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Convolution 1in Convolution for Network in Network
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Abstract—Network in network (NiN) is an effective instance
and an important extension of deep convolutional neural network
consisting of alternating convolutional layers and pooling layers.
Instead of using a linear filter for convolution, NiN utilizes
shallow multilayer perceptron (MLP), a nonlinear function, to
replace the linear filter. Because of the powerfulness of MLP and
1 x 1 convolutions in spatial domain, NiN has stronger ability
of feature representation and hence results in better recognition
performance. However, MLP itself consists of fully connected
layers that give rise to a large number of parameters. In this
paper, we propose to replace dense shallow MLP with sparse
shallow MLP. One or more layers of the sparse shallow MLP
are sparely connected in the channel dimension or channel-
spatial domain. The proposed method is implemented by applying
unshared convolution across the channel dimension and applying
shared convolution across the spatial dimension in some com-
putational layers. The proposed method is called convolution in
convolution (CiC). The experimental results on the CIFAR10 data
set, augmented CIFAR10 data set, and CIFAR100 data set
demonstrate the effectiveness of the proposed CiC method.

Index Terms— Convolution in convolution (CiC), convolutional
neural networks (CNNs), image recognition, network in
network (NiN).

I. INTRODUCTION

EEP convolutional neural networks (CNNs) have

achieved state-of-the-art performance in the tasks of
image recognition and object detection [3], [9], [31]. CNNs
are organized in successive computational layers alternating
between convolution and pooling (subsampling). Compared
with other types of deep neural networks, CNNs are relatively
easy to train with backpropagation mainly because they have
a very sparse connectivity in each convolutional layer [2]. In a
convolutional layer, linear filters are used for convolution. The
main parameters of CNNs are the parameters (i.e., weights)
of the filters. To reduce the number of parameters, a parame-
ter sharing strategy is adopted. Although parameter sharing
reduces the capacity of the networks, it improves its gen-
eralization ability (see [14, Sec. 4.19]). The computational
layers (i.e., convolutional layers) can be enhanced by replacing
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the linear filter with a nonlinear function: shallow multilayer
perceptron (MLP) [29]. The CNN with shallow MLP is called
network in network (NiN) [29]. With enough hidden units,
MLP can represent arbitrary complex but smooth functions
and hence can improve the separability of the extracted fea-
tures. Thus, NiN is able to give lower recognition error than
classical CNN.

As a filter in CNNs, a shallow MLP spatially convolves
across the input channels. Because the filter itself is also a
network, the resulting CNN is called NiN. But the MLP itself
in NiN does not employ sparse connectivity. Instead, MLP is a
fully (densely) connected network. Thus, many parameters of
MLP have to be computed and stored. In addition, the dense
connection characteristic of MLP makes NiN unable to extract
local features in channel domain though it can extract local
features in spatial domain. This limits the performance of NiN.
To break through the limitation, in this paper, we propose
to modify the fully connected MLP to a locally connected
one. Throughout this paper, “fully connected” means “densely
connected.” Moreover, “locally connected” and “sparsely con-
nected” are interchangeably used. This is accomplished by
leveraging a kernel (a.k.a., filter) on each layer (or some layers)
of the MLP. That is, the size of the kernel is smaller than that
of the input. Because the convolution operation is conducted
in the embedded MLP of the convolution neural networks, we
call the proposed method convolution in convolution (CiC).
In summary, the contributions of this paper and the merits of
the proposed CiC method are as follows.

1) A fully sparse (locally connected) shallow MLP and
several partially sparse shallow MLPs (e.g., MLP-010)
are proposed and are used as convolutional filters. The
convolutional filter itself is obtained by convolving a
linear filter.

2) We develop a CNN method (called CiC) with either the
fully sparse MLPs or partially sparse MLPs. In CiC,
shared convolution is conducted in the spatial domain
and unshared convolution is conducted along the channel
dimension.

3) The basic version (i.e., CiC-1-D) of CiC utilizes 1 x 1
convolutions in spatial domain and applies 1-D filter-
ing along the channel dimension. We then generalize
CiC-1-D into CiC-3-D by replacing the 1 x 1 convolu-
tions with n x n convolutions.

4) The proposed CiC method significantly outperforms
NiN in reducing the test error rate at least on the
CIFARI10 data set, CIFAR100 data set, and their aug-
mented versions.

5) The proposed idea of sparse space—channel connection
is general and can be generalized to other deep CNNs
such as VggNet [43].
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The rest of this paper is organized as follows. We review
related work in Section II. The proposed method is presented
in Section III. Subsequently, the experimental results are
provided in Section IV. We then conclude in Section V based
on the experimental results.

