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Abstract— As an emerging research topic, online class imbal-
ance learning often combines the challenges of both class imbal-
ance and concept drift. It deals with data streams having very
skewed class distributions, where concept drift may occur. It has
recently received increased research attention; however, very
little work addresses the combined problem where both class
imbalance and concept drift coexist. As the first systematic study
of handling concept drift in class-imbalanced data streams, this
paper first provides a comprehensive review of current research
progress in this field, including current research focuses and open
challenges. Then, an in-depth experimental study is performed,
with the goal of understanding how to best overcome concept
drift in online learning with class imbalance.

Index Terms— Class imbalance, concept drift, online learning,
resampling.

I. INTRODUCTION

W ITH the wide application of machine learning algo-
rithms to the real world, class imbalance and concept

drift have become crucial learning issues. Applications in
various domains such as risk management [1], anomaly detec-
tion [2], software engineering [3], and social media mining [4]
are affected by both class imbalance and concept drift. Class
imbalance happens when the data categories are not equally
represented, i.e., at least one category is minority compared
with other categories [5]. It can cause learning bias toward
the majority class and poor generalization. Concept drift is a
change in the underlying distribution of the problem, and is a
significant issue specially when learning from data streams [6].
It requires learners to be adaptive to dynamic changes.

Class imbalance and concept drift can significantly hinder
predictive performance, and the problem becomes particularly
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challenging when they occur simultaneously. This challenge
arises from the fact that one problem can affect the treatment
of the other. For example, drift detection algorithms based
on the traditional classification error may be sensitive to the
imbalanced degree and become less effective, and class imbal-
ance techniques need to be adaptive to changing imbalance
rates; otherwise, the class receiving the preferential treatment
may not be the correct minority class at the current moment.

Although there have been papers studying data streams with
an imbalanced distribution and data streams with concept drift,
respectively, very little work discusses the cases when both
class imbalance and concept drift exist. Hoens et al. [7] gave
the first overview on the combined issue, but only some chunk-
based learning techniques were introduced. Our paper aims
to provide a more systematic study of handling concept drift
in class-imbalanced data streams using experimental studies.
We focus on online (i.e., one-by-one) learning, because it is
a more difficult case than chunk-based learning, considering
that only a single instance is available at a time. Besides,
online learning approaches can be applied to problems where
data arrive in chunks, but chunk-based learning approaches
cannot be applied to online problems where high speed and
memory constraints are present. Online learning approaches
are particularly useful for applications that produce high-speed
data streams, such as robotic systems and sensor networks [3].

We first give a comprehensive review of current research
progress in this field, including problem definitions, problem
and approach categorization, performance evaluation, and up-
to-date approaches. It reveals new challenges and research
gaps. Most existing work focuses on the concept drift in
posterior probabilities [i.e., real concept drift [8] and changes
in P(y|x)]. The challenges in other types of concept drifts
have not been fully discussed and addressed. Especially, the
change in prior probabilities P(y) is closely related to class
imbalance and has been overlooked by most existing work.
Most proposed concept drift detection approaches are designed
for and tested on balanced data streams. Very few approaches
aim to tackle class imbalance and concept drift simultaneously.
Among limited solutions, it is still unclear which approach is
better and when. It is also unknown whether and how applying
class imbalance techniques (e.g., resampling methods) affects
concept drift detection and online prediction.

To fill in the research gaps, we then provide an experimental
insight into how to best overcome concept drift in online
learning with class imbalance, by focusing on three research
questions.

1) What are the challenges in detecting each type of
concept drift when the data stream is imbalanced?
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2) Among the proposed methods designed for online class
imbalance learning with concept drift, which one per-
forms better for which type of concept drift?

3) Would applying class imbalance techniques (e.g., resam-
pling methods) facilitate concept drift detection and
online prediction?

Six recent approaches, drift detection method for online
class imbalance (DDM-OCI) [9], linear four-rate (LFR) [10],
prequential area under the ROC curve Page–Hinkley
(PAUC-PH) [11], [12], OOB [13], RLSACP [14], and ESOS-
ELM [15], are compared and analyzed in depth under each of
the three fundamental types of concept drifts [i.e., changes in
prior probability P(y), class-conditional probability density
function (pdf) p(x|y), and posterior probability P(y|x)] in
artificial data streams, as well as real-world data sets. To the
best of our knowledge, they are the very few methods that are
explicitly designed for online learning problems with class
imbalance and concept drift so far.

Finally, based on the review and experimental results,
we propose several important issues that need to be consid-
ered for developing an effective algorithm for learning from
imbalanced data streams with concept drift. We stress the
importance of studying the mutual effect of class imbalance
and concept drift.

The major contributions of this paper include: 1) this is
the first comprehensive study that looks into concept drift
detection in class-imbalanced data streams; 2) data problems
are categorized into different types of concept drifts and
class imbalances with illustrative applications; 3) existing
approaches are compared and analyzed systematically in each
type; 4) pros and cons of each approach are investigated;
5) the results provide guidance for choosing the appropriate
technique and developing better algorithms for future learning
tasks; and 6) this is also the first work exploring the role of
class imbalance techniques in concept drift detection, which
sheds light on whether and how to tackle class imbalance and
concept drift simultaneously.

The rest of this paper is organized as follows. Section II
formulates the learning problem, including a learning frame-
work and detailed problem descriptions and introduction of
class imbalance and concept drift individually. Section III
reviews the combined issue of class imbalance and con-
cept drift, including example applications and existing solu-
tions. Section IV carries out the experimental study, aiming
to find out the answers to the three research questions.
Section V draws the conclusions and points out potential future
directions.

II. ONLINE LEARNING FRAMEWORK WITH CLASS

IMBALANCE AND CONCEPT DRIFT

In data stream applications, data arrive over time in streams
of examples or batches of examples. The information up
to a specific time step t is used to build/update predictive
models, which then predict the new example(s) arriving at
time step t + 1. Learning under such conditions needs chunk-
based learning or online learning algorithms, depending on
the number of training examples available at each time step.

According to the most agreed definitions [6], [16], chunk-
based learning algorithms process a batch of data examples at
each time step, such as the case of daily Internet usage from a
set of users; online learning algorithms process examples one
by one and the predictive model is updated after receiving
each example [17], such as the case of sensor readings at
every second in engineering systems. The term “incremental
learning” is also frequently used under this scenario. It is
usually referred to as any algorithm that can process data
streams with certain criteria met [18].

On the one hand, online learning can be viewed as a
special case of chunk-based learning. Online learning algo-
rithms can be used to deal with data coming in batches.
They both build and continuously update a learning model
to accommodate newly available data, and simultaneously
maintain its performance on old data, giving rise to the
stability-plasticity dilemma [19]. On the other hand, the way
of designing online and chunk-based learning algorithms can
be very different [6]. Most chunk-based learning algorithms
are unsuitable for online learning tasks, because batch learners
process a chunk of data each time, possibly using an offline
learning algorithm for each chunk. Online learning requires
the model being adapted immediately upon seeing the new
example, and the example is then immediately discarded,
which allows to process high-speed data streams. From this
point of view, designing online learning algorithm can be more
challenging but so far has received much less attention than
the other.

First, the online learner needs to learn from a single data
example, so it needs a more sophisticated training mechanism.
Second, data streams are often nonstationary (concept drift).
The limited availability of training examples at the current
moment in online learning hinders the detection of such
changes and the application of techniques to overcome the
change. Third, it is often seen that data are s class imbalanced
in many classification tasks, such as the fault detection task in
an engineering system, where the fault is always the minority.
Class imbalance aggravates the learning difficulty [5]. This dif-
ficulty can be further complicated by a dynamically changing
imbalanced distribution [20]. However, there is a severe lack
of research addressing the combined issue of class imbalance
and concept drift in online learning.

To fill in this research gap, this paper aims at a comprehen-
sive review of the work done to overcome class imbalance and
concept drift, a systematic study of learning challenges, and
an in-depth analysis of the performance of current approaches.
We begin by formalizing the learning problem in this section.

A. Learning Procedure

In supervised online classification, suppose a data gen-
erating process provides a sequence of examples (xt, yt )
arriving one at a time from an unknown probability distribution
pt(x, y). xt is the input vector belonging to an input space X ,
and yt is the corresponding class label belonging to the label
set Y = {c1, . . . , cN }. We build an online classifier F that
receives the new input xt at time step t and then makes a
prediction. The predicted class label is denoted by ŷt . After
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some time, the classifier receives the true label yt , used
to evaluate the predictive performance and further train the
classifier. This whole process will be repeated at the following
time steps. It is worth pointing out that we do not assume
new training examples always arrive at regular and predefined
intervals here. In other words, the actual time interval between
time step t and t + 1 may be different from the actual time
interval between t + 1 and t + 2.

