronics
and Computer Science, University of Southampton. (Corresponding author:
Enrique S. Marquez.)

The authors are with the Department of Electronics and Computer
Science, University of Southampton, Southampton, SO17 1BJ U.K. (e-mail:
esm1g14@soton.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2805098

these networks because the gradient-based weight updates
derived through the chain rule for differentiation are the
products of n small numbers, where n is the number of layers
being backward propagated through. In this paper, we aim to
directly tackle the vanishing gradient problem by proposing
a training algorithm that trains the network from the bottom-
to-top layer incrementally, and ensures that the layers being
trained are always close to the output layer. This algorithm
has advantages in terms of complexity by reducing training
time and can potentially also use less memory. The algorithm
also has prospective use in building architectures without static
depth that adapt their complexity to the data.

Several attempts have been proposed to circumvent com-
plexity in learning. Platt [2] developed the Resource Allocating
Network that allocates the memory based on the number of
captured patterns, and learns these representations quickly.
This network was then further enhanced by changing the
LMS algorithm to include the extended Kalman filter, and by
pruning and replacing it improved both in terms of memory
and performance [3], [4]. Further, Shadafan et al. [5] present
a sequential construction of multilayer perceptron (MLP)
classifiers trained locally by recursive least squares algorithm.
Compressing, pruning, and binarization of the weights in a
deep model have also been developed to diminish the learning
complexity of convolutional neural networks (CNNs) [6], [7].

In the late 1980s, Fahlman and Lebiere [1] proposed the
cascade correlation algorithm/architecture as an approach to
sequentially train perceptrons and connect their outputs to
perform a single classification. Inspired by this idea, we have
developed an approach to cascaded layerwise learning that can
be applied to modern deep neural network architectures that
we term deep cascade learning. Our algorithm reduces the
memory and time requirements of the training compared with
the traditional end–end backpropagation, and circumvents the
vanishing gradient problem by learning feature representations
that have increased correlation with the output on every layer.

Many of the core ideas behind CNNs occurred in the
late 1970s with the neocognitron model [8], but failed to
fully catch on for computational reasons. It was not until the
development of LeNet-5 that CNNs took shape [9]. A great
contribution to convolutional networks and an upgrade on
LeNet style architectures came from generalizing the deep
belief network idea [10] to a convolutional network [11].
However, with recent community-wide shift toward the use
of very large models [12] (e.g., 19.4 M parameters) trained on
very large data sets [13] (e.g., ImageNet with 1.4 M images)
using extensive computational resources, we see a revolution
in achievable performances as well as our thinking about such
inference problems. The breakthrough of deep CNNs arrived

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-6501-7482

5476 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

with the ImageNet competition winner 2012 AlexNet [14].
Since then, deep learning has constantly been pushing the
state-of-the-art accuracy in image classification. The com-
munity has now been using these extensive convolutional
networks architecture not only on classification problems, but
in other computer vision and signal processing settings, such
as object localization [15], semantic segmentation [16], face
recognition and identification [17], speech recognition [18],
and text detection [19]. Convolutional networks are very
flexible because they are often trained as feature extractors and
not only as classification devices. Furthermore, these nets can
not only learn robust feature, but can also learn discriminative
binary hash codes [20]. In any case, deep learning still has
a long way to go in order to substantially outperform human
level knowledge [13], [21].

Recently, networks have increased depth in order to capture
low- and high-level features at different stages of the networks.
A few years back, the deepest network was AlexNet with
five convolutional layers and two dense layers, but now
techniques such as the stochastic depth procedure [22] have
used more than 1200 layers to increase the performance of
the network. The rationale for these deeper networks is that
more layers should capture better high-level features. However,
when performing backpropagation on deep networks, because
of the multiplicative effect of the chain rule, the magnitude of
the gradient is greater on layers that are closer to the output,
making the weight updates of the initial layers significantly
smaller (layers that are closer to the input then learn at a slower
rate). This issue is called the vanishing gradient problem,
and it affects every network that is trained with any kind of
backpropagation algorithm that has multiple weight layers.

Multiple algorithms have been proposed to overcome the
vanishing gradient problem. Residual networks [12] are non-
feedforward networks made of residual blocks, which are
composed of convolutional layers, batch normalization [23],
and a bypass connection that helps to alleviate the vanish-
ing gradient problem. However, ResNets are equivalent to
ensembles of shallow networks and do not fully overcome the
vanishing gradient [24]. More recently, deep stochastic depth
networks [22] combine the residual networks architecture with
an extended version of dropout to again further solve the
vanishing gradient problem, obtaining improvements of ∼1%
over ResNets.

The reminder of this paper is organized as follows.
Section I-A explains the cascade learning algorithm and
analyzes its advantages. Section I-B shows the results and
discussion of two experiments performed on two architectures.
Finally, Section II summarizes the findings, contributions, and
potential further work of this paper.

A. Deep Cascade Learning Algorithm

In this section, we describe the proposed deep cascade
learning algorithm and discuss the computational advantages
of training in a layerwise manner. All the codes used to
generate the results in this paper can be found in the GitHub
repository available at http://github.com/EnriqueSMarquez/
CascadeLearning.

