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Efficient KNN Classification With Different
Numbers of Nearest Neighbors

Shichao Zhang, Senior Member, IEEE, Xuelong Li, Fellow, IEEE, Ming Zong, Xiaofeng Zhu, and Ruili Wang

Abstract—k nearest neighbor (KNN) method is a popular
classification method in data mining and statistics because of its
simple implementation and significant classification performance.
However, it is impractical for traditional KNN methods to assign
a fixed k value (even though set by experts) to all test samples.
Previous solutions assign different k values to different test
samples by the cross validation method but are usually time-
consuming. This paper proposes a kTree method to learn different
optimal k values for different test/new samples, by involving
a training stage in the kNN classification. Specifically, in the
training stage, kTree method first learns optimal k values for
all training samples by a new sparse reconstruction model, and
then constructs a decision tree (namely, kTree) using training
samples and the learned optimal k values. In the test stage,
the kTree fast outputs the optimal k value for each test sample,
and then, the kNN classification can be conducted using the
learned optimal k£ value and all training samples. As a result,
the proposed kTree method has a similar running cost but higher
classification accuracy, compared with traditional KNN methods,
which assign a fixed k value to all test samples. Moreover,
the proposed kTree method needs less running cost but achieves
similar classification accuracy, compared with the newly kNN
methods, which assign different k values to different test samples.
This paper further proposes an improvement version of kTree
method (namely, k*Tree method) to speed its test stage by extra
storing the information of the training samples in the leaf nodes
of kTree, such as the training samples located in the leaf nodes,
their kNNs, and the nearest neighbor of these kNNs. We call
the resulting decision tree as k*Tree, which enables to conduct
kNN classification using a subset of the training samples in the
leaf nodes rather than all training samples used in the newly

Manuscript received February 18, 2016; revised July 28, 2016 and
October 20, 2016; accepted February 20, 2017. Date of publication April 12,
2017; date of current version April 16, 2018. This work was supported in
part by the China “1000-Plan” National Distinguished Professorship, in part
by the Nation Natural Science Foundation of China under Grant 61263035,
Grant 61573270, and Grant 61672177, in part by the China 973 Program under
Grant 2013CB329404, in part by the China Key Research Program under
Grant 2016YFB1000905, in part by the Guangxi Natural Science Foundation
under Grant 2015GXNSFCB139011, in part by the Research Fund of Guangxi
Key Lab of MIMS (16-A-01-01 and 16-A-01-02), in part by the Guangxi High
Institutions’ Program of Introducing 100 High-Level Overseas Talents, in part
by the Guangxi Collaborative Innovation Center of Multi-Source Information
Integration and Intelligent Processing, and in part by the Guangxi “Bagui”
Teams for Innovation and Research. (Corresponding author: Xiaofeng Zhu.)

S. Zhang, M. Zong and X. Zhu are with the Guangxi Key Laboratory of
MIMS, College of Computer Science and Information Technology, Guangxi
Normal University, Guilin 541004, China (e-mail: zhangsc@mailbox.
gxnu.edu.cn; 920902817 @qq.com; xfzhu0011@hotmail.com).

X. Li is with the State Key Laboratory of Transient Optics and Photonics,
Center for OPTical IMagery Analysis and Learning, Xi’an Institute of Optics
and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119,
China (e-mail: xuelongli@opt.ac.cn).

R. Wang is with the Institute of Natural and Mathematical Sciences, Massey
University, Auckland 4442, New Zealand (e-mail: r.wang @massey.ac.nz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2673241

kNN methods. This actually reduces running cost of test stage.
Finally, the experimental results on 20 real data sets showed that
our proposed methods (i.e., kTree and k*Tree) are much more
efficient than the compared methods in terms of classification
tasks.

Index Terms—Decision tree, k nearest neighbor (kNN)
classification, sparse coding.

I. INTRODUCTION

IFFERENT from model-based methods which first learn

models from training samples and then predict test sam-
ples with the learned model [1]-[6], the model-free k nearest
neighbors (kNNs) method does not have training stage and
conducts classification tasks by first calculating the distance
between the test sample and all training samples to obtain
its nearest neighbors and then conducting kNN classification!
(which assigns the test samples with labels by the majority
rule on the labels of selected nearest neighbors). Because
of its simple implementation and significant classification
performance, KNN method is a very popular method in data
mining and statistics and thus was voted as one of top ten data
mining algorithms [7]-[13].

Previous kNN methods include: 1) assigning an optimal
k value with a fixed expert-predefined value for all test
samples [14]-[19] and 2) assigning different optimal k values
for different test samples [18], [20], [21]. For example, Lall
and Sharma [19] indicated that the fixed optimal-k-value for
all test samples should be k = /n (where n > 100 and 7 is the
number of training samples), while Zhu et al. [21] proposed
to select different optimal k values for test samples via
tenfold cross validation method. However, the traditional kNN
method, which assigns fixed kNNs to all test samples (fixed
kNN methods for short), has been shown to be impractical in
real applications. As a consequence, setting an optimal-k-value
for each test sample to conduct kNN classification (varied
kNN methods for short) has been becoming a very interesting
research topic in data mining and machine learning [22]-[29].

A lot of efforts have been focused on the varied kNN
methods, which efficiently set different optimal-k-values to
different samples [20], [30], [31]. For example, Li et al. [32]
proposed to use different numbers of nearest neighbors

n this paper, we call all kinds of methods, which use the labels of kNNs
to classify the test samples, as kNN methods, such as fixed kNN methods and
varied KNN methods. The kNN methods usually includes two steps, i.e., the
setting of k value and the kNN classification. The k value can be set by experts
in the fixed kNN methods while is learned (optimal k value for short) in the
varied kNN methods. The kNN classification represents to use the majority
rule of kNN of the test sample to assign it with labels.