One challenge arises when data are class imbalanced.
Class imbalance is an important data feature, commonly
seen in applications such as spam filtering [21] and fault
diagnosis [2], [3]. It is the phenomenon when some classes
of data are highly under-represented (i.e., minority) com-
pared with other classes (i.e., majority). For example, if prior
probabilities of the classes P(ci ) � P(c j ), then c j is a
majority class and ci is a minority class. The difficulty
in learning from imbalanced data is that the relatively or
absolutely underrepresented class cannot draw equal attention
to the learning algorithm, which often leads to very specific
classification rules or missing rules for this class without much
generalization ability for future prediction. It has been well
studied in offline learning [22], and has attracted growing
attention in data stream learning in recent years [7].

In many applications, such as energy forecasting and climate
data analysis [23], the data generator operates in nonstation-
ary environments. It gives rise to another challenge, called
“concept drift.” It means that the pdf of the data generating
process is changing over time. For such cases, the fundamen-
tal assumption of traditional data mining—the training and
testing data are sampled from the same static and unknown
distribution—does not hold anymore. Therefore, it is crucial
to monitor the underlying changes, and adapt the model to
accommodate the changes accordingly.

When both issues exist, the online learner needs to be
carefully designed for effectiveness, efficiency, and adaptivity.
An online class imbalance learning framework was proposed
in [20] as a guide for algorithm design. The framework breaks
down the learning procedure into three modules—a class
imbalance detector, a concept drift detector, and an adaptive
online learner, as illustrated in Fig. 1.

The class imbalance detector reports the current class imbal-
ance status of data streams. The concept drift detector captures
concept drifts involving changes in classification boundaries.
Based on the information provided by the first two modules,
the adaptive online learner determines when and how to
respond to the detected class imbalance and concept drift,
in order to maintain its performance. The learning objective
of an online class imbalance algorithm can be described as
“recognizing minority-class data effectively, adaptively, and
timely without sacrificing the performance on the majority
class” [20].

B. Problem Descriptions

A more detailed introduction about class imbalance and
concept drift is given here individually, including the ter-
minology, research focuses, and state-of-the-art approaches.
The purpose of this section is to understand the fundamental

Fig. 1. Learning framework for online class imbalance learning [20].

issues that we need to take extra care of in online class
imbalance learning. We also aim at understanding whether
and how the current research in class imbalance learning
and concept drift detection are individually related to their
combined issue elaborated later in Section III, rather than
to provide an exhaustive list of approaches in the literature.
Among others, we will answer the following questions.

• Can existing class imbalance techniques process data
streams?

• Would existing concept drift detectors be able to handle
imbalanced data streams?

1) Class Imbalance: In class imbalance problems, the
minority class is usually much more difficult or expensive to
be collected than the majority class, such as the spam class in
spam filtering and the fraud class in credit card application.
Thus, misclassifying a minority-class example is more costly.
Unfortunately, the performance of most conventional machine
learning algorithms is significantly compromised by class
imbalance, because they assume or expect balanced class
distributions or equal misclassification costs. Their training
procedure with the aim of maximizing overall accuracy often
leads to a high probability of the induced classifier predicting
an example as the majority class, and a low recognition rate
on the minority class. In reality, it is common to see that the
majority class has accuracy close to 100% and the minority
class has very low accuracy between 0% and 10% [24].
The negative effect of class imbalance on classifiers, such as
decision trees [22], neural networks [25], k-nearest neighbor
[26]–[28], and SVM [29], [30], has been studied. A classifier
that provides a balanced degree of predictive performance for
all classes is required. The major research questions in this
area are summarized and answered as follows.

a) How do we define the imbalanced degree of data? It
seems to be a trivial question. However, there is no consensus
on the definition in the literature. To describe how imbalanced
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the data are, researchers choose to use the percentage of the
minority class in the data set [31], the size ratio between
classes [32], or simply a list of the number of examples in
each class [33]. The coefficient of variance is used in [34],
which is less straightforward. The description of imbalance
status may not be a crucial issue in offline learning, but
becomes more important in online learning, because there
is no static data set in online scenarios. It is necessary to
have some measurement automatically describing the up-to-
date imbalanced degree and techniques monitoring the changes
in class imbalance status. This will help the online learner to
decide when and how to tackle class imbalance. The issue of
changes in class imbalance status is relevant to concept drift,
which will be further discussed in the next section.

To define the imbalanced degree suitable for online learn-
ing, a real-time indicator was proposed—time-decayed class
size [20], expressing the size percentage of each class in the
data stream. It is updated incrementally at each time step using
a time decay (forgetting) factor, which emphasizes the current
status of data and weakens the effect of old data. Based on
this, a class imbalance detector was proposed to determine
which classes should be regarded as the minority/majority and
how imbalanced the current data stream is, and then used for
designing better online classifiers [3], [13]. The merit of this
indicator is that it is suitable for data with arbitrary number
of classes.

b) When does class imbalance matter? It has been shown
that class imbalance is not the only problem responsible for
the performance reduction of classifiers. Classifiers’ sensitivity
to class imbalance also depends on the complexity and overall
size of the data set. Data complexity comprises issues such as
overlapping [35], [36] and small disjuncts [37]. The degree
of overlapping between classes and how the minority class
examples distribute in data space aggravate the negative effect
of class imbalance. The small disjunct problem is associated
with the within-class imbalance [38]. Regarding the size of
the training data, a very large domain has a good chance that
the minority class is represented by a reasonable number of
examples, and thus may be less affected by imbalance than
a small domain containing very few minority class examples.
In other words, the rarity of the minority class can be in a
relative or absolute sense in terms of the number of available
examples [5].

In particular, Napierala and Stefanowski [39], [40] dis-
tinguished and analyzed four types of data distributions in
the minority class—safe, borderline, outliers, and rare exam-
ples. Safe examples are located in the homogenous regions
populated by the examples from one class only; borderline
examples are scattered in the boundary regions between
classes, where the examples from both classes overlap; rare
examples and outliers are singular examples located deeper
in the regions dominated by the majority class. Borderline,
rare, and outlier data sets were found to be the real source
of difficulties in learning imbalanced data sets offline, which
have also been shown to be the harder cases in online
applications [13]. Therefore, for any developed algorithms
dealing with imbalanced data online, it is worth discussing
their performance on data with different types of distributions.

c) How can we tackle class imbalance effectively (state-
of-the-art solutions)? A number of algorithms have been
proposed to tackle class imbalance at the data and algorithm
levels. Data-level algorithms include a variety of resampling
techniques, manipulating training data to rectify the skewed
class distributions. They oversample minority-class examples
(i.e., expanding the minority class), undersample majority-
class examples (i.e., shrinking the majority class), or com-
bine both, until the data set is relatively balanced. Random
oversampling and random undersampling are the simplest
and most popular resampling techniques, where examples
are randomly chosen to be added or removed. There are
also smart resampling techniques (a.k.a guided resampling).
For example, SMOTE [33] is a widely used oversampling
method, which generates new minority-class data points based
on the similarities between original minority-class exam-
ples in the feature space. Other smart oversampling tech-
niques include Borderline-SMOTE [41], ADASYN [42], and
MWMOTE [43], to name but a few. Smart undersampling
techniques include Tomek links [44], one-sided selection [45],
and neighborhood cleaning rule [46]. The effectiveness of
resampling techniques has been proved in real-world appli-
cations [47]. They work independently of classifiers, and are
thus more versatile than algorithm-level methods. The key is
to choose an appropriate sampling rate [48], which is relatively
easy for two-class data sets, but becomes more complicated
for multiclass data sets [49]. Empirical studies have been
carried out to compare different resampling methods [31].
Particularly, it is shown that smart resampling techniques are
not necessarily superior to random oversampling and under-
sampling; besides, they cannot be applied to online scenarios
directly, because they work on a static data set for the relation
among the training examples. Some initial effort has been
made recently, to extend smart resampling techniques to online
learning [50].

Algorithm-level methods address class imbalance by mod-
ifying their training mechanism with the direct goal of
better accuracy on the minority class, including one-class
learning [51], cost-sensitive learning [52], and threshold
methods [53]. They require different treatments for spe-
cific kinds of learning algorithms. In other words, they
are algorithm dependent, so they are not as widely used
as data-level methods. Some online cost-sensitive meth-
ods have been proposed, such as CSOGD [54] and
RLSACP [14]. They are restricted to the perceptron-based
classifiers, and require predefined misclassification costs of
classes that may or may not be updated during the online
learning.

Finally, ensemble learning (also known as multiple classifier
systems) [55] has become a major category of approaches to
handling class imbalance [56]. It combines multiple classifiers
as base learners and aims to outperform every one of them.
It can be easily adapted for emphasizing the minority class
by integrating different resampling techniques [57]–[60] or
by making base classifiers cost-sensitive [61]–[64]. A few
ensemble methods are available for online class imbalance
learning, such as OOB and UOB [13] applying random over-
sampling and undersampling in Online Bagging (OB) [65], and



4806 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 10, OCTOBER 2018

TABLE I

CONFUSION MATRIX FOR A TWO-CLASS PROBLEM

WOS-ELM [66] training a set of cost-sensitive online extreme
learning machines.