Fig. 1. Overview of deep cascade learning on a convolutional network with
n layers. Inputi is the tensor generated by propagating the images through the
layers up to and including Convi − 1. Training proceeds layer by layer; at each
stage using convolutional layer outputs as inputs to train the next layer. The
features are flattened before feeding them to the classification stage. In contrast
with the cascade correlation algorithm, the output block is discarded at the
end of the iteration (see Algorithm 1), and typically, it contains a set of fully
connected layers with nonlinearities and dropout.

1) Algorithm Description: As opposed to the cascade
correlation algorithm, which sequentially trains perceptrons,
we cascade layers of units. The proposed algorithm allows us
to train deep networks in a cascade-like, or bottom-up layer-
by-layer, manner. For the purposes of this paper, we focus
on CNN architectures. The deep cascade learning algorithm
splits the network into its layers and trains each layer one
by one until all the layers in the input architecture have been
trained, however, if no architecture is given, one can use the
cascade learning to train as many layers as desired (e.g., until
the validation error stabilizes). This training procedure allows
us to counter the vanishing gradient problem by forcing the
network to learn features correlated with the output on each
and every layer. The training procedure can be generalized as
“several” single-layer CNNs (subnetworks) that interconnect
and can be trained one at a time from the bottom to top
(see Fig. 1).

The algorithm takes as inputs the hyperparameters of the
training algorithm (e.g., optimizer, loss, and epochs) and the
model to train. Pseudocode of the cascade learning procedure
can be found in Algorithm 1, and will be referred in further
explanations of the algorithm. Learning starts by taking the
first layer of the model and connecting it to the output
with an “output block” (line 9), which might be several
dense layers connected to the output [14], [26], or as it is
sometimes shown in the literature, an average pooling layer
and the output layer with an activation function [27]. Training
using standard backpropagation then commences (using the
presupplied parameters, loop in line 11) to learn weights for
the first model layer (and the weights for the output block).
Once the weights of the first layer have converged, the second
layer can be learned by taking the second layer from the input
model, connecting it to an output block (with the same form as
for the first layer, but potentially a different dimensionality),
and training it against the outputs with pseudoinputs created

MARQUEZ et al.: DEEP CASCADE LEARNING 5477

Algorithm 1 Pseudocode of Cascade Learning Adapted From the Cascade Correlation Algorithm [25]. Training Is Performed
in Batches, Hence Every Epoch Is Performed by Doing Backpropagation Through All the Batches of the Data

procedure CASCADE LEARNING(layers, η, epochs, epochsU pdate, out)
2: Inputs layers : model layers parameters (loss function, activation, regularization, number of filters, size of filters,

stride)
η : Learning rate

4: epochs : starting number of epochs
k : epochs update constant

6: out : output block specifications
Output W : L layers with wl trained weights per layer

8: for layeri ndex = 1 : L do � Cascading through trainable layers
Ini t new layer and connect output block

10: il ← epochs + k × layer_index
for i = 0; i++; i < il do � Loop through data il times

12: wnew ← wold − η∇ J (w) � Update weights by gradient descent
if V alidation error plateaus then

14: η← η/10 � Change learning rate if update criteria is satisfied
end if

16: end for
Disconnect output block and get new inputs

18: end for
end procedure

by forward propagating the actual inputs through the (fixed)
first layer. This process can then repeat until all layers have
been learned. At each stage, the pseudoinputs are generated
by forward propagating the actual inputs through all the
previously trained layers. It should be noted that once layer
weights have been learned that they are fixed for all subse-
quent layers. Fig. 1 gives a graphical overview of the entire
process.

Most hyperparameters in the algorithm remain the same
across each layer, however, we have found it beneficial to
dynamically increase the number of learning epochs as we
get deeper into the network. Additionally, we start training
the initial layers with orders of magnitude fewer epochs than
we would if training end to end. The rationale for this is
that each subnetwork fits the data faster than the end–end
model and we do not want to overfit the data, especially
in the lower layers. Overfitting in the lower layers would
severely hamper the generalization ability of later layers.
In our experiments, we have found that the number of epochs
required to fit the data is dependable on the layer index, if a
layer requires i(epochs), the subsequent layer should require
i(epochs)+k, where k is a constant whose value is set dependent
on the data set.

A particular advantage of such cascaded training is that the
backward propagated gradient is not diminished by hidden lay-
ers as happens in the end–end training. This is because every
trainable layer is immediately adjacent to the output block.
In essence, this should help the network obtain more robust
representations at every layer. In Section I-B, we demonstrate
this by comparing confusion matrices at different layers of
networks trained using deep cascade learning and standard
end–end backpropagation. The other advantages, as demon-
strated in Section I-B, are that the complexity of learning is

reduced over end–end learning, both in terms of training time
and memory.

2) Cascade Learning as Supervised Pretraining Algorithm:
A particular appeal of deep neural networks is pretraining the
weights to obtain a better initialization, and further achieve
better minima. Starting from the work of Hinton et al. [10]
on deep belief networks, unsupervised learning has been
considered in the past as effective pretraining, initializing the
weights which are then improved in a supervised learning
setting. Although this was a great motivation, recent architec-
tures [12], [21], [28], however, have ignored this and
focused on pure supervised learning with random
initialization.