2162-237X © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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for different categories and Sahigara er al. [33] proposed
to employ the Monte Carlo validation method to select
an optimal smoothing parameter k fore each test sample.
Recently, Cheng et al. [20] proposed a sparse-based kNN
method to learn an optimal-k-value for each test sample and
Zhang et al. [30] studied the kNN method by learning a
suitable k value for each test sample based on a reconstruction
framework [34]. Previous varied kNN methods usually first
learn an individual optimal-k-value for each test sample and
then employ the traditional kNN classification (i.e., majority
rule on k training samples) to predict test samples by the
learned optimal-k-value. However, either the process of learn-
ing an optimal-k-value for each test sample or the process of
scanning all training samples for finding nearest neighbors of
each test sample is time-consuming. Therefore, it is challeng-
ing for simultaneously addressing these issues of KNN method,
i.e., optimal-k-values learning for different samples, time cost
reduction, and performance improvement.

To address aforementioned issues of KNN methods, in this
paper, we first propose a kTree? method for fast learning an
optimal-k-value for each test sample, by adding a training
stage into the traditional kNN method and thus outputting a
training model, i.e., building a decision tree (namely, kTree) to
predict the optimal-k-values for all test samples. Specifically,
in the training stage, we first propose to reconstruct each train-
ing sample by all training samples via designing a sparse-based
reconstruction model, which outputs an optimal-k-value for
each training sample. We then construct a decision tree using
training samples and their corresponding optimal-k-values,
i.e., regarding the learned optimal-k-value of each training
sample as the label. The training stage is offline and each
leaf node stores an optimal-k-value in the constructed kTree.
In the test stage, given a test sample, we first search for the
constructed kTree (i.e., the learning model) from the root node
to a leaf node, whose optimal-k-value is assigned to this test
sample so that using traditional kNN classification to assign
it with a label by the majority rule.

There are two distinguished differences between the previ-
ous kNN methods [20], [30] and our proposed kTree method.
First, the previous kNN methods (e.g., fixed kNN methods
and varied kNN methods) have no training stage, while our
kTree method has a sparse-based training stage, whose time
complexity is O(n?) (where n is the sample size). It is
noteworthy that the training stage of our kTree method is
offline. Second, even though both the varied kNN methods
and our proposed kTree method (which can be regarded as
one of varied kNN methods) first search the optimal-k-values
and then conduct traditional kNN classification to classify the
test sample with the learned optimal-k-values, the previous
methods need at least O(n?) time complexity to obtain the
optimal-k-values due to involving a sparse-based learning
process, while our kTree method only needs O(log(d) + n)

21t is noteworthy that the terms (i.e., “kTree” and “k*Tree”) used in this
paper are different from the term “k-tree,” which is widely used in the graph
theory to represent an undirected graph formed by starting with a (k + 1)-
vertex complete graph and then repeatedly adding vertices in such a way that
each added vertex has exactly k neighbors that, together, the k 4 1 vertices
form a clique. More detail on “k-tree” can be found in its Wikipedia page.
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(where d is the dimensions of the features) to do that via
the learned model, i.e., the kTree. It is also noteworthy that
the process of traditional fixed kNN method assigning a fixed
k value to all test samples needs at least O (n>d) via scanning
all training samples for each test sample.

Although our kTree method enables to obtain
optimal-k-values for test samples, it still needs to scan all
training samples to conduct kNN classification, which is also
a time-consuming process, i.e., at least O(nzd). We further
extend our proposed kTree method to its improvement version
(namely, k*Tree method) to speed test stage, by only storing
extra information of training samples in the left nodes, such
as the training samples, their kNNs, and the nearest neighbors
of these nearest neighbors. We call the resulting decision
tree as k*Tree. That is, there is one difference between the
kTree method and the k*Tree method in the training stage,
i.e., the optimal-k-values in the leaf nodes for the kTree,
while the optimal-k-values and the information of training
samples for the k*Tree. In the test stage, given a test sample,
the k*Tree outputs its optimal-k-value and the information
of its nearest neighbors in this leaf node, so the traditional
kNN classification is conducted using the optimal-k-value
and a subset of training samples in the left node (i.e., KNNs
of the nearest neighbor of the test sample and their
corresponding nearest neighbors of these kNNs). In this way,
the number of used training samples s is less than the sample
size n, i.e., s < n, thus reducing the running cost of test
stage.

The rest of this paper is organized as follows. We briefly
recall the state-of-the-art KNN methods and describe the detail
of the proposed method, respectively, in Sections II and III.
We then analyze our experimental results in Section IV and
give our conclusion in Section V.

II. RELATED WORK

While kNN method enables to output remarkable perfor-
mance and has been proved to approximately achieve to the
error rate of Bayes optimization under very mild conditions,
it has widely been applied to many kinds of applications,
such as regression, classification, and missing value impu-
tation [35]-[41]. The performance of kNN method can be
affected by a lot of issues, such as the selection of the k value
and the selection of distance measures. To address these issues,
a large amount of machine learning techniques have been
developed.