II. RELATED WORK

In this section, we will first briefly the basic components
of the CNNs. Next, we will review some directions of CNNs
that are related to our work.

In general, CNNs are mainly organized in interweaved
layers of two types: convolutional layers and pooling
(subsampling) layers [2], [5], [7], [20], [23], [30], [50] with
a convolutional layer or several convolutional layers followed
by a pooling layer. The role of the convolutional layers is
feature representation with the semantic level of the features
increasing with the depth of the layers. Each convolutional
layer consists of several feature maps (a.k.a., channels). Each
feature map is obtained by sliding (convoluting) a filter over
the input channels with predefined stride followed by a nonlin-
ear activation. Different feature maps correspond to different
parameters of filters with a feature map sharing the same
parameters. The filters can be learned with backpropagation
algorithm. Pooling is a process that replaces the output of
its corresponding convolutional layers at certain location with
summary statistic of the nearby outputs [2], [51]. Pooling
over spatial regions contribute to make feature representation
become translation and rotation invariant and also contribute
to improve the computational efficiency of the network. The
layers after the last pooling layer are usually fully connected
and are aimed at classification. The number of layers is called
the depth of the network, and the number of units of each
layer is called the width of the network. The number of
feature maps (channels) in each layer can also represent the
width (breadth) of CNNs. The depth and width determine the
capacity of CNNs.

Generally speaking, there are six directions to improve the
performance of the CNNs with some of the them are overlap-
ping: 1) increasing the depth; 2) increasing the width; 3) mod-
ifying the convolution operation [6], [13], [20], [25], [26];
4) modifying the pooling operation [49], [15], [4], [27], [40],
[8], [46], [12], [33]; 5) reducing the number of parameters; and
6) modifying the activation function. Our method is closely
related to NiN, and NiN is relevant to the first three directions.

A. Increasing the Depth

Large depth of deep CNNs is one of the main differences
between deep CNNs and traditional neural networks [5],
[38]. LeNet-5 [23] is a seven-layer version of CNNs, which
has three convolutional layers, two pooling (subsampling)
layers, and two fully connected layers. AlexNet [20] contains
eight learned layers (not accounting the pooling layers or
taking a convolutional layer followed by a pooling layer
as a whole) with five convolutional ones and three fully
connected ones. In VggNet [43], the depth is up to 19.
GoogLeNet [42] contains 22 layers. Using gating units to
regulate the flow of information through a network, highway
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networks [44] open up the possibility of effectively and
efficiently training hundreds of layers with stochastic gradient
descent. In ResNet [16], the depth of 152 results in state-
of-the-art performance. Zeiler and Fergus [32] showed that
having a minimum depth to the network, rather than any
individual section is vital to the model’s performance. By
incorporating micronetworks, NiN [29] also increases the
depth. The depth of our method is the same as that of NiN so
that the comparison of NiN and our method is fair.

B. Increasing the Width

Increasing the number of feature maps in a convolutional
layer yields enriched features and hence is expected to improve
the CNNs [23]. Zeiler and Fergus [32] found that increasing
the size of the middle convolution layers gives a useful gain
in performance. GoogleNet [42] is famous for not only its
large depth but also its large width. In GooLeNet, a group of
convolution filters of different sizes form an Inception module.
Such an inception module greatly increases the network width.
The OverFeat network [45] utilizes more than 1000 feature
maps in both the fourth and fifth convolutional layers. It is
noted that large width implies large computational cost. With-
out increasing the width, our method outperforms NiN in terms
of test error rate.

C. Modifying the Convolution Operation

There are several ways to modify the convolution opera-
tion: changing the sliding stride, filter size, and filter type.
It was found that a large convolution stride leads to aliasing
artifacts [32]. Therefore, it is desirable to use small stride.
Moreover, decreasing the filter size of the first convolution
layer from 11 x 11 to 7 x 7 is positive for performance
improvement. In the NggNet [43], 3 x 3 convolutional filters
are adopted. Rather than learning a set of separate set of
weights at every spatial location, in titled convolution [13],
we can learn a set of filters that we rotate through as we
move through space [10]. Modifying the filter type is an
important attempt to develop effective CNNs [32]. While
most of methods employ linear filter, NiN [29] adopts a
nonlinear filter: shallow MLP that significantly enhances the
representational power of CNNs [42]. CSNet [21] utilizes
cascaded subpatch filters for convolution computation. Our
method directly modifies NiN in the sense of convolutional
layers.