The cascade learning can be used to initialize the fil-
ters in a CNN and diminish the impact of the vanishing
gradient problem. After the weights have been pretrained
using cascade learning, the network is tuned using traditional
end–end training (both stages are supervised). When apply-
ing this procedure, it is imperative to reinitialize the out-
put block after pretraining the network, otherwise the net-
work would rapidly reach the suboptimal minimum obtained
by the cascade learning. This does not provide better per-
formance in terms of accuracy. In Section I-B3, we dis-
cuss how this technique may lead the network to better
generalization.

3) Time Complexity: In a CNN, the time complexity of the
convolutional layers is

O

(
d∑

l=1

nl−1s2
l nlm

2
l i

)
(1)

where i is the number of training iterations, l is the layer
index, d is the last layer index, n is the number of filters,

5478 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

s and m is the size of the input and output (spatial size),
respectively1 [29].

Training a CNN using the deep cascade learning algorithm
changes the time complexity as follows:

O

(
d∑

l=1

nl−1s2
l nl m

2
l il

)
(2)

where il represents the number of training iterations for the
lth layer. The main difference between both equations is the
number of epochs for every layer, in (1) i is constant, while in
(2) i depends on the layer index. Note in this analysis, we have
purposefully ignored the cost of performing the forward passes
to compute the pseudoinputs as this is essentially “free” if
the algorithm is implemented in two threads (given in the
following). The number of iterations in the cascade algorithm
depends on the data set and the model architecture. The
algorithm proportionally increases the number of epochs on
every iteration since the early layers must not be overfit, while
the later layers should be trained to more closely fit the data.
In practice, as shown in the simulations (Section I-B), one
can choose each il such that i1 � i and iL ≤ i , and obtain
almost equivalent performance to the end–end trained network
in a much shorter period of time. If

∑d
l=1 il = i , the time

complexity of both training algorithms is the same, noting
that improvements coming from caching the pseudoinputs are
not considered.

There are two main ways of implementing the algorithm.
The best and most efficient approach is by saving the pseudoin-
puts on disk once they have been computed; in order to
compute the pseudoinputs for the next layer, only one has to
forward propagate the cached pseudoinputs through a single
layer. An alternate, naive, approach would be implement-
ing the algorithm using two threads (or two GPUs), with
one thread using the already trained layers to generate the
pseudoinputs on demand and the other thread training the
current layer. The disadvantage of this is that it would require
the input to be forward propagated on each iteration. The first
approach can further drastically decrease the runtime of the
algorithm and the memory required to train the model at the
expense of disk space used for storing cached pseudoinputs.

4) Space Complexity: When considering the space com-
plexity and memory usage of a network, we not only consider
both the number of parameters of the model, but also the
amount of data that needs to be in memory in order to
perform training of those parameters. In standard end–end
backpropagation, intermediary results (e.g., response maps
from convolutional layers and vectors from dense layers) need
to be stored for an iteration of backpropagation. With modern
hardware and optimizers (based on variants of minibatch
stochastic gradient descent), we usually consider batches of
data being used for the training, so the amount of intermediary
data at each layer is multiplied by the batch size.

Aside from offline storage for caching pseudoinputs and
storing trained weights, the cascade algorithm only requires
that the weights of a single model layer, the output block

1Note that this is the time complexity of a single forward pass; training
increases this by a constant factor of about 3.

TABLE I

SPACE COMPLEXITY OF END–END TRAINING OF VARIOUS DEPTHS OF
VGG STYLE NETWORKS. THE NUMBER OF PARAMETERS INCREASES

WITH DEPTH. THE DATA STORAGE UNITS OF THE TRAINING

DEPEND ON THE COMPUTATIONAL PRECISION

weights, and the pseudoinputs of the current training batch are
stored in RAM (on the CPU or GPU) at any one time. This
potentially allows memory to be used much more effectively
and allows models to be trained whose weights exceed the
amount of available memory, however, this is drastically
affected by the choice of output block architecture, and also
the depth and overall architecture of the network in question.

To explore this further, consider the parameter and data
complexity of a Visual Geometry Group Net (VGG-style
network) of different depths. Assume that we can grow the
depth in the same way as going between the VGG-16 and
VGG-19 models in the original paper [26] (note, we are
considering Model D in the original paper to be VGG-16
and Model E to be VGG-19), whereby to generate the
next deeper architecture, we add an additional convolutional
layer to the last three blocks of similarly sized convolutions.
This process allows us to define models VGG-22, VGG-25,
VGG-28, etc. The number of parameters and training memory
complexity of these models is shown in Table I. The numbers
in this table were computed on the assumption of a batch
size of 1, input size of 32 × 32, and the output block
(last three fully connected/dense layers) consisting of 512,
256, and 10 units, respectively. The remainder of the model
matches the description in the original paper [26], with blocks
of 64, 128, 256, and 512 convolutional filters with a spatial
size of 3 × 3 and the relevant max pooling between blocks.
For simplicity, we assume that the convolutional filters are
zero-padded so the size of the input does not diminish.

The key point to note from Table I is that as the model gets
bigger, the amount of memory required for both parameters
and for data storage of end–end training increases. With our
proposed cascade learning approach, this is not the case; the
total memory complexity is purely a function of the most com-
plex cascaded subnetwork (network trained in one iteration of
the cascade learning). In the case of all the above VGG-style
networks, this happens very early in the cascading process.
More specifically, this happens when cascading the second
layer, as can be seen in Table II, which illustrates that after
the second layer (or more concretely after the first max
pooling), the complexity of subsequent iterations of cascading
reduces. The assumption in computing the numbers in Table II
is that the output blocks mirrored those of the end–end training
had 512, 256, and 10 units, respectively.