Previous study of kNN method mainly focused on searching
for an optimal-k-value for all test samples. For example,
Zhang et al. [42] incorporated certainty factor measure to
conduct kNN classification with a fixed k& value for all
samples [43], while Song et al. [44] proposed to select a
subset of most informative sample from neighborhoods.
Vincent and Bengio [45] designed a k-local hyperplane
distance and Wang et al. [24] defined a new similarity between
two data points [46] for conducting kNN classification.
Recently, Liu et al. [47] proposed an enhanced fuzzy kNN
method to adaptively specify the optimal-k-values by the
particle swarm optimization approach. Gou et al. [48]
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Fig. 2. Flowchart of the proposed k*Tree method.

developed a dual weighted voting scheme for kNN
to overcome the sensitivity of the optimal-k-values.
Premachandran and Kakarala [49] proposed to select a
robust neighborhood using the consensus of multiple rounds
of kNNs.

As it is impractical for applying for a fixed k value for all
test samples in data mining and machine learning, a number of
efforts have been focused on designing different k£ values for
different samples. For example, Li et al. [16] demonstrated
to use different numbers of nearest neighbors for different
categories, rather than a fixed number across all categories.
Gora and Wojna [15] proposed to combine two widely
used empirical approaches, i.e., rule induction and instance-
based learning, respectively, to learn the optimal-k-values.
Guo et al. [50] proposed to construct a kNN model to
automatically determine the optimal-k-value for each sample.
Based on statistical confidence, Wang et al. [18] pro-
posed to locally adjust the number of nearest neighbors.
Manocha and Girolami [51] proposed a probabilistic nearest
neighbor method for inferring the number of neighbors,
i.e., optimal-k-values. Sun and Huang [52] also proposed an
adaptive kNN algorithm, for each test sample, by setting the
optimal-k-value as the optimal k of its nearest neighbor in the
training set.

Although the above methods solved the fixed k value
problem, their complexity is high for learning the
optimal-k-value for each test sample.

III. APPROACH
A. Denotations

In this paper, we denote the matrix, the vector, and the
scalar, respectively, as a boldface uppercase letter, a boldface
lowercase letter, and a normal italic letter. For a matrix

class label

X = [x;;], its ith row and jth column are denoted as x!
and x;, respectively. We denote the Frobenius norms of X,
{>—norm, {1—norm, and 2] —norm, respectively, as ||X]||r =
(Zj ||xj||%)1/2 (matrix norms here are entrywise norm),
Xl = X XDV 11X > > xijl, and
Xl = > (X xizj)l/ 2. We further denote the transpose
operator, the trace operator, and the inverse of a matrix X,
respectively, as X7, tr(X) and X~ 1.

B. Framework

In this section, we describe the proposed kTree method
and k*Tree method in detail. Specifically, we first interpret
the reconstruction process to learn the optimal-k-values for
training samples in Section III-C. We then describe the kTree
method and the k*Tree method, respectively, in Sections III-D
and III-E. Figs. 1 and 2 illustrate the flowcharts of the proposed
methods.

C. Reconstruction

Denote by training samples X € Rdxn — [x1,...,X,],
where n and d, respectively, represent the number of training
samples and features, in this section, we design to use training
samples X to reconstruct themselves, i.e., reconstruct each
training sample x;, with the goal that the distance between
Xw; and x; (where w; € R" denotes the reconstruction
coefficient matrix) is as small as possible. To do this, we use
a least square loss function [53] as follows:

n
: 2 . 2
m&n; [Xwi = ;13 = min | XW — X||7 (1
where W = [wy, ..., w,] € R"" denotes the reconstruction
coefficient or the correlations between training samples and
themselves.
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In real applications, an {2 —norm regularization term is often
added into (1) for avoiding the issue of singularity of XTX,
that is

min |[XW — X|[7 + pl[WII3 @

where ||W]|2 is an {,—norm regularization term and p is
a tuning parameter. Usually, (2) is called ridge regres-
sion [23], [31] with a close solution W = (XX + pI)"!XTX,
However, (2) does not output sparse results. In this paper,
we expect to generate the sparse reconstruction coeffi-
cient (i.e., W) to select parts of training samples to represent
each test sample. Following previous literature [34], [54],
we employ the following sparse objective function:

néiVHIIXW—XII%erIIWIIl, W >0 3)

where ||W]|; is an {;—norm regularization term [55] and
W > 0 means that each element of W is nonnegative.
Equation (3) has been proved to result in sparse W [2], [56]
and is also called the least absolute shrinkage and selection
operator [9], [53]. Moreover, (3) generates the elementwise
sparsity, i.e., irregular sparsity in the elements of W. The larger
the value of pi, the more sparse the W.

Since we use training samples to reconstruct themselves,
it is natural to expect that there exist relations among fea-
tures or samples. Generally, if two features are highly related
to each other, then it is reasonable to have the corresponding
predictions also related [43], [53]. To this end, we devise a
regularization term with the assumption that, if some features,
e.g., x' and x/ are involved in regressing, then the corre-
sponding predictions are also related to each other. Thus, their
corresponding predictions (i.e., y/ = x!W and y/ = x/W)
should have the same or similar relation. To utilize such
relation, we penalize the loss function with the similarity
between y' and y/. Specifically, we impose the relation
between two training samples in X to be reflected in the
relation between their predictions by defining the following
embedding function [43]:

d
1 . .
2
3 > s IXW = x W3 )
ij
where s;; denotes an element in the feature similarity matrix
S=[sij]le R4 which encodes the relation between feature
vectors. With respect to the similarity measure between vectors

of a and b, throughout this paper, we first use a radial basis
function kernel as defined as follows:

)
fla,b) = exp(—w) )

202

where o denotes a kernel width. As for the similarity matrix S,
we first construct a data adjacency graph by regarding each
feature as a node and using kNNs along with a heat kernel
function defined in (5) to compute the edge weights, i.e., sim-
ilarities. For example, if a feature x/ is selected as one of the
kNN of a feature x', then the similarity s;; between these two
features or nodes is set to the value of f(x',x/); otherwise,
their similarity is set to zero, i.e., s;; = 0 [43], [53], [57].
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After simple mathematical transformation, we obtain the
following regularization term:

R(W) = Tr(WT X" LXW) (6)

where L € RY*? is a Laplacian matrix. We should note that the
definition of L is different from [43] and [58], whose Laplacian
matrix indicates the relational information between samples,
while our Laplacian matrix indicates the relational information
between features, which has been successfully used in many
manifold learning methods [50], [57], [58]. Finally, we define
the final objective function for the reconstruction process as
follows:

min | XW — XI5 + o1 Wil + p2ROW), W= 0. (7)

Equation (7) sequentially includes the least square loss
function, the £1-norm regularization term, the graph Laplacian
regularization term, and the nonnegative constraint. According
to [56] and [59], both the least square loss function and the
graph Laplacian regularization term are convex and smooth,
while either the ¢1-norm regularization term or the nonnegative
constraint is convex but not differentiable in all the range
of W and thus being convex but nonsmooth. Therefore, our
final objective function is convex but nonsmooth. According
to [30] and [59], we can use an iterative method to opti-
mize (7). As the objective function (7) is convex, the W
satisfying (7) is a global optimum solution. Moreover, it will
converge to the global optimum of the objective function (7).
In this paper, we omit the proof, since it can be directly
obtained according to [30, Th. 1].

After optimizing (7), we obtain the optimal solution W*,
i.e., the weight matrix or the correlations between training
samples and themselves. The element w;; of W* denotes
the correlation between the ith training sample and the jth
training sample. The positive weight (i.e., w;; > 0) indicates
that the ith training sample and the jth training sample are
positively correlated, and the negative weight (i.e., w;; < 0)
means that their correlation is negative. In particular, the zero
weight (i.e., w;; = 0) means that there is no correlation
between the ith training sample and the jth training sample.
In other words, the ith training sample should not be used for
predicting the jth training sample. Consequently, we only use
those correlated training samples (i.e., the training samples
with nonzero coefficient) to predict each training sample,
rather than using all training samples.

To better understand the characteristics of the proposed
reconstruction method, we assume the optimal solution
W* € R as follows:

02 005 O 0 0
0 07 0 06 0.1
W* = 0 002 09 O 0
0.1 03 0 08 O

002 0 01 O 03

In this example, we have five training samples. According
to our proposed method, the values in the first column of
W* indicate the correlations between the first training sample
and all five training samples. Due to that there are only
three nonzero values in the first column, i.e., wi|, w41,
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Fig. 4. Classmcatlon accuracy on ten data sets with dlfferent iample size. (a) Abalone (p; = 10 pr = 10" 5) (b) Balance (p; = 1077, po = 10’5).
(¢) Blood (p; = 1073, pp = 107%). (d) Car (p; = 1073, po = 10~1). (e) BreastOri (p; = 10~ ,p2 = 1075). (f) Australian (p; = 10~ 3, pr = 1073).
(g) Climate (p; = 10*4, p2 = 1079). (h) German (p; = 10*4, p2 = 107%). (i) DDCclients (p; = 1073, pp = 107). (j) MicePE (p; = 1074, po = 107%);.
TABLE I
RESULT OF CLASSIFICATION ACCURACY/RUNNING COST (MEAN)
Dataset (#(samples)) kNN AD-KNN S-kNN GS-kNN FASBIR LC-kNN kTree k*Tree
Abalone (4177) 0.640,5.36 0.671,72000 0.685 /42000 0.684 /42050 0.667 /10.4 0.632,/1.50 0.683,75.30 0.682 1.21
Balance (625) 0.823,70.23 0.846,/ 5 0.860, 87 0.865/ 92 0.845,70.45 0.820,,0.19 | 0.875,,0.22 | 0.857,0.18
Blood (748) 0.723,/0.19 0737,/ 17 0.769,/ 51 0.770/ 44 0.740,70.40 0.720,70.17 0.753,70.19 0.759,/0.14
Car (1728) 0.923 /091 0942,/ 19 0.950/ 678 0951,/ 794 0.937,/2.10 0.923,/0.52 0.954,70.78 0.950,70.40
BreastOri (683) 0.926,/0.11 0943,/ 4 0965/ 48 0967,/ 50 0.948 /0.20 0.925,/0.11 0.957 /0.12 0.958,70.09
Australian (690) 0.850,70.21 0.867/ 8 0.883,/ 38 0.883,/ 31 0.862,70.42 0.847,/0.12 0.874 /0.21 0.874 /0.08
Climate (540) 0.893,70.13 0924,/ 13 0.942 /7 5 0.941,/ 6 0.925,70.31 0.885,,0.12 | 0.935,,0.19 | 0.935,0.04
German (1000) 0.686,70.63 0.710/ 15 0.733,/ 32 0.740/ 33 0.712/1.31 0.685,70.35 0.732,/0.42 0.731,/0.13
DDCclients (4000) 0.763 /152 0.800,73000 0.828 /62000 0.824 /63000 0.788,30.2 0.750,/3.04 0.820,77.10 0.820,3.02
MicePE (1080) 0.670 /4.00 0.710/ 29 0.741 / 1678 0.740 / 1794 0.699 /6.21 0.650,2.50 0.720/2.78 0.725 /145
AVERAGE 0.789 /2.67 0.815,/ 510 0.835,710661 0.836,10789 0.812,75.14 0.784,0.85 0.830,71.72 0.829,/0.67

and wsy, the first training sample is only related to the last
two training samples except itself, i.e.,
sample and the fifth training sample. More specifically, in the
kNN classification step, we only need to regard the last
two training samples as the nearest neighbors of the first
the corresponding optimal-k-value is 2.