It is worth pointing out that the aforementioned online
learning algorithms designed for imbalanced data are unsuit-
able for nonstationary data streams. They do not involve any
mechanism handling drifts that affect classification boundaries,
although OOB and UOB can detect and react to class imbal-
ance changes.

d) How do we evaluate the performance of class imbal-
ance learning algorithms? Traditionally, overall accuracy and
error rate are the most frequently used metrics of performance
evaluation. However, they are strongly biased toward the
majority class when data are imbalanced. Therefore, other
performance measures have been adopted. Most studies con-
centrate on two-class problems. By convention, the minority
class is treated to be the positive, and the majority class is
treated to be the negative. Table I illustrates the confusion
matrix of a two-class problem, producing four numbers on
testing data.

From the confusion matrix, we can derive the expressions
for recall and precision

recall = TP

TP + FN
, (1)

precision = TP

TP + FP
. (2)

Recall (i.e., TP rate) is a measure of completeness—the
proportion of positive class examples that are classified cor-
rectly to all positive class examples. Precision is a measure of
exactness—the proportion of positive class examples that are
classified correctly to the examples predicted as positive by the
classifier. The learning objective of class imbalance learning is
to improve recall without hurting precision. However, improv-
ing recall and precision can be conflicting. Thus, F-measure
is defined to show the tradeoff between them

Fm = (1 + β2) · recall · precision

β2 · precision + recall
(3)

where β corresponds to the relative importance of recall and
precision. It is usually set to one. Kubat et al. [45] proposed
to use G-mean to replace overall accuracy

Gm =
√

TP

TP + FN
× TN

TN + FP
. (4)

It is the geometric mean of positive accuracy (i.e., TP rate)
and negative accuracy (i.e., TN rate). A good classifier should
have high accuracies on both classes and, thus, a high G-mean.

According to [5], any metric that uses values from both
rows of the confusion matrix for addition (or subtraction) will
be inherently sensitive to class imbalance. In other words,
the performance measure will change as class distribution

TABLE II

PERFORMANCE EVALUATION MEASURES FOR
CLASS IMBALANCE PROBLEMS

changes, even though the underlying performance of the
classifier does not. This performance inconsistency can cause
problems when we compare different algorithms over different
data sets. Precision and F-measure, unfortunately, are sensitive
to the class distribution. Therefore, recall and G-mean are
better options.

To compare classifiers over a range of sample distributions,
the area under the ROC curve (AUC) is the best choice.
An ROC curve depicts all possible tradeoffs between TP
rate and FP rate, where FPrate = FP/(TN + FP). TP rate
and FP rate can be understood as the benefits and costs of
classification with respect to data distributions. Each point on
the curve corresponds to a single tradeoff. A better classifier
should produce an ROC curve closer to the top-left corner.
AUC represents an ROC curve as a single scalar value by
estimating the area under the curve, varying in [0, 1]. It is
insensitive to the class distribution, because both TP rate and
FP rate use values from only one row of the confusion matrix.
AUC is usually generated by varying the classification decision
threshold for separating positive and negative classes in the
testing data set [67], [68]. In other words, calculating AUC
requires a set of confusion matrices. Therefore, unlike other
measures based on a single confusion matrix, AUC cannot
be used as an evaluation metric in online learning without
memorizing data. Although a recent study has modified AUC
for evaluating online classifiers [11], it still needs to collect
recently received examples.

The properties of the above measures are summarized
in Table II. They are defined under the two-class con-
text. They cannot be used to evaluate multiclass data
directly, except for recall. Their multiclass versions have been
developed [69]–[71]. The “multiclass” and “online” columns
in Table II show whether the corresponding measure can be
used directly without modification in multiclass and online
data scenarios.

2) Concept Drift: Concept drift is said to occur when the
joint probability P(x, y) changes [8], [72], [73]. The key
research topics in this area include the following.

a) How many types of concept drifts are there? Which
type is more challenging? Concept drift can manifest three
fundamental forms of changes corresponding to the three
major variables in Bayes’ theorem [74]: 1) a change in prior
probability P(y); 2) a change in class-conditional pdf p(x|y);
and 3) a change in posterior probability P(y|x). The three
types of concept drifts are illustrated in Fig. 2, comparing
with the original data distribution shown in Fig. 2(a).

Fig. 2(b) shows the P(y) type of concept drift without
affecting p(x|y) and P(y|x). The decision boundary remains
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Fig. 2. Illustration of three concept drift types. (a) Original distribution.
(b) P(y) drift. (c) p(x|y) drift. (d) P(y|x) drift.

unaffected. The prior probability of the circle class is reduced
in this example. Such change can lead to class imbalance.
A well-learnt discrimination function may drift away from
the true decision boundary, due to the imbalanced class
distribution.

Fig. 2(c) shows the p(x|y) type of concept drift with-
out affecting P(y) and P(y|x). The true decision boundary
remains unaffected. Elwell and Polikar [75] claimed that this
type of drift is the result of an incomplete representation of the
true distribution in current data, which simply requires provid-
ing supplemental data information to the learning model.

Fig. 2(d) shows the P(y|x) type of concept drift. The true
boundary between classes changes after the drift, so that the
previously learnt discrimination function does not apply any
more. In other words, the old function becomes unsuitable
or partially unsuitable, and the learning model needs to be
adapted to the new knowledge.

The posterior distribution change clearly indicates the most
fundamental change in the data generating function. This is
classified as real concept drift. The other two types belong to
virtual concept drift [7], which does not change the decision
(class) boundaries. In practice, one type of concept drift may
appear in combination with other types.

Existing studies primarily focus on the development of drift
detection methods and techniques to overcome the real drift.
There is a significant lack of research on virtual drift, which
can also deteriorate classification performance. As illustrated
in Fig. 2(b), even though these types of drifts do not affect
the true decision boundaries, they can cause a well-learnt
decision boundary to become unsuitable. Unfortunately, the
current techniques for handling real drift may not be suitable
for virtual drift, because they present very different learning
difficulties and require different solutions. For instance, the
methods for handling real drift often choose to reset and

retrain the classifier, in order to forget the old concept and
better learn the new concept. This is not an appropriate
strategy for data with virtual drift, because the examples from
previous time steps may still remain valid and help the current
classification in virtual drift cases. It would be more effective
and efficient to calibrate the existing classifier than retraining
it. Besides, techniques for handling real drift typically rely
on feedback about the performance of the classifier, while
techniques for handling virtual drift can operate without such
feedback [8]. From our point of view, all three types are
equally important. Particularly, the two virtual types require
more research effort than currently dedicated work by our
community. A systematic study of the challenges in each type
will be given in Section IV.

Concept drift has further been characterized by its speed,
severity, cyclical nature, etc. A detailed and mutually exclusive
categorization can be found in [73]. For example, according to
speed, concept drift can be either abrupt, when the generating
function is changed suddenly (usually within one time step),
or gradual, when the distribution evolves slowly over time.
They are the most commonly discussed types in the literature,
because the effectiveness of drift detection methods can vary
with the drifting speed. While most methods are quite suc-
cessful in detecting abrupt drifts, as future data are no longer
related to old data [76], gradual drifts are often more difficult,
because the slow change can delay or hide the hint left by
the drift. We can see some drift detection methods specifically
designed for gradual concept drift, such as early drift detection
method [77].

b) How can we tackle concept drift effectively (state-
of-the-art solutions)? There is a wide range of algorithms
for learning in nonstationary environments. Most of them
assume and specialize in some specific types of concept drifts,
although real-world data often contain multiple types. They are
commonly categorized into two major groups: active versus
passive approaches, depending on whether an explicit drift
detection mechanism is employed. Active approaches (also
known as trigger-based approaches) determine whether and
when a drift has occurred before taking any actions. They oper-
ate based on two mechanisms—a change detector aiming to
sense the drift accurately and timely, and an adaptation mech-
anism aiming to maintain the performance of the classifier by
reacting to the detected drift. Passive approaches (also known
as adaptive classifiers) evolve the classifier continuously with-
out an explicit trigger reporting the drift. A comprehensive
review of up-to-date techniques tackling concept drift is given
by Ditzler et al. [16]. They further organize these techniques
based on their core mechanisms, summarized in Table III.
Table III will help us to understand how online class imbalance
algorithms are designed, which will be introduced in detail in
Section III. There exist other ways to classify the proposed
algorithms, such as Gama et al.’s taxonomy [8] based on the
four modules of an adaptive learning system and Webb et al.’s
quantitative characterization [78]. This paper adopts the one
proposed in [16] for its simplicity.