If we consider Tables I and II together, we can see with the
architectures in question that for smaller networks the end–end
training will use less memory (although it is slower), while

MARQUEZ et al.: DEEP CASCADE LEARNING 5479

TABLE II

SPACE COMPLEXITY OF CASCADE TRAINING OF VARIOUS LAYERS OF
A VGG STYLE NETWORK. THE NUMBER OF PARAMETERS DECREASES

WITH DEPTH. THE DATA STORAGE UNITS OF THE TRAINING

DEPEND ON THE COMPUTATIONAL PRECISION

for deeper networks, the cascading algorithm will require
less peak memory while bringing time complexity reductions.
Given that the bulk of the space complexity for cascading
comes as a result of the potentially massive number of
trainable parameters in connecting the feature maps from the
early convolutional layers to the first layer of output block,
an obvious question is could we change the output block speci-
fication to reduce the space complexity for these layers? While
not the key focus of this paper, initial experiments described
in Section I-B1a) start to explore the effect of reduced
complexity output blocks on overall network classification
performance.

B. Experiments

The first experiment was performed on a less complex
backpropagation problem and not on a CNN as explained
in Section I-A. We decided to execute this experiment to
quickly determine the efficiency of cascade learning. In this
case, we have chosen a small three hidden layers MLP applied
on the flattened MNIST data set. The results show that this
algorithm is feasible and can obtain better generalization in
early stages of the network with small improvements (∼0.5%).
This was a preliminary experiment, details can be found in the
GitHub repository.

To demonstrate the effectiveness of the deep cascade learn-
ing algorithm, we apply it to two widely known architectures:
a “VGG-style” network [26] and the “All-CNN” [27]. We have
chosen these architectures for several reasons. First, they
are still extensively used in the computer vision community,
and second, they inspired state-of-the-art architectures, such
as ResNets and FractalNets. Explicitly, the VGG net shows
how small filters (3 × 3) can capture patterns at different
scales by just performing enough subsampling. The All-CNN
gave the idea of performing the subsampling with an extra
convolutional layer rather than a pooling layer, and performs
the classification using global average pooling and a dense
layer to diminish the complexity of the network. The rep-
resentations learned in each layer through end–end training
are compared to the ones generated by deep cascade learning.
In order to make a layerwise comparison, we first train an
end–end model, and then use the already trained filters to
train classifiers by attaching and training output blocks (the
model layer weights are fixed at this point, however, in contrast

to cascade learning). The training parameters of the models
remain as similar as possible to make a fair comparison.

The learning rate in both experiments is diminished when
the validation error plateaus. Taking into account that the data
set is noisy and the error does not necessarily decrease after
every epoch, we evaluate the performance after each epoch to
determine whether the learning rate should be changed. More
specifically, we use a mean-window approach that computes
the average of the last five epochs and the last 10 epochs, and
if the difference is negative then the learning rate is decreased
by a factor of 10. The size of the window was tuned for the
cascade learning only; if this approach is used in other training
procedures, it might be necessary to increase the size of the
window.

The increase in the epochs in the cascade algorithm varies
depending on the data set. We performed experiments with
an initial number of epochs ranging from 10 to 100 without
any real change in the overall result, hence, 10 epochs as
starting point is the most convenient. In all the experiments
presented here, every layer iteration initializes a new output
block, which in this case consists of two dense layers with
ReLu activation [30]. The number of neurons in the first layer
will depend on the dimensionality of the input vector, it may
vary between 64 and 512 units, the second layer contains half
as many units as in the first layer. The final layer uses softmax
activation and 10 or 100 units depending on the data set.

Data Sets: We have performed experiments using the
CIFAR-10 and CIFAR-100 [31] image classification data sets,
which have 10 and 100 target labels, respectively. Both data
sets contain 60 000 RGB 32 × 32 images split in three sets:
45 000 images for training, 5000 images for validation, and
10 000 images for testing. In our experiments, the data sets
were normalized and whitened, however, we performed no
further data augmentation, similar to the stochastic depth
procedure [22].

1) CIFAR-10:
VGG Style Networks: The VGG network uses a weight

decay of 0.001, and stochastic gradient descent with a starting
learning rate of 0.01. Our VGG model contains six convolu-
tional layers, starting with 128 3 × 3 filters and duplicating
them after a MaxPooling layer. The initial weights remained
the same in the networks trained by the two approaches to
make the convergence comparable.

a) Space complexity and output block specifications:
In order to test the memory complexity of this network we
must take into account the output block specifications. Specif-
ically, we must consider the first fully connected layer, which
in most networks contains the biggest number of trainable
parameters, particularly when connected to an early convolu-
tional layer (see Section I-A4). On the first iteration of cascade
learning, the output is 128×32×32, hence, the number of neu-
rons (n) in the first fully connected layer must be small enough
to avoid running out of memory, but without jeopardizing
robustness in terms of predictive accuracy. We have performed
an evaluation by cascading this architecture with output blocks
with a range of different parameter complexities. Table III
shows the number of parameters of every layer as well as
the performance for output blocks with first fully connected

5480 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 2. Time complexity comparison between cascade learning, end–end, and pretrained using cascade learning (see Section I-B3 for details and results on
pretraining using cascade learning). Multiple VGG networks were executed within a range of starting number of epochs (10–100) (left) and depth (3,6,9) (right).
Black pentagons: runs executing the naive approach for both cascade learning and the pretraining stage. Blue solid dots: optimal run, which caches the
pseudoinputs after every iteration.