training sample, i.e.,

the fourth training

of W*,

the nearest neighbors of the second training sample, i.e.,
corresponding optimal-k-value is 3. Obviously, for the third
training sample, it should be predicted by the fifth training
sample. The corresponding optimal-k-value is 1. In this way,

Meanwhile, according to the values of the second column
we only need to regard three training samples as

the
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the nearest neighbors of each training sample are obtained
by learning the proposed reconstruction model. Moreover,
the optimal-k-value in the kNN algorithm are different for
different samples. Hence, (7) takes the distribution of data and
prior knowledge into account for selecting the optimal-k-value
for each training sample.
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=60 =
'g 'g 1.5
o
3 8
240 K
'§20 Ao 205
5 <
['4 g Y
% 5 10 € % 5 10
Iterations Iterations
Fig. 12.  Running cost of all methods (left) and five methods zoomed in

from the left subfigure (right) on German with a sample size of 1000.

x10°

o8 ~ kNN T 40,
é - 4 ADKNN § T :;ZgBIR
- - —»kTree
g4 eS| 820 ~—KTree
j=)} —vkTree (=3
£2 TkTee | £10
S P G PSP UP PN 5 0
% 10 L) 5
Iterations Iterations
Fig. 13. Running cost of all methods (left) and five methods zoomed in
from the left subfigure (right) on DDCclients with a sample size of 4000.
22000 g8 P
o o FASBIR
$ 1500 86 + LC-kNN|
5 3 —kTree
S 1000 3 4 o[~k Tree
2 500 22
5 €
S S
2 G 10 2% 10

5 5
Iterations Iterations

Fig. 14. Running cost of all methods (left) and five methods zoomed in
from the left subfigure (right) on MicePE with a sample size of 1000.

D. kTree Method

The kNN based on graph sparse reconstruction (GS-kNN)
method in [30] used (7) to reconstruct test samples by training
samples to yield good performance. However, it is time-
consuming, i.e., at least O (n?) for predicting each test sample,
where n is the number of training samples. To overcome
this, we propose a training stage to construct a k-decision
tree (namely, kTree) between training samples and their cor-
responding optimal-k-values. The motivation of our method
is that we expect to find the relationship between training
samples and their optimal-k-values so that the learned kTree
enables to output an optimal-k-value for a test sample in the
test stage. In this way, our test stage with time complexity
O(log (d) + n) is faster than both the GS-kNN method
in [30] and the fixed kNN method, with the time complexity
at least O(n*d). It should be noteworthy that our proposed
method thus results in a training stage involving two steps,
i.e., optimizing (7) to yield the optimal-k-values for all training
samples and constructing the kTree, respectively. Fortunately,
both of them are offline.

In the training stage, our kTree method first uses (7) to
learn the optimal W to obtain optimal-k-values of training
samples, i.e., the numbers of nonzero coefficients in each
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column of W for each training sample. Then, we regard
the learned optimal-k-values as labels to construct a kTree
between training samples and their corresponding optimal-
k-values. That is, we follow the idea of the state-of-the-art
methods such as ID3 [12], [60], [61] to greedily construct
a top—down recursive divide-and-conquer decision tree. The
difference between our method and ID3 method is that our
kTree regards the optimal-k-values of training samples as their
labels, while ID3 method uses the labels of training samples to
construct its decision tree. This results in different items being
stored in the leaf nodes, where ID3 stores the labels of training
samples and our kTree stores the optimal-k-values of training
samples. We illustrate their difference in Fig. 3(a) and (b).

In the test stage, we easily obtain the optimal-k-values of
test samples in the leaf nodes of kTree. Then, we conduct
the kNN classification step to classify test samples between
training samples and the learned optimal-k-values of test
samples. Such a test process only needs O(log (d) + n) and
is faster than both the varied KNN methods (such as GS-kNN
method in [30]) and the fixed kNN method with the time
complexity at least O (n>d). We list the pseudo of the proposed
kTree method in Algorithm 1.

Although our kTree method enables to obtain optimal-
k-values for test samples, it still needs to conduct kNN
classification on all training samples. To further reduce time
complexity, we extend our kTree method to an improvement
version (namely, k*Tree method) with the time complexity of
test stage O(log (d)+s), where s is the cardinality of a subset
of training samples, i.e., s <K n.