The best algorithm varies with the intended applications.
A general observation is that, while active approaches are
quite effective in detecting abrupt drift, passive approaches are
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TABLE III

CATEGORIZATION OF CONCEPT DRIFT TECHNIQUES (SEE [16] FOR THE FULL LIST OF TECHNIQUES UNDER EACH CATEGORY)

very good at overcoming gradual drift [16], [75]. It is worth
noting that most algorithms do not consider class imbalance.
It is unclear whether they will remain effective if data become
imbalanced. For example, some algorithms determine concept
drift based on the change in the classification error, including
OLIN [79], DDM [80], and PERM [81]. As we have explained
in Section II-B1), the classification error is sensitive to the
imbalance degree of data, and does not reflect the performance
of the classifier very well when there is class imbalance.
Therefore, these algorithms may not perform well when con-
cept drift and class imbalance occur simultaneously. Some
recent papers tried to tackle this issue using other performance
metrics that are more robust to the imbalance degree. More
details will be given in Section III. Some other algorithms are
specifically designed for data streams coming in batches, such
as AUE [82] and the Learn++ family [75]. These algorithms
cannot be applied to online cases directly.

c) How do we evaluate the performance of concept drift
detectors and online classifiers? To fully test the performance
of drift detection approaches (especially an active detector),
it is necessary to discuss both data with artificial concept
drifts and real-world data with unknown drifts. Using data
with artificial concept drifts allows us to easily manipulate the
type and timing of concept drifts, so as to obtain an in-depth
understanding of the performance of approaches under various
conditions. Testing on data from real-world problems helps
us to understand their effectiveness from the practical point
of view, but the information about when and how concept
drift occurs is unknown in most cases. The following aspects
are usually considered to assess the accuracy of active drift
detectors. Their measurement is based on data with artificial
concept drifts where drifts are known.

• True Detection Rate (TDR): It is the possibility of detect-
ing the true concept drift. It shows the accuracy of the
detection approach.

• False Alarm (FA) Rate: It is the possibility of reporting
a concept drift that does not exist (false-positive rate).
It characterizes the costs and reliability of the detection
approach.

• Delay of Detection (DoD): It is an estimate of how many
time steps are required on average to detect a drift after

the actual occurrence. It reflects how much time would
be taken before the drift is detected.

Wang and Abraham [10] use a histogram to visualize
the distribution of detection points from the drift detection
approach over multiple runs. It reflects all the three aspects
above in one plot. It is worth nothing that there are tradeoffs
between these measures. For example, an approach with a high
TDR may produce a high FA rate. A very recent algorithm,
hierarchical change-detection tests, was proposed to explicitly
deal with the tradeoff [83].

After the performance of drift detection approaches is better
understood, we need to quantify the effect of those detections
on the performance of predictive models. All the performance
metrics introduced in the previous section of “class imbalance”
can be used. The key question here is how to calculate them
in the streaming settings with evolving data. The performance
of the classifier may get better or worse every now and then.
There are two common ways to depict such performance over
time—holdout and prequential evaluation [8].

Holdout evaluation is mostly used when the testing data
set (holdout set) is available in advance. At each time step or
every few time steps, the performance measures are calculated
based on the valid testing set, which must represent the same
data concept as the training data at that moment. However,
this is a very rigorous requirement for data from real-world
applications.

In prequential evaluation, data received at each time step
are used for testing before they are used for training. From
this, the performance measures can be incrementally updated
for evaluation and comparison. This strategy does not require
a holdout set, and the model is always tested on unseen data.

When the data stream is stationary, the prequential perfor-
mance measures can be computed based on the accumulated
sum of a loss function from the beginning of the training. How-
ever, if the data stream is evolving, the accumulated measure
can mask the fluctuation in performance and the adaptation
ability of the classifier. For example, consider that an online
classifier correctly predicts 90 out of 100 examples received so
far (90% accuracy on data with the original concept). Then, an
abrupt concept drift occurs at time step 101, which makes the
classifier only correctly predict 3 out of 10 examples from the
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new concept (30% accuracy on data with the new concept).
If we use the accumulated measure based on all the historical
data, the overall accuracy will be 93/110, which seems to be
high but does not reflect the true performance on the new data
concept. This problem can be solved using a sliding window
or a time-based fading factor that weighs observations [84].

III. OVERCOMING CLASS IMBALANCE AND CONCEPT

DRIFT SIMULTANEOUSLY

Following the review of class imbalance and concept drift in
Section II, this section reviews the combined issue, including
example applications and existing solutions. When both exist,
one problem affects the treatment of the other. For example,
the drift detection algorithms based on the traditional clas-
sification error may be sensitive to imbalanced degree and
become less effective; the class imbalance techniques need to
be adaptive to changing P(y); otherwise, the class receiving
the preferential treatment may not be the correct minority class
at the current moment. Therefore, their mutual effect should
be considered during the algorithm design.

A. Illustrative Applications

The combined problems of concept drift and class imbal-
ance have been found in many real-world applications. Three
examples are given here, to help us understand each type of
concept drift.

1) Environment Monitoring With P(y) Drift: Environment
monitoring systems usually consist of various sensors gener-
ating streaming data in high speed. Real-time prediction is
required. For example, a smart building has sensors deployed
to monitor hazardous events. Any sensor fault can cause
catastrophic failures. Machine learning algorithms can be used
to build models based on the sensor information, aiming to
predict faults in sensors accurately and timely [3]. First, the
data are characterized by class imbalance, because obtaining
a fault in such systems can be very expensive. Examples rep-
resenting faults are the minority. Second, the number of faults
varies with the faulty condition. If the damage gets worse over
time, the faults will occur more and more frequently. It implies
a prior probability change, a type of virtual concept drift.

2) Spam Filtering With p(x |y) Drift: Spam filtering is a
typical classification problem involving class imbalance and
concept drift [85]. First of all, the spam class is the minority
and suffers from a higher misclassification cost. Second, the
spammers are actively working on how to break through the
filter. It means that the adversary actions are adaptive. For
example, one of the spamming behaviors is to change email
content and presentation in disguise, implying a possible class-
conditional pdf ((px|y)) change [8].

3) Social Media Analysis With P(y|x) Drift: In social media
(e.g., Twitter and Facebook), consider the example where a
company would like to make relevant product recommenda-
tions to people who have shown some type of interest in their
tweets. Machine learning algorithms can be used to discover
who is interested in the product based on the tweets [86].
The number of users who have shown the interest is always
very small. Thus, this is a minority class. Meanwhile, users’

interest changes from time to time. Users may lose their
interest in the current trendy product very quickly, causing
posterior probability ((Py|x)) changes.

Although the above examples are associated with only one
type of concept drift, different types often coexist in real-
world problems, which are hard to know in advance. For the
example of spam filtering, which email belongs to spam also
depends on users’ interpretation. Users may relabel a particular
category of normal emails as spam, which indicates a posterior
probability change.

B. Approaches to Tackling Both Class Imbalance
and Concept Drift

Some research efforts have been made to address the joint
problem of concept drift and class imbalance, due to the
rising need from practical problems [1], [87]. Uncorrelated
Bagging is one of the earliest algorithms, which builds an
ensemble of classifiers trained on a more balanced set of
data through resampling and overcomes concept drift pas-
sively by weighing the base classifier based on their dis-
criminative power [88]–[90]. Selectively recursive approaches
SERA [91] and REA [92] use similar ideas to Uncorrelated
Bagging of building an ensemble of weighted classifiers, but
with a “smarter” oversampling technique. Learn++.CDS and
Learn++.NIE are more recent algorithms, which tackle class
imbalance through the oversampling technique SMOTE [33]
or a subensemble technique, and overcome concept drift
through a dynamic weighting strategy [76]. HUWRS.IP [93]
improves HUWRS [94] to deal with imbalanced data streams
by introducing an instance propagation scheme based on a
Naïve–Bayes classifier, and using Hellinger distance as a
weighting measure for concept drift detection. The Hellinger
weight for drift detection is calculated as the average of the
minority-class and majority-class Hellinger distance between
the two feature distributions. It guarantees equal weight to the
Hellinger distance between the minority-class and majority-
class distributions. The instance propagation scheme selects
old minority-class examples that are relevant to the current
data concept. It avoids the problem of using misleading exam-
ples from the old data concept. However, relevant examples
may not exist in some rapid drifting cases. Thus, Hellinger
distance decision tree was proposed to use Hellinger dis-
tance as the decision tree splitting criteria that is imbalance-
insensitive [95]. All these approaches belong to chunk-based
learning algorithms. Their core techniques work when a batch
of data is received at each time step, i.e., they are unsuitable
for online processing. Developing a true online algorithm for
concept drift is very challenging because of the difficulties in
measuring minority-class statistics using only one example at
a time [16].