III. PROPOSED METHOD: CIC

In this section, we present an improved NiN [29], which
we call CiC. One of the characteristics of CiC is that sparse
shallow MLPs are used for convolutionally computing the
convolutional layers and the shallow MLPs themselves are
obtained by convolution. The proposed CiC is equivalent to
apply unshared convolution (i.e., sparse connection) across the
channel dimension and applying shared convolution across the
spatial dimension in some computational layers. By contrast,
dense connection along the channel dimension is adopted
in the traditional NiN. The advantages of spare connection
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(i.e., convolution) in the channel domain against the dense
connection in the channel domain are threefold.

1) Sparse connection in the channel domain yields less
number of parameters, which is helpful for improv-
ing computational efficiency and decreasing memory
storage.

2) Sparse connection is positive to alleviate the well-known
overfitting problem when the number of training data is
limited (in most cases, only limited training data are
available).

3) Sparse connection provides opportunity to extract local
features in the channel dimension and local features are
expected to enhance the generalization ability of the
neural networks. However, applying sparse connection
on all layer is not the best choice and the reason is
given in Section III-A.

We first describe the basic idea of CiC (i.e., CiC-1-D)
with sparse and shallow MLP and then extend it to 3-D case
(i.e., CiC-3-D).

A. From Dense Shallow MLP to Sparse Shallow MLP

In classical CNNss, linear filters are used for calculating the
convolutional layers. However, there is evidence that more
complex and nonlinear filter such as shallow MLP is preferable
to the simple linear one [29]. In NiN [29], dense (i.e., fully
connected) MLP is used as a filter (kernel). In our method,
we propose to modify the dense MLP [see Fig. 1(a) for an
example] to sparse one [see Fig. 1(b)—(f) for examples]. We
divide sparse MLPs into two categories: fully sparse MLP and
partially MLP.

The idea of the proposed method is graphically supported
by Fig. 1. Fig. 1(a) is two-hidden-layer dense MLP that has 48,
24, and 8 free parameters (weights) in hidden layer 1 (the first
hidden layer), hidden layer 2 (the second hidden layer), and
output layer, respectively. Totally, there are 48 424 + 8 = 80
parameters in the dense MLP. Fig. 1(b) is a two-hidden-layer
fully sparse MLP that is obtained by convolving a linear filter
with three weights (called inner filter) across each layer. The
sparse MLP with parameter sharing mechanism has only three
free parameters in each layer and 3 +3 +3 = 9 parameters in
total. If unshared convolution is employed, then the number of
parameters became 36. Therefore, the sparse MLP has fewer
parameters than the dense counterpart. Few parameters are
capable of reducing memory consumption, increasing statisti-
cal efficiency, and also reducing the amount of computation
needed to perform forward and back-propagation [10].

In addition to fully sparse MLP, partially sparse MLP can
be used. Fig. 1(c)~(f) show several possible partially sparse
MLPs. To distinguish the different partially spare MLPs, we
use ‘1’ to mean that a layer is locally connected and use ‘0’ to
mean that the layer is fully connected. A sequence of the labels
is used for expressing a certain type of partial sparse MLP.
For example, in Fig. 1(c), hidden layer 1 is densely connected
(labeled by ‘0’), hidden layer 2 is sparsely connected (labeled
by ‘1’), and the output layer is densely connected (labeled
by ‘0’). Therefore, we utilize “010” to represent the specific
type of the partially sparse MLP. Specifically, the MLP in
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Fig. 1. Shallow MLP. (a) Dense (fully connected) MLP. (b) Full sparse MLP.
(c)—(e) Different types of partial sparse MLPs.

Fig. 1(c) is called MLP-010. Similarly, the MLPs in Fig. 1(b)
and (d)—(f) are called MLP-111, MLP-011, MLP-100, and
MLP-110, respectively. For the sake of simplicity and clarity,
‘I’ and ‘0’ stand for “sparse” and “dense,” respectively.
Therefore, MLP-010 can be expressed as MLP-dense-sparse-
dense. Similarly, MLP-111, MLP-100, and MLP-110 can be
denoted by MLP-sparse-sparse-spare (i.e., fully sparse MLP),
MLP-sparse-dense-dense, and  MLP-sparse-sparse-dense,
respectively.