Algorithm 1 Pseudo of the Proposed kTree Method
Input: training samples X, test samples Y
Output: Class labels of Y

* Training Stage *

1. Learning the optimal-k-values of all training samples
by Eq. (7);
2. Using ID3 method to construct kTree with training
samples and their corresponding optimal-k-values;
3. Storing the optimal-k-values of training samples in
leaf nodes;

* Test Stage *
1. Obtaining the optimal-k-values of test samples
(i.e., k) using kTree;
2. Predicting test labels using traditional kNN method
with learnt optimal-k-values on all training samples;

E. k*Tree Classification

In the training stage, the proposed k*Tree method constructs
the decision tree (namely, k*Tree) by using the same steps
of kTree described in Section III-D. Their difference is the
information in the leaf nodes. That is, kTree stores the optimal-
k-value in leaf nodes, while k*Tree stores the optimal-k-value
as well as other information in the leaf nodes, including a
subset of training samples located in this leaf node, the kNNs
of each sample in this subset, and the nearest neighbor of
each of these kNNs. Specifically, in the constructed k*Tree,
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each leaf node contains an optimal-k-value (e.g., k;) and a
subset of training samples (i.e., X' = {x{,...,X),}) which
regard k; as their optimal-k-values. Besides these, we also
store the k; nearest neighbors of each sample in X', denoted

as X = {x};,..., ngi} (where i = 1,...,m), and the nearest
neighbor of each x;.'k as x; (k = 1,...,k;), denoted as
X! = {x|,.. .,xl’/kj}. In this way, each leaf node contains

the optimal-k-values, X', {X/,..., X}, and {X],..
We list the illustration in Fig. 3(c).

In the test stage, given a test sample (e.g., X;), the pro-
posed k*Tree method first searches the constructed k*Tree
to output its optimal-k-value (e.g., k;) as well as its nearest
neighbors in the leaf node (e.g., x;). With these, the proposed
k*Tree method selects k; nearest neighbors from the subset
of training samples, including x}, its k; nearest neighbors
X, = {x ...,x;kl}, and the nearest neighbors of X,
ie, X/ ={x/},..., x;’,q}, and further assigns x; with a label
according to the majority rule of k; nearest neighbors. In the
proposed k*Tree method, the kNN classification is conducted
by select nearest neighbors from the set S = {x;, X}, X}}.
We denoted the cardinality of S as s, ie., s < 2 X ks + 1
in this example. The pseudo of k*Tree method is presented
in Algorithm 2.

LXD).

Algorithm 2 Pseudo of the Proposed k*Tree Method

Input: training samples X, test samples Y
Output: Class labels of Y

* Training Stage *
1. Learning the optimal-k-values of all training samples
by Eq. (7);
2. Using ID3 method to construct k*Tree with training
samples and their corresponding optimal-k-values;
3. Storing the optimal-k-values of training samples, X/,
{Xi,....X),}, and (XY, ..., X}, in leaf nodes;

* Test Stage *
1. Obtaining the optimal-k-values of test samples
(i.e., k) using k*Tree;
2. Predicting test labels using traditional kNN method
with learnt optimal-k-values on X', {X/, .., X/ } and
X7, ..., X0

The principle of kNN method is based on the intuitive
assumption that samples in the same class should be closer in
the feature space [19]. As a result, for a given test sample of
unknown class, we can simply compute the distance between
this test sample and all the training samples, and assign
the class determined by kNNs of this test sample. In the
proposed k*Tree method, we reduce the training set from
all training samples to its subset, i.e., the neighbors of the
nearest neighbors of the test sample (i.e., X;) and the nearest
neighbor of all neighbors of the test samples (i.e., X}). In this
way, we expect that the set S almost includes all the nearest
neighbors in the whole training samples. Actually, our experi-
mental results listed in Section IV verified this assumption,
since the proposed k*Tree method achieved similar classi-
fication accuracy to the kTree method and the traditional
kNN method.
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The training complexity of k*Tree method is the same as the
kTree method, i.e., O(nz). In the test stage, the k*Tree method
conducts kNN classification on a subset of training samples,
ie., S = {x;, X}, X/}, thus resulting in the time complexity of
test stage as at most O (log (d) + s) (where s < n).

IV. EXPERIMENTS
A. Experimental Setting

We used 20 public data sets from UCI Repository of
Machine Learning Data sets,> whose data sets have been
widely used for academic research, to evaluate the proposed
methods and the competing methods on the classification task,
in terms of classification accuracy and running cost. These data
sets include all different types of data, such as low-dimensional
data set and high-dimensional data set, binary data sets and
multiclass data sets, and imbalance data sets, and are used to
evaluate the robust of the proposed methods. In our experi-
ments, we used ten of them (e.g., Abalone, Balance, Blood,
Car, Breast, Australian, Climate, and German) for the experi-
ments of different sample size, while the rest (e.g., Madelon,
LSVT, CNAE, Gisette, Hill, Libras, Dbworld, and Arcene)
for the experiments of different feature numbers. Among
of them, both Climate data set containing 46 positive sam-
ples and 494 negative samples and German data set includ-
ing 700 positive samples and 300 negative samples can be
regarded as imbalance data sets.

We employed the tenfold cross validation method on all
methods. Specifically, we first randomly partitioned the whole
data set into ten subsets and then selected one subset for testing
and the remaining nine subsets for training. We repeated the
whole process ten times to avoid the possible bias during
data set partitioning for cross-validation. The final result
was computed by averaging results from all experiments.
For the model selection of our method, we considered the
parameter spaces of p; € {107°,107%,...,10'} and p, €
{1075,1074,..., 107} in (7).

B. Competing Methods

In this paper, we selected the state-of-the-art meth-
ods, including kNN [19], kNN-based applicability domain
approach (AD-kNN) [33], kNN method based on sparse learn-
ing (S-kNN) [20], GS-kNN [30], filtered attribute subspace-
based bagging with injected randomness (FASBIR), ensembles
of nearest neighbor classifiers) [62], [63], and Landmark-based
spectral Clustering kNN (LC-kNN) [64] as the competing
methods. We list their details as follows.