To detect concept drift in an online imbalanced scenario, a
few methods have been proposed recently. DDM-OCI [9] is
one of the very first algorithms detecting concept drift actively
in imbalanced data streams online. It monitors the reduction
in minority-class recall (i.e., true positive rate). If there is a
significant drop, a drift will be reported. It was shown to be
effective in cases when minority-class recall is affected by
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TABLE IV

ONLINE APPROACHES TO TACKLING CONCEPT DRIFT AND CLASS IMBALANCE, AND THEIR PROPERTIES

the concept drift, but not when the majority class is mainly
affected. An LFR approach was then proposed to improve
DDM-OCI, which monitors four rates from the confusion
matrix—minority-class recall and precision and majority-class
recall and precision, with statistically supported bounds for
drift detection [10]. If any of the four rates exceeds the
bound, a drift will be confirmed. Instead of tracking several
performance rates for each class, PAUC [11], [12] was pro-
posed as an overall performance measure for online scenarios,
and was used as the concept drift indicator in PH test [97].
However, it needs access to historical data. DDM-OCI, LFR,
and PAUC-based PH test are active drift detectors designed
for imbalanced data streams, and are independent of classifi-
cation algorithms. They aim at concept drift with classification
boundary changes by default. Therefore, if a concept drift is
reported, they will reset and retrain the online model. Although
these drift detectors are designed for imbalanced data, they
themselves do not involve any class imbalance techniques,
such as resampling, to adjust the decision boundary of the
online model. It is still unclear how they perform when
working with class imbalance techniques.

Besides the above active approaches, the perceptron-based
algorithms RLSACP [14], ONN [96], and ESOS-ELM [15]
adapt the classification model to nonstationary environments
passively, and involve mechanisms to overcome class imbal-
ance. RLSACP and ONN are single-model approaches with
the same general idea. Their error function for updating
the perceptron weights is modified, including a forgetting
function for model adaptation and an error weighting strategy
as the class imbalance treatment. The forgetting function has a
predefined form, allowing the old data concept to be forgotten
gradually. The error weights in RLSACP are incrementally
updated based either on the classification performance or the
imbalance rate from recently received data. It was shown that
weight updating based on the imbalance rate leads to better
performance.

ESOS-ELM is an ensemble approach, maintaining a set of
online sequential extreme learning machines (OS-ELM) [98].
For tackling class imbalance, resampling is applied in a way
that each OS-ELM is trained with approximately equal number
of minority- and majority-class examples. For tackling concept
drift, voting weights of base classifiers are updated accord-
ing to their performance G-mean on a separate validation
data set from the same environment as the current training
data. In addition to the passive drift detection technique,
ESOS-ELM includes an independent module—ELM-store, to
handle recurring concept drift. ELM-store maintains a pool
of weighted extreme learning machines (WELM) [66] to

retain old information. It adopts a threshold-based technique
and hypothesis testing to detect abrupt and gradual concept
drift actively. If a concept drift is reported, a new WELM
will be built and kept in ELM-store. If any stored model
performs better than the current OS-ELM ensemble, indicating
a possible recurring concept, it will be introduced in the
ensemble. ESOS-ELM assumes the imbalance rate is known
in advance and fixed. It needs a separate data set for initial-
izing OS-ELMs and WELMs, which must include examples
from all classes. It is also necessary to have validation data
sets reflecting every data concept for concept drift detection,
which can be a quite restrictive requirement for real-world
data.

With a different goal of concept drift detection from the
above, a class imbalance detection (CID) approach was pro-
posed, aiming at P(y) changes [20]. It reports the current
imbalance status and provides information of which classes
belong to the minority and which classes belong to the
majority. Particularly, a key indicator is the real-time class
size w

(t)
k , the percentage of class ck at time step t . When a

new example xt arrives, w
(t)
k is incrementally updated by the

following equation [20]:
w

(t)
k = θw

(t−1)
k + (1 − θ)[(xt, ck)], (k = 1, . . . , N) (5)

where [(xt, ck)] = 1 if the true class label of xt is ck ,
and 0 otherwise. θ (0 < θ < 1) is a predefined time decay
(forgetting) factor, which reduces the contribution of older
data to the calculation of class sizes along with time. It is
independent of learning algorithms, so it can be used with
any type of online classifiers. For example, it has been used
in OOB and UOB [13] for deciding the resampling rate adap-
tively and overcoming class imbalance effectively over time.
OOB and UOB integrate oversampling and undersampling,
respectively, into ensemble algorithm OB [65]. Oversampling
and undersampling are one of the simplest and most effective
techniques of tackling class imbalance [31].

The properties of the above online approaches are summa-
rized in Table IV, answering the following six questions in
order.

1) How do they handle concept drift (the type based on the
categorization in Table III)?

2) Do they involve any class imbalance technique to
improve the predictive performance of online models,
in addition to concept drift detection?

3) Do they need access to previously received data?
4) Do they need additional data sets for initialization or

validation?
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5) Can they handle data streams with more than two classes
(multiclass data)?

6) Which type of concept drift can it deal with?

IV. PERFORMANCE ANALYSIS

With a complete review of online class imbalance learning,
we aim at a deep understanding of concept drift detection
in imbalanced data streams and the performance of existing
approaches introduced in Section III-B. Three research ques-
tions will be looked into through experimental analysis. First,
what are the difficulties in detecting each type of concept
drift? Little work has given separate discussions on the three
fundamental types of concept drifts, especially the P(y) drift.
It is important to understand their differences, so that the most
suitable approaches can be used for the best performance.
Second, among existing approaches designed for imbalanced
data streams with concept drift, which approach is better and
when? Although a few approaches have been proposed for the
purpose of overcoming concept drift and class imbalance, it is
still unclear how well they perform for each type of concept
drift. Third, whether and how do class imbalance techniques
affect concept drift detection and online prediction? No study
has looked into the mutual effect of applying class imbalance
techniques and concept drift detection methods. Understanding
the role of class imbalance techniques will help us to develop
more effective concept drift detection methods for imbalanced
data.

A. Data Sets

For an accurate analysis and comparable results, we choose
two most commonly used artificial data generators, SINE1 [80]
and SEA [99], to produce imbalanced data streams containing
three simulated types of concept drifts. In SINE1, each gen-
erated point has two attributes (x1, x2), uniformly distributed
in [0, 1]. The concept is decided by where the point is located
(above the sin function or not). In SEA, each sample has
three attributes x1, x2, and x3 with values between 0 and 10.
Only the first two attributes are relevant. The class label is
determined by a threshold.

This is one of the very few studies that individually discuss
P(y), p(x|y), and P(y|x) types of concept drifts in depth.
In addition, each generator produces two data streams with
a different drifting speed—abrupt and gradual drifts. The
drifting speed is defined as the inverse of the time taken
for a new concept to completely replace the old one [73].
According to speed, drifts can be either abrupt, when the
generating function is changed completely in only one time
step, or gradual, otherwise. The data streams with a gradual
concept drift are denoted by ‘g’ in the following experiment,
i.e., SINE1g [77] and SEAg. Every data stream has 3000 time
steps, with one concept drift starting at time step 1501. The
new concept in SINE1 and SEA fully takes over the data
stream from time step 1501; the concept drift in SINE1g and
SEAg takes 500 time steps to complete, which means that the
new concept fully replaces the old one from time step 2001.
The detailed settings for generating each type of concept drift
are included in the individual sections.

After the detailed analysis of the three types of concept
drifts, three real-world data sets are included in our experiment
with unknown concept drift, which are PAKDD 2009 credit
card data (PAKDD) [100], Weather data [76], and UDI Tweet-
erCrawl data [86]. Data in PAKDD are collected from the
private label credit card operation of a Brazilian retail chain.
The task of this problem is to identify whether the client has
a good or bad credit. The “bad” credit is the minority class,
taking 19.75% of the provided modelling data. Because the
data have been collected from a time interval in the past,
gradual market change occurs. The Weather data set aims
to predict whether rain precipitation was observed on each
day, with inherent seasonal changes. The class of “rain” is
the minority, taking 31% of the data set. The original Tweet
data include 50 million tweets posted mainly from 2008 to
2011. The task is to predict the tweet topic. We choose a
time interval, containing 8774 examples and covering seven
tweet topics [101]. Then, we further reduce it to two-class data
using only two out of seven topics for our experiment. These
real-world data will help us to understand the effectiveness
of existing concept drift and class imbalance approaches in
practical scenarios, which usually have more complex data
distributions and concept drift.

B. Experimental and Evaluation Settings

The approaches listed in Table IV, which are explic-
itly designed for the combined problem of class imbalance
and concept drift, are discussed in our experiment. For the
three active drift detection methods—DDM-OCI, LFR and
PAUC-PH, they need to work with online learning algorithms
for classification. We choose two approaches to build the
online model, the traditional OB [65] and OOB with CID [13],
to build the online model. Because OOB applies oversampling
to overcome class imbalance and OB does not, it can help
us to observe the role of class imbalance techniques (over-
sampling in our experiment) in concept drift detection. UOB
is not chosen, for the consideration that undersampling may
cause unstable performance, which may indirectly affect our
observation [13]. Between RLSACP and ONN, due to their
similarity and the more theoretical support in RLSACP, only
RLSACP is included in our experiment.