It is noted that fully sparse MLP (i.e., MLP-111 or MLP-
sparse-sparse-sparse) does not necessarily outperform partially
sparse MLPs (e.g., MLP-010 or MLP-dense-sparse-dense).
In fact, the experimental results show that MLP-dense-sparse-
dense is superior to MLP-spare-spare-sparse. The reason is as
follows. First, the input RGB color images have only three
channels. The number of channels of the input layer is so
small that convolution along the channel dimension is not
necessary because the size of the filter is either two or one
that is comparable with the number (i.e., three) of the input
channels. Therefore, sparse connection cannot be applied on
the input layer and dense connection is the unique choice.
Sparse connection can applied only on the second layer. In this
sense, MLP-dense-spare-dense is preferable to MLP-sparse-
spare-sparse. Second, dense connection is able to extract
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Fig. 2.
and main steps of CiC-1-D.

global features and local connection is good at extracting
local features. Local extracts are discriminative when the
correlation within a local region is large. It is well known
that the correlation in the spatial domain is significant because
neighboring elements (e.g., pixels) have similar appearance
in most cases. This property has widely used in many tasks
of computer vision (e.g., using contiguity prior with Markov
random fields [28]). Compared with the correlation in spatial
domain, the correlation in channel domain is weak. It is not
guaranteed that neighboring elements in the channel domain
are similar and highly correlated. Therefore, dense connection
across channels is required for extracting global features.
Nevertheless, some degree of correlation along the channel
direction can be forcedly generated by sparse connection.
However, applying sparse connection on all the layers makes
the network weak in capturing global features. Consequently,
it is desirable to interweavely applying dense connection and
sparse connection for extracting both global and local features
in the channel domain. Therefore, the partial sparse MLP is
better than the fully sparse MLP.

It is also noted that our experimental results show that
unshared convolution is better than shared convolution in the
sense of reducing the test error rate. Therefore, unshared
convolution is adopted along the channel dimension. Unshared
convolution means that a set of different weights are used for
sparse connection.

In summary, the effectiveness of the sparse channel connec-
tion stems from two aspects. First, sparse channel connections
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Architecture of CiC-1-D. (a) Directly showing the role of MLP-010. (b) Kernels and their constraints for implementing CiC-1-D. (c) Architecture

result in less number of parameters and hence are less prone
to ovefitting. Second, sparse channel connections make it
possible to extract local features across channels (i.e., in the
channel domain).

B. CiC With Sparse and Shallow MLP (1-D Filtering
Across Channels With Large Filter): CiC-1-D

As stated above, we propose to employ unshared con-
volution for computing sparse and shallow MLP. In our
CiC method, the sparse MLP is regarded as a convolution
filter and inserted into the framework of CNNs.

Fig. 2(a) shows the proposed CiC with MLP-010. Assume
that all the input color images are of size W x H. As NiN,
CiC also has three building blocks (i.e., block 1, block 2, and
block 3). In block i, the input of an MLP-010 is of size w; X h;
in spatial domain and L6 in channel domain. The numbers of
the neurons in the first hidden layer, the second hidden lay,
and the output layer of an MLP-010 in block i are denoted
by N, Né, and Né, respectively.

Fig. 2(a) explicitly shows the role of MLP-010 in construct-
ing CiC, whereas Fig. 2(b) and (c) shows the architecture of
CiC in the manner of convolutional layers. Fig. 2(b) and (c)
is equivalent to Fig. 2(a). Note that the pooling layers exist
but are not shown in Fig. 2(b). In Fig. 2(b), the small cube
(i.e., the dashed cube) inside a large cube (i.e., solid cube)
stands for a filter (kernel). The kernel is a three-order tensor
k € R*™*% where x and y index the spatial domain
(i.e., x and y are the length of the kernel in horizontal and
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TABLE I
S1ZES AND CONSTRAINTS OF THE KERNELS (k; IS A THREE-ORDER TENSOR AND K; IS ITS CORRESPONDING FOUR-ORDER TENSOR)

- ko Ko ki Ky ko K>

g; wiX hixX Ly | wixhix Lx N{ | 1x1x L7 | 1x1x Lix Ny | 1x1x L} | 1x 1x Lix N3
— L{=3 L} < N{ L =Nj

- ks K3 ky Ky ks K5

§ 1 2 3 4 5 6

o L2 = Ni L7 < N} L3 < N3

- kg K k7 K~ kg Ks

§ 1 2 3 4 5 6

w L} = N2 L} < N} Ly < N3

vertical axis, respectively) and z indexes the channel domain
(i.e., z is the length of the kernel in the channel axis). In
each block, there are three kernels, corresponding to the
input layer, the first hidden layer, and the second layer of an
MLP-010. The kernels in block 1, block 2, and block 3 are
( ko, ki, k2), ( k3, k4, ks), and ( ke, k7, kg) [see Fig. 2(b)],
respectively. If the number of output channels obtained by a
kernel k; is taken into account, the kernel can be expressed as
a four-order tensor K; € R**Y*%*¢ [see Fig. 2(c)], where the
first three indices (i.e., x, y, and z) have the same meaning
as that of k; and the last index ¢ stands for the number of
feature maps (channels) obtained by the kernel k;.