1) k-Nearest Neighbor: KNN is a classical classification
method. Following the literature in [19], we set k = 1, 5,
10, 20, and the squared root of sample size, respectively,
and reported the best result.

2) kNN-Based Applicability Domain Approach [33]:
AD-kNN integrates salient features of the kNN approach
and adaptive kernel methods for conducting probability
density estimation. Following the literature [33], we set
the parameter k of AD-kNN with the Monte Carlo

3 http://archive.ics.uci.edu
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validation method by setting the maximum number of
neighbors as 20.

3) kNN Method Based on Sparse Learning [20]: S-kKNN
learns different k values for different test samples by
sparse learning, where a least square loss function is
applied to achieve the minimal reconstruction error,
an {;—norm regularization term is utilized to obtain
the elementwise sparsity, and a Laplacian regularization
term is used to preserve the local structures of data.
Following the literature in [20], we used the cross
validation method to conduct model selection by setting
p1 and f in the ranges of {1072, 1074, ..., 10'}.

4) kNN Based on Graph Sparse Reconstruction [30]:
GS-kNN first uses training samples to reconstruct
test samples to obtain the optimal k values, and
then uses the traditional kNN method to conduct
classification tasks. Following the literature in [30],
we used the cross validation method to conduct model
selection by setting the parameter spaces of y; €
{1073, 1074, ..., 10"}, yo e {1075,107%,...,1071}
and y3 € {1072,107%, ..., 1072},

5) FASBIR [62], [63] was designed for building ensembles
of nearest neighbor classifiers. FASBIR works through
integrating the perturbations on the training data, input
attributes and learning parameters together.

6) Landmark-based spectral Clustering kNN (LC-kNN)
[64] was proposed to first conduct k-means clustering
to separate the whole data set into several parts and
then select the nearest cluster as the training samples
for conducting the kNN classification.

C. Experimental Results on Different Sample Sizes

In this section, we conducted classification tasks with all
methods at different sample size on ten UCI data sets, aim
at avoiding the bias of imbalanced sample size. We reported
the classification accuracy (i.e., the averaging classification
accuracy of ten iterations) of all methods in Fig. 4, where
the horizontal axis indicates the sample size and the vertical
axis represents the classification accuracy. We also listed the
running cost (in time) of all methods in each of iteration
in Figs. 5-14, where the horizontal axis indicates the number
of iterations and the vertical axis represents the running cost.
We also list the accuracy and the running cost in Table I.

From Fig. 4 and Table I, we knew that: 1) the proposed
methods (i.e., the kTree method and the k*Tree method)
improved the classification accuracies on average by 4%
(versus kNN), 1.5% (versus AD-kNN), 1.8% (versus
FASBIR), and 4.5% (versus LC-kNN), on all ten data sets,
while our methods (i.e., the kTree method and the k*Tree
method) have almost the same accuracy with GS-kNN and
S-kNN and 2) the methods learning optimal-k-values for
different samples (e.g., our k*Tree method, our kTree method,
S-kNN, GS-kNN, and AD-kNN) outperformed the method
with fixed expert-predefined value (e.g., kKNN). For example,
kNN method reduced on average the classification accuracy on
ten data sets by 2.6% (versus AD-kNN), which is the worst
method learning optimal-k-values for different samples in our
experiments.
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Regarding the running cost in Figs. 5-14, we have the
following observations.

1) Our k*Tree method achieved the minimal running
cost, followed by LC-kNN, kNN, our kTree, FASBIR,
AD-kNN, GS-kNN, and S-kNN. For example,
the k*Tree method was four times faster than kNN on
Abalone data set in our experiments. The reason is that
the proposed k*Tree method scanned a small subset
of training samples to conduct kNN classification,
while both kNN and the kTree method conducted
kNN classification by scanning all training samples.
It is noteworthy that the running cost of LC-kNN is
similar to our k*Tree, since LC-kNN conducts k-means
clustering to separate the whole data set into several
parts, i.e., only scanning a subset of training data set.
However, our k*Tree outperformed LC-kNN in terms
of classification accuracy. Moreover, it is very difficult
for LC-kNN to find a suitable number of the parts so
that achieving the similar performance as the standard
kNN [64].

2) The methods (such as S-kNN, GS-kNN, and AD-kNN)
took more running cost than either our methods (e.g., the
kTree method and the k*Tree method) or kNN, since
both S-kNN and GS-kNN must use training samples to
reconstruct test samples to obtain the optimal k values,
while AD-kNN took expensive cost to calculate AD
of training samples and verified if test samples were
inside or outside the AD.

From Table I, our proposed kTree and k*Tree outperformed
kNN, AD-kNN and FASBIR in terms of classification accu-
racy, and also took less running cost. For example, k*Tree
improved about 5.7% (versus kNN), 2% (versus AD-kNN),
and 3.2% (versus FASBIR), respectively, on DDCclients data
set, while k*Tree was about 5 times, 1000 times and 10 times,
faster than kNN, AD-kNN, and FASBIR, respectively, in terms
of running cost. On the other hand, our k*Tree did not achieve
the similar performance as either GS-kNN or S-kNN, but
was faster than each of them in terms of running cost. For
example, k*Tree was on average about 15000 times faster than
either GS-kNN or S-kNN, but only reducing the classification
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accuracy by about 0.6% on all data sets. The reason is that
the proposed k*Tree method only scanned a small subset
of training samples to conduct kNN classification, while bo
GS-kNN and S-kNN scanned all training samples.