Considering RLSACP and ESOS-ELM are perceptron-
based methods, we use the multilayer perceptron (MLP)
classifier as the base learner of OB and OOB. The number
of neurons in the hidden layer of MLPs is set to the average
of the number of attributes and classes in data, which is also
the number of perceptrons in RLSACP and in the base learner
of ESOS-ELM. All ensemble methods maintain 15 base learn-
ers. For ESOS-ELM, we disable the “ELM-Store,” which is
designed for recurring concept drift; we allow that its ensemble
size can grow to 20. In addition, ESOS-ELM requires an ini-
tialization data set to initialize ELMs, and validation data sets
to adjust misclassification costs. When dealing with artificial
data, we use the first 100 examples to initialize ESOS-ELM,
and generate a separate validation data set for each concept
stage. We track the performance of all the methods from time
step 101.
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TABLE V

ARTIFICIAL DATA STREAMS WITH P(y) CONCEPT DRIFT

In summary, 10 algorithms join the comparison from
Table IV: OB, OOB, DDM-OCI+OB/OOB, PAUC-PH+OB/
OOB, LFR+OB/OOB, RLSACP, and ESOS-ELM. OB is the
baseline without involving any class imbalance and concept
drift techniques.

To evaluate the effectiveness of concept drift detection meth-
ods and online learners, we adopt prequential test (as described
in Section II) for its simplicity and popularity. Prequential
recall of each class [defined in (1)] and prequential G-mean
[defined in (4)] are tracked over time for comparison, because
they are insensitive to imbalance rates. When discussing the
generated artificial data sets with ground truth known, we also
compare the true detection rate (TDR), total number of FAs,
and DoD (as defined in Section II) among methods using any
of the three active drift detectors (i.e., DDM-OCI, LFR, and
PAUC-PH). The calculation of TDR, FA, and DoD is the same
for both of the abrupt and the gradual drifting cases, based on
the following understanding: before a real concept drift occurs
(before time step 1500 in our cases), all the reported alarms are
considered as FAs; after a real concept drift starts (after time
step 1500 in our cases), the first detection is seen as the true
drift detection; after that and before the next new real concept
drift, the consequent detections are considered as FAs.

Furthermore, because we are particularly interested in how
the learner performs on the new data concept in the artificial
data sets, we calculate the average recall and G-mean over all
the time steps after the concept drift completely ends (time
step 1500 for the abrupt drifting cases and time step 2000 for
the gradual drifting cases). It is worth noting that the recall
and G-mean values are reset to zero when the drift starts and
ends for an accurate analysis. We use the Wilcoxon Sign Rank
test at the confidence level of 95% as our significance test in
this paper.

C. Comparative Study on Artificial Data

1) P(y) Concept Drift: This section focuses on the P(y)
type of concept drift, without P(x|y) and P(y|x) changes.
Data streams SINE1 and SINE1g have a severe class imbal-
ance change, in which the minority (majority) class during
the first half of data streams becomes the majority (minority)
during the latter half. SEA and SEAg have a less severe
change, in which the data stream presented to be balanced
during the first half becomes imbalanced during the latter half.
P(y) is changed linearly during the concept transition period
(time step 1501 to time step 2000) in the gradual drifting
cases. The concrete setting for each data stream is summarized
in Table V.

Table VI compares the detection performance of the three
active concept drift detectors, in terms of TDR, FA, and

TABLE VI

PERFORMANCE OF THE THREE ACTIVE CONCEPT DRIFT DETECTORS ON

ARTIFICIAL DATA WITH P(y) CHANGES: TDR, FA, AND DOD. THE ‘-’
SYMBOL INDICATES THAT NO CONCEPT DRIFT IS DETECTED

DoD. We can see that DDM-OCI and LFR are sensitive
to class imbalance changes in data. They present very high
TDR; especially, LFR has 100% TDR in all cases regardless
of whether resampling is used to tackle class imbalance.
PAUC-PH does not report any concept drift, showing 0%
TDR in all cases. This is because DDM-OCI and LFR use
time-decayed metrics as the indicator of concept drift, which
have higher sensitivity to performance change in general than
the PAUC used by PAUC-PH. LFR shows even higher TDR
than DDM-OCI, because it tracks four rates in the confusion
matrix instead of one. For the same reason, DDM-OCI and
LFR have a higher chance of issuing FAs than PAUC-PH. For
DDM-OCI, oversampling in OOB increases the probability of
reporting a concept drift by observing TDR in SEA and SEAg,
compared with OB. This is because more examples are used
for training in OOB, which improves the performance on the
minority class for concept drift detection.

Table VII compares recall and G-mean of all models
over the new data concept, i.e., performance over time
steps 1501-3000 for data streams with an abrupt change and
performance over time steps 2001–3000 for data streams with
a gradual change, showing whether and how well the drift
detector can help with learning after concept drift is com-
pleted. In SINE1 and SINE1g, the negative class presents to be
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TABLE VII

PERFORMANCE OF ONLINE LEARNERS ON ARTIFICIAL DATA WITH P(y)
CHANGES: MEANS AND STANDARD DEVIATIONS OF AVERAGE RECALL

OF EACH CLASS AND AVERAGE G-MEAN OVER THE NEW DATA

CONCEPT. THE SIGNIFICANTLY BEST VALUES AMONG

ALL METHODS ARE SHOWN IN BOLD ITALICS

the minority after the change; in SEA and SEAg, the positive
class presents to be the minority after the change.

In terms of minority-class recall, we can see that
ESOS-ELM performs the significantly best, but ESOS-ELM
sacrifices majority-class recall, especially in SINE1 and
SINE1g. In terms of G-mean, OOB and OOB using PAUC-PH
perform the significantly best, which shows they can best
balance the performance between classes. It is worth noting
that PAUC-PH is the drift detection method with 0% TDR
based on Table VI. It means that OOB plays the main role in
learning. It also explains that OOB and OOB using PAUC-PH
have very close performance. None of the other OB and OOB
models show competitive recall and G-mean. Especially for
those using DDM-OCI and LFR, their G-mean is significantly
lower than PAUC-PH with OOB models, due to their high
FA. The high number of FAs causes too much resetting and
performance loss. OOB can increase the chance of producing
an FA, based on the observation that it led to a higher FA
than OB models, because more minority-class examples join
the training. This explains why G-mean from DDM-OCI and

LFR is even lower in OOB models than in OB models, for
the case of SINE1.

Therefore, we conclude that, for P(y) type of concept drift,
it is not necessary to apply any drift detection techniques that
are not specifically designed for class imbalance changes; the
use of these drift detectors could be even detrimental to the
predictive performance due to FAs and performance resetting;
the adaptive resampling in OOB is sufficient to deal with the
change and maintain the predictive performance; when using
OOB with other active concept drift detectors, the number of
FAs and performance resetting need to be carefully considered.

2) p(x|y) Concept Drift: The data streams in this section
involve only p(x|y) type of concept drift, without P(y) and
P(y|x) changes. The class imbalance ratio is fixed to 1:9 and
we let the positive class be the minority, so that the data
stream is constantly imbalanced. The concept drift in each data
stream is controlled by p(x) of the negative class, as shown
in Table VIII. P(x1) is changed linearly during the concept
transition period in the gradual drifting cases.

Table IX compares the detection performance of the three
active concept drift detectors. Similar to our previous results,
DDM-OCI and LFR are more sensitive to P(x |y) changes than
PAUC-PH. When DDM-OCI and LFR work with OOB, their
TDR shows 100%; and LFR has higher FA and shorter DOD
than DDM-OCI, due to more indicators it monitors. PAUC-PH
shows 0% TDR in most cases of working with both OB and
OOB. Different from P(y) changes, when DDM-OCI and
LFR work with OB, their TDR is rather low, which suggests
that their sensitivity is dependent on the class imbalance
techniques. To explain this, we observe OB’s recall of each
class over time. Unlike the cases with class imbalance changes,
where it is possible for the minority-class examples to become
more frequent, the data streams generated in this section
have a fixed minority class with a constantly small prior
probability. The minority-class recall remains low (e.g., 0 in
SINE1 and SINE1g cases) due to the imbalanced distribution.
These detectors cannot detect any concept drift, because the
classification performance they monitored does not change
significantly. In other words, the classification difficulty indi-
rectly affects the detection sensitivity of DDM-OCI and LFR.
When oversampling is applied, which introduces more training
examples for the minority class, the performance metrics
(G-mean, recall, and precision) monitored by DDM-OCI and
LFR can be substantially improved. It also increases the
possibility of reporting a concept drift. This explains the low
detection rate of DDM-OCI and LFR when working with OB
and their high detection rate when working with OOB.