TABLE III

PARAMETER COMPLEXITY COMPARISON USING DIFFERENT OUTPUT BLOCK SPECIFICATIONS SHOWS THE EFFECT OF USING BETWEEN

64 AND 512 UNITS IN THE FIRST FULLY CONNECTED LAYER (WHICH IS MOST CORRELATED WITH THE COMPLEXITY).
LEFT: NUMBER OF PARAMETERS. RIGHT: ACCURACY. BOTTOM ROW SHOWS THE PARAMETERS COMPLEXITY OF THE

END–END MODEL. THE INCREASE IN MEMORY COMPLEXITY ON EARLY STAGES CAN BE NAIVELY REDUCED

BY DECREASING n. POTENTIALLY, MEMORY REDUCTION TECHNIQUES ON THE FIRST FULLY CONNECTED
LAYER ARE APPLICABLE AT EARLY STAGES OF THE NETWORK. LATER LAYERS ARE LESS COMPLEX

layer sizes of n = {64, 128, 256, 512}. In terms of parameters,
cascade learning for early iterations can require more space
than the entire end–end network unless the overall model is
deep. The impact of this disadvantage can be overcome by
choosing a smaller n, and as shown in Table III, the hit on
accuracy need not be particularly high when compared to the
reduction in parameters and saving of memory.

Reducing the number of units can efficiently diminish the
parameters of the network. However, in cases where the
input image is massive, more advanced algorithms to counter
the exploding number of parameters are applicable, such as
tensorizing neural networks and hashed nets [32], [33]. Based
on their findings, applying those types of transformations to
the first fully connected layer should not affect the results.

b) Training time complexity and relationship with depth
and starting number of epochs: Equation 2 is dependent on
the starting number of epochs il and its proportionality with
depth. In Fig. 2, we explored the effects of the time complexity
by these two variables. To reproduce Fig. 2 (left), several
networks were cascaded with il = [10, 30, 50, 70, 100],
the overall required time is not drastically affected by il . For
this particular experiment if il > 50, each iteration is more
likely to be stopped early due to overfitting. Fig. 2 (right)
shows the results on a similar experiment with varying network

Fig. 3. Comparison of confusion matrices in a VGG network trained using the
cascade algorithm and the end–end training on CIFAR-10. First two layers of
the end–end training do not show correlation with the output. While accuracy
increases proportionally with the number of layer using the cascade learning,
it shows more stable features at every stage of the network.

depth (d = [3, 6, 9]). Cascading shallow networks outperforms
end–end training in terms of time. The epochs update constant
(k in Section I-A1) should be minimized on deeper networks to
avoid an excessive overall number of epochs. Fig. 2 shows the
importance of caching the pseudoinputs, the black pentagons
(naive run) are shifted to the right in relation to solid blue dots
(enhanced run).

Fig. 3 shows confusion matrices from both algorithms
across the classifiers trained on each layer. In this experiment,
we found that the features learned using the cascade algorithm
are less noisy, and more correlated with the output in most

MARQUEZ et al.: DEEP CASCADE LEARNING 5481

Fig. 4. Comparison of confusion matrices in All-CNN network trained using
the cascade algorithm and the end–end training on CIFAR-10. Features learned
by cascading the layers are less noisy, and more stable.

Fig. 5. Visualization of the filters learned in the first layer in both algorithms.
(a) Cascade learning. (b) End–end. Each patch corresponds to one 3×3 filter.
Filters learned using the cascade learning show more clear representations with
a wide number of rotations, while in the end–end most filters are redundant.

stages of the network. The results of the experiment shows
that the features learned using the end–end training in the first
and second layer are not correlated with the output; in this
case, the trained output block classifier always makes the
same prediction, and hence, the feature vector is not sparse
at all. The third layer starts building the robustness of the
features with an accuracy of 67.2%, and the peak is reached
in the last layer with 85.6%. In contrast, with the cascade
learning, discriminative features are learned on every layer of
the network. At the third layer, classes such as airplane and
ship are strongly correlated with the features generated in both
cases. The end–end training mostly fails to generalize correctly
in classes related to animals.

On every iteration of the cascade algorithm, the subnetworks
have a tendency to overfit the data. However, this is not
entirely a problem as we have found that overfitting mostly
occurs in the dense layers connected in the output block,
and those are not part of the resulting model. In this way,
we avoid generating overfitted pseudoinputs for the next itera-
tion, hence disconnecting the dense layers works as a matter of
regularization.

One of the ways of determining if the vanishing gradient
problem has been somehow diminished is by observing the
filters/weights on the first layer (the most affected one by this
issue). If the magnitude of the gradient in the first layer is
small, then the filters do not change much from the initialized
one. Fig. 5 shows the filters learned using both algorithms.
The cascade algorithm learned a range of different filters with
different orientation and frequency responses, while using an
end–end training the filters learned are less representative.
Some filters in the end–end training are overlapping, this gen-
erates a problem since the information that is being captured
is redundant.