D. Experimental Results on Different Feature Number

In this section, we first employed the state-of-the-art method
Fisher score [65] to rank all features of the data, and then
selected the most informative features for kNN classification.
Our goal is to analysis the robustness of all methods with
different feature numbers. Fig. 15 listed the classification
accuracy of all methods on ten data sets and Figs. 16-25
reported the running cost of each iteration for all methods.
We also list the accuracy and the running cost in Table II.

Fig. 15 and Table II clearly indicated that our meth-
ods (i.e., the kTree method and the k*Tree method) still
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TABLE 1I
RESULT OF CLASSIFICATION ACCURACY/RUNNING COST (MEAN)

kNN

Dataset (#(features)) AD-kNN S-kNN GS-kNN FASBIR LC-kNN kTree k*Tree
Madelon (500) 0.691,70.27 | 0.710,/7.50 | 0.720,/63.1 | 0.721,759.1 | 0.711,7052 | 0.681,7022 | 0.717,70.25 | 0.720,70.03
LSVT (310) 0.780,70.05 0.791,1.42 | 0.820,10.2 | 0.820,5.52 | 0.800,70.13 | 0.773,70.05 | 0.81270.05 | 0.801,0.02
CNAE (856) 0.762,70.18 0.783,78.31 0.812,/7.10 0.813,76.80 0.787,,0.93 0.758,70.15 0.810,70.77 0.805,70.51
Gisette (5000) 0.860,70.22 0.873,78.12 0.907 /8.02 0.913,78.00 0.880,70.70 0.853,70.05 0.903,70.26 0.903,70.15
Hill (100) 0.621,/0.04 0.656 /2.00 0.688,/11.0 0.690,19.2 0.652,0.07 0.611,70.05 0.682,0.08 0.682,0.07
Libras (90) 0.561,0.03 0.556 /1.10 0.601,6.31 0.602,6.12 0.573 /0.05 0.552,70.03 0.590 0.04 0.586,70.06
DBworld (4702) 0.702,70.03 0.723/1.51 0.762,,0.42 | 0.763,,0.42 | 0.726,,0.06 | 0.693,,0.03 | 0.752,70.07 | 0.748,0.04
Arcene (10000) 0.746,/0.07 0.770,/2.52 0.796,/7.20 0.802,77.11 0.738,/0.12 0.742,70.06 0.793,70.13 0.786,70.12
Musk (168) 0.836,70.15 0.861,4.40 0.898 20.1 0.900,715.2 0.860,1.16 0.830,70.14 0.894,70.55 0.885,70.52
Arrhythmia (279) 0.736 /0.13 0.761 /4.51 0.798 /5.61 0.801,4.05 0.761,,/0.76 0.732,/0.13 0.795,/0.17 0.785,70.14
AVERAGE 0.729,/0.12 0.748 /4.12 0.780,13.8 0.780,713.1 0.749 /045 0.721,/0.13 0.773 ,/0.20 0.770 /0.16
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achieved the best classification accuracy, compared with
other comparison methods. For example, our k*Tree method
improved the classification accuracies on average over ten
data sets by 2.6% (versus AD-kNN), 4.2% (versus kNN),
2.3% (versus FASBIR), and 5.1% (versus LC-kNN).
Moreover, the proposed kTree method and the proposed
k*Tree method had similar results with GS-kNN and S-kNN,
in terms of classification accuracy.

Figs. 16-25 intuitively showed that the k*Tree method is
faster than the kTree method and kNN on Madelon data set,
while slower than kNN on data sets, such as CNAE and

Fig. 24. Running cost of all methods (left) and five methods zoomed in
from the left subfigure (right) on Musk with a feature number of 160.
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Fig. 25. Running cost of all methods (left) and five methods zoomed in
from the left subfigure (right) on Arrhythmia with a feature number of 270.

Musk. The reason is that when the dimensions of the data
sets are small and the number of training samples is big,
i.e., n > d, the k*Tree method is much faster than kNN.
While the dimensions are large, or even larger than the number
of samples, i.e., d > n, the k*Tree method will be slower
than kNN.

From Table II, our proposed kTree and k*Tree still outper-
formed kNN, AD-kNN, and FASBIR with different feature
numbers. Moreover, our k*Tree did not achieve the similar
performance as either GS-kKNN or S-kNN, but was faster than
each of them in terms of running cost. The reason is that
the proposed k*Tree method only scanned a small subset of
training samples to conduct kNN classification, while both
GS-kNN and S-kNN scanned all training samples. In particu-
lar, although both k*Tree and LC-kNN were designed to scan a
subset of training samples, our k*Tree increased by on average
4.9% (classification accuracy) and also was faster twice than
LC-kNN. The reason is that it is difficult for LC-kNN to find
a suitable number of the parts, which was concluded in [64].
All the above experimental results showed that the proposed



1784

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 5, MAY 2018

method k*Tree can be used to improve the performance of
kNN method in terms of classification accuracy and running

cost.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two new kNN classification
algorithms, i.e., the kTree and the k*Tree methods, to select
optimal-k-value for each test sample for efficient and effective
kNN classification. The key idea of our proposed methods is
to design a training stage for reducing the running cost of test
stage and improving the classification performance. Two set
of experiments have been conducted to evaluate the proposed
methods with the competing methods, and the experimental
results indicated that our methods outperformed the competing
methods in terms of classification accuracy and running cost.

In future, we will focus on improving the performance of the
proposed methods on high-dimensional data [11], [66]-[68].
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