Table X compares recall and G-mean of all models over
the new data concept. As we expected, almost all OB models
show significantly worse minority-class recall and G-mean.
On SINE1 and SINE1g data, minority-class recall of OB
models is as low as zero, which may hinder the detection
of any concept drift (as we observed in Table IX). Among
the OOB models, those using DDM-OCI and LFR perform
significantly worse than OOB using PAUC-PH and OOB
itself, and the latter two show very close performance. This is
because DDM-OCI and LFR trigger concept drift with FAs,
and cause model resetting multiple times. Along with the



4814 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 10, OCTOBER 2018

TABLE VIII

ARTIFICIAL DATA STREAMS WITH p(x|y) CONCEPT DRIFT

TABLE IX

PERFORMANCE OF THE THREE ACTIVE CONCEPT DRIFT DETECTORS ON

ARTIFICIAL DATA WITH p(x|y) CHANGES: TDR, FA, AND DOD. THE

‘-’ SYMBOL INDICATES THAT NO CONCEPT DRIFT IS DETECTED

resetting, the useful and valid information learnt in the past
is forgotten at the same time. For the two passive models,
RLSACP and ESOS-ELM did not perform very well compared
with OOB, showing significantly lower minority-class recall
and G-mean in Table X. Generally speaking, for imbalanced
data streams with p(x|y) changes, class imbalance seems to be
a more important issue than concept drift, considering that the
learning model without triggering any concept drift detection
achieves the best performance. Besides, while the adopted
class imbalance technique can improve the final prediction,
it can also improve the performance of active concept drift
detection methods, depending on their working mechanism.

3) P(y |x) Concept Drift: The data streams in this section
involve only P(y|x) type of concept drift, without P(y) and
p(x|y) changes. Following the settings in Section IV-C2, we
fix the class imbalance ratio to 1:9 and let the positive class be
the minority, so that the data stream is constantly imbalanced.
As shown in Table XI, the data distribution in SINE1 and
SINE1g involves a concept swap, and this change occurs
probabilistically in SINE1g; the data distribution in SEA and
SEAg has a concept threshold moving, and this change occurs
continuously in SEAg. The change in SEA and SEAg is less
severe than the change in SINE1 and SINE1g, because some of

TABLE X

PERFORMANCE OF ONLINE LEARNERS ON ARTIFICIAL DATA WITH p(x|y)
CHANGES: MEANS AND STANDARD DEVIATIONS OF AVERAGE RECALL

OF EACH CLASS AND AVERAGE G-MEAN OVER THE NEW DATA
CONCEPT. THE SIGNIFICANTLY BEST VALUES AMONG

ALL METHODS ARE SHOWN IN BOLD ITALICS

the examples from the old concept are still valid under the new
concept after the threshold moves completely. The concept
drift discussed in this section belongs to the real concept
drift category, which affects the classification boundary and
is expected to be captured by all concept drift detectors.

According to Table XII, we can see that DDM-OCI and LFR
have difficulty in detecting the concept drift when working
with OB, because of the poor recall and G-mean produced by
OB, which is also observed and explained in Section IV-C2.
When DDM-OCI and LFR work with OOB, their detection
rate TDR is greatly improved (above 90% in most cases).
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TABLE XI

ARTIFICIAL DATA STREAMS WITH P(y|x) CONCEPT DRIFT

TABLE XII

PERFORMANCE OF THE THREE ACTIVE CONCEPT DRIFT DETECTORS ON

ARTIFICIAL DATA WITH P(y|x) CHANGES: TDR, FA, AND DOD. THE

‘-’ SYMBOL INDICATES THAT NO CONCEPT DRIFT IS DETECTED

This is because the improved performance metrics facilitate
the detection. LFR is more sensitive to the change, which
produces higher FA and shorter DoD. Different from previous
observations in terms of concept drift detection performance,
PAUC-PH working with OB produces 100% TDR and low
FA on data streams SINE1 and SINE1g, but PAUC-PH does
not work well with OOB on the same data. It is interesting
to see that oversampling does not always play a positive role
in drift detection. One possible reason is that oversampling
sometimes lessens the performance reduction caused by the
real concept drift, while it tries to maintain or improve the
overall predictive performance, especially for AUC type of
metric in our case. There is evidence, showing that AUC is
a more stable metric than G-mean [102], as it is computed
by altering a threshold value for labeling data samples [103].
When classification is significantly improved by oversampling,
we observe in the experiment that PAUC in PAUC-PH is less
affected by the concept drift than the monitored indicators
in DDM-OCI and LFR, thus leading to a smaller TDR. On
data streams SEA and SEAg, PAUC-PH does not report any
concept drift, probably due to the less severe concept drift.

The recall and G-mean over the new data concept in
Table XIII further confirm the above analysis. The OB models

TABLE XIII

PERFORMANCE OF ONLINE LEARNERS ON ARTIFICIAL DATA WITH P(y|x)
CHANGES: MEANS AND STANDARD DEVIATIONS OF AVERAGE RECALL

OF EACH CLASS AND AVERAGE G-MEAN OVER THE NEW DATA
CONCEPT. THE SIGNIFICANTLY BEST VALUES AMONG

ALL METHODS ARE SHOWN IN BOLD ITALICS

produce very low minority-class recall and thus low G-mean.
RLSACP and ESOS-ELM did not perform well on the
new data concept either. By comparing the models that
capture concept drifts (DDM-OCI+OOB, LFR+OOB, and
PAUC-PH+OB) and the models without reporting any con-
cept drift (PAUC-PH+OOB and OOB), it seems that class
imbalance causes a more difficult learning issue than the
real concept drift in our cases. The models solely tackling
class imbalance produce the significantly best recall and
G-mean. The rather low imbalance ratio (i.e., 1:9) could
be a reason. A further discussion on various imbalance
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TABLE XIV

DRIFT DETECTION PERFORMANCE AND G-MEAN OF DDM-OCI AND
PAUC-PH WORKING WITH OB AND OOB ON SINE1 DATA WITH

p(x|y) AND P(y|x) DRIFT. THE ‘-’ SYMBOL INDICATES

THAT NO CONCEPT DRIFT IS DETECTED

levels is given in Section IV-C4. By comparing the results
in Tables VII, X, and XIII, the P(y|x) type of concept drift
indeed leads to the most performance reduction. It is consistent
with our understanding that the real concept drift is the most
radical type of change in data. However, existing approaches
do not seem to tackle it well when data streams are very
imbalanced. To develop better concept drift detection methods,
the key issues here include how to best have them and class
imbalance techniques work together and how to tackle the
performance loss brought by FAs.

4) Analysis Under Different Imbalance Ratios: The results
so far have shown that the imbalance ratio is a crucial factor
affecting concept drift detection and final classification perfor-
mance. When discussing p(x|y) and P(y|x) types of concept
drifts, we fixed the imbalance ratio to 1:9. To generalize our
observations, we vary the imbalance levels in this section. We
aim to find out whether and how the role of class imbalance
changes and when it is worthwhile considering concept drift
in imbalanced data streams. We compare DDM-OCI and
PAUC-PH working with OB and OOB on SINE1 data with a
different imbalance ratio (IR = 1:9, 2:8, and 3:7). Their drift
detection performance (TDR, FA, and DoD) and classification
performance (G-mean) in the cases of IR equal to 2:8 and 3:7
are shown in Table XIV. For clarity purposes, the results in
the case of IR equal to 1:9 from Tables IX, X, XII, and XIII
are also included in Table XIV.

By comparing the results from the three data streams with
a p(x|y) drift at different imbalance levels, we can see
that drift detection gets easier (i.e., a higher TDR) as the
data stream becomes less imbalanced for the OB models
using DDM-OCI. It confirms our previous conclusion that

the imbalance ratio affects the drift detection sensitivity.
Meanwhile, FA is increased as more minority-class examples
join the learning process. The TDR of PAUC-PH remains
zero, regardless of the imbalance ratio. This is because of
the insensitivity of AUC type of metric to the class distrib-
ution, as explained in Section II-B1. Similar to the results in
Section IV-C2, oversampling facilitates the drift detection of
DDM-OCI, and improves G-mean on the new data concept
of both DDM-OCI and PAUC-PH. The model resetting from
DDM-OCI causes performance loss, so that PAUC-PH work-
ing with OOB performs the best.

For the cases with a P(y|x) drift, we obtain similar observa-
tions in Table XIV compared with the results in Section IV-C3:
oversampling and a less imbalanced distribution improve TDR
of DDM-OCI, but also increase its FA; PAUC-PH works
better with OB than with OOB in terms of the drift detection
performance, which further confirms our previous analysis; the
OOB model using PAUC-PH presents the best G-mean.

D. Comparative Study on Real-World Data
After the detailed analysis of the three types of concept

drifts, we now look into the performance of the above learning
models on the three real-world data sets (PAKDD [100],
Weather [76], and Tweet [86]) described in Section IV-A.
Based on the experimental results on the artificial data, we
focus on the best active (PAUC+OOB) and the best passive
concept drift detection methods (ESOS-ELM) here for a clear
observation, in comparison with OOB. The three methods
use the same parameter settings as before. The initialization
and validation data required by ESOS-ELM are the first 2%
examples of each data set.