It is naive to assume the problem is alleviated because
the filters on the cascade learning are further apart from
the initial filters. Hence, to complement the visualization of
the filters, we calculated the magnitude of the gradient after

every mini-batch forward pass on both cascade learning and
end–end and plotted the results on Fig. 6. For the end–end
training, the gradient was computed at every convolutional
layer for all the epochs. For the cascade learning, the gradients
were calculated on every iteration on the core correspondent
convolutional layer. The curves are generated by averaging the
mini-batch gradients in each epoch.

In contrast with cascade learning, the magnitude of the
gradients of end–end training, on early layers, is significantly
smaller than those on deeper layers. Overall, the gradients
are higher for the cascade learning. Cascade learning requires
fewer epochs with high updates on the weights to quickly fit
the data on every iteration. With end–end training the opposite
occurs; it requires more epochs (because of the small updates)
to fit the data.

All-CNN: This architecture contains only convolutional
layers, the downsampling is performed using a convolutional
layer with stride of 2 rather than a pooling operation. It also
performs the classification by downsampling the image until
the dimensionality of the output matches the targets. The
All-CNN paper [27] describes three model architectures.
We have performed our experiments using model C that
contains seven core convolutional layers, and four 1 × 1
convolutional layers to perform the classification with an
average pooling and softmax layers as the output block. In this
case where the output block contains an average pooling
and a softmax activation, each layer would learn the filters
required to classify the data and not to generate robust filters.
Hence, to make a fair comparison of the filters we have
changed the output block of the All-CNN to three dense layers
with softmax activation at the end. In the All-CNN report,
it is stated that changing the output block may results in a
decrease of the performance, however, in this study we aim
to fairly compare both algorithms in every stage rather than
final classification result. The parameters used when cascading
this architecture varies between 2.7 × 106 and 0.33 × 106;
on the other hand the end–end training requires us to store
1.3× 106 parameters.

The All-CNN, using an end–end training, learns better
representations on early layers than the VGG-style net. The
first convolutional layer achieves a performance in the orders
of 20% by learning three classes at the most, this can be
observed in the confusion matrix in Fig. 4. In contrast with
the end–end training, the accuracy when cascading this archi-
tecture progressively increases with the iterations, learning
discriminative representations at every stage of the network
going from 65% to 83.4%.

Fig. 7 compares the performance of both algorithms on each
layer. The accuracy in the cascade learning increases with the
number of layers. In addition, the variance of the performance
is very low in comparison with the end–end, because it forces
the network to learn similar filters in every run, decreasing the
impact of a poor initialization.

We have found that for a given iteration more than
50 epochs are not necessary to achieve a reasonable level of
accuracy without overfitting the data. We also tested the time
complexity of this model within a range of starting epochs
(similar experiment in Section I-B1). We tested the time

5482 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 6. Magnitude of the gradient after every minibatch forward pass on the convolutional layers of the end–end training (right) and the concatenated
gradients of every cascade learning (left) iteration. Vertical lines: start of a new iteration. Curves were smoothed by averaging the gradients (of every batch)
on every epoch.

Fig. 7. Performance on every layer on both architectures. Top: VGG.
Bottom: All-CNN. Cascade learning has a lower variance making the ini-
tialization less relevant to the classification at each layer. It also shows a
progressive increase in the performance without the fluctuations presented in
the end–end training.

complexity from 10 starting epochs to 50 (epochs increase by
10 on every iteration with a ceiling on 50). The time complex-
ity for the All-CNN model C is reduced by ∼2.5 regardless
of the starting number of epochs.

2) CIFAR-100: Similar to the previous experiments,
we have tested how the cascade algorithm behaves with a
100-class problem using the CIFAR-100 data set [31]. The
experimental settings remain the same as Section I-B1, and
the main change to the model is that the output layer now has
100 units to match the number of classes.

In a VGG-style network, the comparison between both
algorithms is similar to a 10 class problem. In end–end

TABLE IV

COMPARISON OF ACCURACY PER LAYER USING THE CASCADE

ALGORITHM AND END–END TRAINING ON CIFAR-100 IN
BOTH ARCHITECTURES. USING THE CASCADE LEARNING

OUTPERFORMS ALMOST ALL THE LAYERS IN A VGG
NETWORK, AND ALMOST ACHIEVES THE SAME

ACCURACY IN THE FINAL STAGE. THE ALL-CNN
WITH AN END–END TRAINING OUTPERFORMS

IN THE FINAL CLASSIFICATION, HOWEVER,
THE FIRST THREE LAYERS DO NOT

LEARN STRONG CORRELATIONS

LIKE WHEN USING THE

CASCADE LEARNING

training, the first two layers do not learn meaningful rep-
resentations, and each layer learns better features using the
cascade algorithm. However, the end–end training performs
better by 1% on the final classification.

In the All-CNN network, the features learned in the
end–end model remained more stable than in CIFAR-10.
Similarly, than in Section I-B1, the first four layers were
outperformed by the cascaded model. The cascade network
in overall had better performance in the end–end model by
6% and 10% on the last layers.

The results on a 100-class problem are arguably the same
as in a 10-class one. It is noted that the All-CNN network,
when trained end–end, can outperform the cascade algorithm
in the final classification but not in the early layers. In the
VGG-style network, deep cascade learning build more robust
features in all the layers, except for the last layer which had
a difference of 1%. Table IV shows a summary of the results
on every layer for both algorithms.