Without knowing the true concept drifts in real-world data,
we calculate and track the time-decayed G-mean by setting the
decay factor to 0.995, which means that the old performance
is forgotten at the rate of 0.5%. All the compared metrics are
the average of 100 runs in Fig. 3.

Fig. 3 presents the time-decayed G-mean curves from OOB,
PAUC-PH+OOB, and ESOS-ELM on the three real-world
data sets. The average number of reported drifts by PAUC-PH
is one, three, and one on Weather, PAKDD, and Tweet data,
respectively. Compared with the artificial cases, we obtain
some similar results: the passive approach ESOS-ELM does
not perform as well as the other two methods; OOB and
PAUC-PH show very close G-mean over time on Weather and
PAKDD data, which suggests the importance of tackling class
imbalance adaptively.

In the PAKDD plot, we can see that the G-mean level is
relatively stable without significant drop; differently, G-mean
in the Tweet plot is reducing. It may suggest that the concept
drift in PAKDD is less significant or influential than that in
Tweet. Compared with the gradual market and environment
change in PAKDD, the tweet topic change can be much
faster and more notable. Therefore, although PAUC-PH detects
three concept drifts in PAKDD, the two methods, OOB and
PAUC-PH+OOB, do not show much difference. In tweet,
PAUC-PH+OOB presents better G-mean than using OOB
alone, suggesting the positive effect of the active concept drift
detector in fast changing data streams.
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Fig. 3. Time-decayed G-mean curves (decay factor = 0.995) from OOB, PAUC-PH+OOB, and ESOS-ELM on real-world data.

E. Further Discussion
In this section, we summarize and further discuss the results

in the above comparative study on the artificial and real-world
data. We also answer the research questions proposed at the
beginning of this paper. When dealing with imbalanced data
streams with concept drift, we have obtained the following.

1) When both class imbalance and concept drift exist,
class imbalance status and class imbalance changes
[i.e., P(y) changes] are shown to be more crucial
issues than the traditional concept drift [i.e., p(x|y) and
P(y|x) changes] in terms of the online prediction perfor-
mance. It is necessary to adopt adaptive class imbalance
techniques (e.g., OOB discussed in our experiment),
in addition to using concept drift detection methods
alone (e.g., DDM-OCI and LFR). Most existing papers
that proposed new concept drift detection methods for
imbalanced data so far did not consider the effect of class
imbalance techniques on final prediction and concept
drift detection.

2) P(y|x) concept drift (i.e., real concept drift) is the
most severe type of change in data, compared with
p(x|y) and P(y) concept drift. This is based on the
observation on the final prediction performance. For
all three types of concept drifts, existing concept drift
approaches do not show much benefit in performance
improvement. Concept drift is hard to be detected when
no class imbalance technique is applied. Their drift
detection performance is affected by the class imbalance
technique, depending on their detection mechanism.

3) For P(y) concept drift, it is not necessary to apply any
concept drift detection methods that are not designed for
class imbalance changes, due to their FAs and model
resetting. It is crucial to detect and handle the class
imbalance change in time.

4) From an intrinsic perspective, P(y) and p(x|y) types
of concept drifts do not change decision boundaries,
which means that the online model is still valid or
partially valid. Using an appropriate class imbalance
technique alone is thus expected to improve final per-
formance effectively. P(y|x) concept drift, on the other
hand, affects the true decision boundary of the problem.
Although those active drift detectors are designed for
this type of changes, the presence of class imbalance
causes poor classification performance and increases

the difficulty in detecting the drift. The application of
class imbalance techniques can improve the prediction
performance and indirectly facilitate drift detection.

5) From the results on real-world data, we see that the
effectiveness of traditional concept drift detectors (e.g.,
PAUC-PH) depends on the type of concept drift. For fast
and significant concept drift, applying PAUC-PH seems
to be more beneficial to the prediction performance.

6) Among existing methods designed for imbalanced data
with concept drift (four active methods and two passive
methods), the passive methods (i.e., ESOS-ELM and
RLSACP) do not perform well in general. Although
they contain both class imbalance and concept drift
techniques, first, their class imbalance technique is not
effectively adaptive to class imbalance changes, so that
wrong imbalance status could be used during learning,
leading to poor performance in the cases with P(y) con-
cept drift. Second, they are restricted to the use of certain
perceptron-based classifiers, so that the disadvantages of
the classifiers are also inherited by the online model. For
example, OS-ELM in ESOS-ELM requires initialization
and validation data sets for training, and the weighted
OS-ELM was found to overemphasize the minority class
and present large performance variance sometimes in
earlier studies [13]. Third, RLSACP is a single-model
approach, which might be less accurate than ensemble
approaches with multiple models [55].

7) Among the three active methods discussed in this
paper, which are DDM-OCI, LFR, and PAUC-PH,
DDM-OCI and LFR are more sensitive to concept drift
than PAUC-PH, with a higher detection rate but also
higher FAs. In addition, the detection performance of
DDM-OCI and LFR can be greatly improved by OOB.
The explanation can be found in the previous analysis.

8) For the three active drift detectors, model resetting is
triggered if a drift alert is issued. However, this is not the
most appropriate technique for P(y) and p(x|y) types
of concept drifts, because the decision boundary is not
affected, and the old data concept is still useful. Other
ways to handle P(y) and p(x|y) types of concept drifts
should be investigated. Moreover, if the detector suffers
from a high number of FAs, the performance of the
online model can be greatly reduced further. It can be
observed in Tables VII and X. Therefore, it is important
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to control the number of FAs and/or to adopt techniques
to mitigate their negative effects.

9) All the drift detectors discussed in this section detect
concept drift based on classification performance. This
might explain why their drift detection performance
depends greatly on the class imbalance technique and
the online learner. It is worth developing other types of
drift detection methods and exploring how they work
with class imbalance techniques for better classification
in the future.

Overall, all these results suggest us that class imbalance
and concept drift need to be studied simultaneously, when we
design an algorithm to deal with imbalanced data with concept
drift. Their mutual effect must be taken into consideration.
Hence, we propose the following key issues to be considered
for an effective algorithm.

1) Is the class imbalance technique effective in predicting
minority-class examples?

2) Is the class imbalance technique adaptive to class imbal-
ance changes?

3) Is the concept drift technique effective in detecting
different types of concept drifts, in terms of detection
rate, FAs, and detection promptness? Which type of
concept drift is it designed for? Which type of concept
drift does it perform better?

4) Is the detection performance of the concept drift tech-
nique affected by the class imbalance technique? And
how?

5) How can we have the class imbalance technique and
concept drift technique work together, to achieve better
detection rate, fewer FAs, less detection delay, or better
online prediction?

V. CONCLUSION

This paper gives the first systematic study of handling
concept drift in class-imbalanced data streams. In the context
of online learning, we provide a thorough review and an
experimental study of this problem.

First, a comprehensive review is given, including the prob-
lem description and definitions, the individual learning issues
and solutions in class imbalance and concept drift, the com-
bined challenges and existing solutions in online class imbal-
ance learning with concept drift, and example applications.
The review reveals research gaps in the field of online class
imbalance learning with concept drift.

Second, to fill in these research gaps, we carry out a thor-
ough empirical study by looking into the following research
questions.

1) What are the challenges in detecting each type of
concept drift when the data stream is imbalanced?

2) Among the proposed methods designed for online class
imbalance learning with concept drift, which one per-
forms better for which type of concept drift?

3) Would applying class imbalance techniques facilitate the
concept drift detection and online prediction?

For the first research question, a P(y) change can be easily
tackled by an adaptive class imbalance technique (e.g., OOB
used in this paper). The traditional concept drift detectors,

such as LFR, DDM-OCI, and PAUC-PH, do not perform well
in detecting a p(x|y) change. The prediction performance on
an imbalanced data stream with p(x|y) changes can be effec-
tively improved by solely using an adaptive class imbalance
technique. A P(y|x) change is the most challenging case for
learning, where the traditional active and passive concept drift
detection methods do not bring much performance improve-
ment. Class imbalance is shown to be a more crucial issue in
terms of final prediction performance.

For the second research question, the two passive methods,
RLSACP and ESOS-ELM, do not perform well in general.
DDM-OCI and LFR are sensitive to different types of concept
drifts, with a high detection rate but also high FAs. PAUC-PH
is more conservative in terms of drift detection. Based on
the observation on minority-class recall and G-mean, the
combination of PAUC-PH and OOB was shown to be the best
approach among all.

For the third research question, it is necessary to apply adap-
tive class imbalance techniques when learning from imbal-
anced data streams with concept drift—they bring the most
prediction performance improvement. In our experiment, OOB
facilitates the concept drift detection of DDM-OCI and LFR.

Finally, this paper points out several important issues for
future algorithm design. There are still many challenges and
learning issues in this field that are worth of ongoing research,
such as more effective concept drift detection methods for
imbalanced data streams, studying the mutual effect of class
imbalance and concept drift, and more real-world applications
with different types of class imbalances and concept drifts.
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