3) Pretraining With Cascade Learning: In the experimental
work described so far, the main advantages of cascade learning
come from: 1) reduced computation, albeit at the loss of
some performance in comparison to end–end training and
2) a better representation at intermediate layers. We next
sought to explore if the representations learned by the
computationally efficient cascading approach could form good

MARQUEZ et al.: DEEP CASCADE LEARNING 5483

Fig. 8. Performance comparison on CIFAR-10 between pretrained network and random initialization. Left: VGG. Right: All-CNN. The step bumps in the
cascade learning are generated due to the start of a new iteration or changes in the learning rate.

Fig. 9. Filters on the first layer for at different stages of the procedure on the VGG network defined in Section I-B1. (a) Initial random weights.
(b) End–end. (c) Cascaded. (d) End–end trained network initialized by cascade learning.

initializations of end–end trained networks and achieve perfor-
mance improvements.

The weights are initialized randomly. Then the procedure is
divided into two stages, first, we cascade the network with the
minimum number of epochs to diminish its time complexity.
Finally, the network is fine-tuned using a backpropagation and
stochastic gradient descent, similar to the end–end training.
We applied this technique using a VGG-style network and
the All-CNN. For more details on the architectures, refer
to Section I-B1.

Fig. 8 shows the difference in performance given ran-
dom and cascade learning initialization. The learning curves
in Fig. 8 are for the VGG and the All-CNN architectures
trained on CIFAR-10. The improvements in testing accuracy
varies between ∼2% and ∼3% for the experiments developed
in this section. However, the most interesting property comes
as a consequence of the variation of the resulting weights after
executing the cascade learning. As shown in Section I-B this
variation is significantly smaller in contrast with its end–end

counterpart. Hence, the results obtained after preinitializing
the network are more stable and less affected by poor initial-
ization. Results on Fig. 2 show that even including the time of
the tuning training stage, the time complexity can be reduced
if the correct parameters for the cascade learning are chosen.
It is important to mention that, the end–end training typically
requires up to 250 epochs, while the tuning stage may only
require a small fraction since the training is stopped when the
training accuracy reaches ∼0.999.

The filters generated by the cascade learning filters are
slightly overfitted (the first layer typically achieves ∼60% on
the unseen data and ∼95% on the training data) as opposed
to the end–end training, on which the filters are more likely
to be close to its initialization. By pretraining with cascade
learning, the network learns filters that are in between both
scenarios (under and overfitness), this behavior can be spotted
on Fig. 9.

Fig. 10 shows the test accuracy during training of a cas-
caded pretrained VGG model on CIFAR-100. Improvements

5484 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 10. Performance comparison between pretrained network and random
initialization on CIFAR-100 using a VGG network.

of ∼2.5% were achieved in the final classification. More
details on this experiment are available in the GitHub reposi-
tory accompanying this paper.

II. CONCLUSION

In this paper, we have proposed a new supervised learning
algorithm to train deep neural networks. We validate our
technique by studying an image classification problem on
two widely used network architectures. The vanishing gradient
problem is diminished by our deep cascade learning, because
it is focused on learning more robust features and filters in
early layers of the network. In addition, the time complexity
is reduced because it no longer needs to forward propagate the
data through the already trained layers on every epoch. In our
experiments, the memory complexity is decreased more than
three times for the VGG style network and four times for
the All-CNN. Standard end–end training has a high variance
in the performance, meaning that the initialization plays an
important role in ensuring a good minimum is reached by
each layer. Deep cascade learning generates a more stable
output on every stage by learning similar representations at
every run. In addition, the cascade learning algorithm has
demonstrated to scale in 10 and 100 class problems, and
shows improvements in the features that are learned across
the stages of the network. Using this algorithm allows us to
train deeper networks without the need to store the entire
network in memory. It should be noted that our algorithm
is not aimed at obtaining better performance than standard
approaches, but with significant reduction in the memory and
time requirements. We have shown that if improvements in
generalization are expected, this algorithm has to be used as
a pretraining algorithm technique.

There are many questions that are still yet to be answered.
How deep can this algorithm go without losing robustness?
We believe that if the performance cannot be improved by
appending a new convolutional layer, l, it should at least be
as good as in the previous layer, l − 1, by learning filters
that directly map the input to the output (filters with 1 in the
center, and zero in the borders). This might not happen because
the layer might quickly find a local minimum. This could be
avoided with a different type of initialization; most probably

one specialized for this algorithm. Our immediate next steps
include observing how deep can the cascading algorithm can
go without losing performance, similar to the experiment
performed with deep residual network [12] and fractal net-
works [28], in order to measure to what extent the vanishing
gradient problem is solved. In [12], the accuracy diminished
when they went beyond 1200 layers, and hence the vanishing
gradient problem was not entirely circumvented. We believe
this algorithm might be able to go deeper without losing
performance by partially overcoming the vanishing gradient
problem, learning “mapping” filters to maintain the features
sparseness, and learn a bigger set of high-level features.
In addition, the deep cascade learning has the potential to
find the number of layers required to fit a certain problem
(adaptive architecture), similar to the cascade correlation [1],
infinite restricted Boltzmann machine [34], and AdaNet [35].

ACKNOWLEDGMENT

The authors would like to thank the support of the NVIDIA
Corporation with the donation of the Titan X GPU used for
this research. They would also like to thank reviewers for their
insightful comments and suggestions, as these led them to an
improvement of this paper.

REFERENCES

[1] S. E. Fahlman and C. Lebiere, “Advances in neural information
processing systems,” in The Cascade-Correlation Learning Architecture,
D. S. Touretzky, Ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers, 1990, pp. 524–532. [Online]. Available: http://dl.acm.org/
citation.cfm?id=109230.107380

[2] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol. 3, no. 2, pp. 213–225, 1991.

[3] V. Kadirkamanathan and M. Niranjan, “A function estimation approach
to sequential learning with neural networks,” Neural Comput., vol. 5,
no. 6, pp. 954–975, Nov. 1993.

[4] C. Molina and M. Niranjan, “Pruning with replacement on limited
resource allocating networks by F-projections,” Neural Comput., vol. 8,
no. 4, pp. 855–868, May 1996.

[5] R. Shadafan, Sequential Training of Multilayer Perceptron Classi-
fiers. Cambridge, U.K.: Univ. Cambridge, 1995. [Online]. Avail-
able: https://books.google.co.uk/books?id=HF tGwAACAAJ

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and Huff-
man coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. (2016).
“XNOR-Net: ImageNet classification using binary convolutional neural
networks.” [Online]. Available: https://arxiv.org/abs/1603.05279

[8] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980. [Online]. Available:
http://dx.doi.org/10.1007/BF00344251

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[11] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009,
pp. 609–616.

[12] K. He, X. Zhang, S. Ren, and J. Sun. (2015). “Deep residual
learning for image recognition.” [Online]. Available: https://arxiv.org/
abs/1512.03385

[13] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Processing Syst., 2012, pp. 1097–1105.

MARQUEZ et al.: DEEP CASCADE LEARNING 5485

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014,
pp. 1–8.

[16] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[17] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing
the gap to human-level performance in face verification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014, pp. 1701–1708.

[18] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid NN-HMM model for
speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2012, pp. 4277–4280.

[19] C. Yan, H. Xie, S. Liu, J. Yin, Y. Zhang, and Q. Dai, “Effective
uyghur language text detection in complex background images for traffic
prompt identification,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1,
pp. 220–229, Jan. 2018.

[20] C. Yan, H. Xie, D. Yang, J. Yin, Y. Zhang, and Q. Dai, “Supervised
hash coding with deep neural network for environment perception of
intelligent vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1,
pp. 284–295, Jan. 2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[22] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.
(2016). “Deep networks with stochastic depth.” [Online]. Available:
https://arxiv.org/abs/1603.09382

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Int. Conf. Mach. Learn., 2015, pp. 448–456.

[24] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like
ensembles of relatively shallow networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 550–558.

[25] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Hoboken, NJ, USA: Wiley, 2012.

[26] K. Simonyan and A. Zisserman. (2014). “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[27] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller.
(2014). “Striving for simplicity: The all convolutional net.” [Online].
Available: https://arxiv.org/abs/1412.6806

[28] G. Larsson, M. Maire, and G. Shakhnarovich. (2016). “FractalNet:
Ultra-deep neural networks without residuals.” [Online]. Available:
https://arxiv.org/abs/1605.07648

[29] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 5353–5360.

[30] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 1–8. [Online]. Available: http://www.icml2010.org/papers/432.pdf

[31] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2009.

[32] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensoriz-
ing neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 442–450.

[33] W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 1–10.

[34] M.-A. Côté and H. Larochelle, “An infinite restricted Boltzmann
machine,” Neural Comput., vol. 28, no. 7, pp. 1265–1288, 2016.

[35] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang. (2016).
“AdaNet: Adaptive structural learning of artificial neural networks.”
[Online]. Available: https://arxiv.org/abs/1607.01097

Enrique S. Marquez received the B.S. degree
in electrical engineering from Universidad Rafael
Urdaneta, Maracaibo, Venezuela, in 2013, and the
M.Sc. degree in artificial intelligence from the
University of Southampton, Southampton, U.K.,
in 2015, where he is currently pursuing the Ph.D.
degree in computer science.

His current research interests include machine
learning, computer vision, and image processing.

Jonathon S. Hare received the B.Eng. degree in
aerospace engineering and the Ph.D. degree in com-
puter science from the University of Southampton.

He is currently a Lecturer in computer science with
the University of Southampton, Southampton, U.K.
His current research interests include multimedia
data mining, analysis, and retrieval. These research
areas are at the convergence of machine learning and
computer vision, but also encompass other modali-
ties of data. The long-term goal of his research is
to innovate techniques that can allow machines to

learn to understand the information conveyed by multimedia data and use
that information to fulfill the information needs of humans.

Mahesan Niranjan held academic positions with the University of Sheffield,
Sheffield, U.K., from 1998 to 2007, where he was the Head of the Department
of Computer Science and the Dean of the Faculty of Engineering, and
the University of Cambridge, Cambridge, U.K., from 1990 to 1997. He is
currently a Professor of electronics and computer science with the University
of Southampton, Southampton, U.K. His current research interest includes
machine learning and made contributions to the algorithmic and applied
aspects of the machine learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