Now we discuss the three kernels in block 1.

1) First Kernel kg (Ko): In the input layer of block 1 (also
the input of the first MLP010), the kernel kg € R >/ XLy (or
equivalently Ko € Rw‘Xh‘XLtl)XNll) is used for filtering. The
small numbers w; and h; are larger than 1 (e.g., w1 =5 and
h1 = 5). Because the input is usually a color image, so the
channel number L(l) equals to three (i.e., three color channels).
Because the number of channels is very small, the channels
have to be densely (fully) connected using the kernel ko with
its size being w; x h1 x 3. Denote N 11 the number of channels
output by Ko.

2) Second Kernel ki(Kj): The output of the first kernel
is the input of the second kernel k; (or Kj), which is of
size 1xle{ (or 1x1xL{xN21) with L{ <N11. The
convolution in spatial domain with the 1 x 1 kernel plays an
important role in dimensionality reduction [29], [42]. Because
of L% < Nl1 (i.e., the length L} of the filter in channel dimen-
sion is smaller than the number N 11 of the input channels), the
kernel k; connects the Nl1 channels in a convolutional (i.e.,
sparse) manner. In Section IV-B, we state how to choose the
optimal kernel length in channel dimension.

N21 is the number of channels output by applying the
kernels K; € RIFIXLIXN; Usually, zero padding is used
for convolutional implementation [10]. However, throughout
this paper, no padding is applied along the channel direction.
Consequently, the number N21 of channels output by applying
the kernels K; € RIXIXLIXN; g completely determined by
the kernel length L% and the number Nl1 of input channels.
Specifically, we have

Nl =N - L} +1. (1)

The success of CiC is due to the following two factors
related to the second kernel in each block: 1) the convolutional
manner of sparsely connecting different channels in channel
dimension and 2) the sparse connection is accomplished by
unshared convolution.

3) Third Kernel ky(Ky): ky € RUIXL (or Ky €
Rlqu%XNSI) is also a 1 x 1 filter in spatial domain. The
length Lé of the filer in channel dimension is equal to the
number N} of the input channels (i.e., L} = N}), meaning
that the channels corresponding to the same spatial location
are fully connected.

The output of block 1 is used as the input of block 2. The
computation process of block 2 and block 3 is similar to that
of block 1. The sizes and constraints of the three and four
order tensors are given in Table 1.

Batch normalization (BN) [18] is adopted to normalize
the convolutional layers. Rectified linear unit (ReLU) non-
linearilty [20], [34] is used for modeling a neuron’s output.
Max-pooling is applied on the results of ReLU. Moreover,
dropout [17], [20] is also conducted. Fig. 2(c) shows the
main steps of the proposed CiC method where “str” and
“pad” stand for the convolution stride and padding pixels,
respectively.

tL)

C. Generalized CiC With 3-D Filtering Across
Channel-Spatial Domain: CiC-3-D

It can be seen from Section III-B that the second kernel
(e, K| € RXIXLIXN K, e RUXIXLIXN] and Ky €
RIXIXL?XNg) in each block is the key of the proposed
CiC where MLP-010 is adopted. These kernels perform
1 x 1 convolutions in spatial domain and 1-D convolutions
in the channel dimension. Hence, the convolutions in dif-
ferent spatial locations are independently implemented. In
this section, we propose to breakthrough this independence
by changing the 1 x 1 convolutions to n X n convolutions
with n > 1. Accordingly, in the generalized CiC (called
CiC-3-D), the sizes of Kj, K4, and K7 are changed from
1xle%xNzl,lxle%xsz,andlxle?xNSto

nxnxL}xNzl,nxnxL%xsz, and nxnxL?xNS,
respectively. Fig. 3 shows the architecture of the pro-
posed CiC-3-D. In general, n =5 is able to yield good
performance.



1592 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 5, MAY 2018
:' ”””””””””””””””””””””””” 1 ”””””” < AN & S & /7 :
i hK3 N/ ~ I i : W, ><hl€<L x N, & rxrx k<N Lxlx IKxN;

! W X x /‘x;x&‘xN IXIXL(XN" 2 0 X4 r'><7><kf><N I _ _ |

| str=1, pad=2 tr=1, pad=0 str=1,pzad 0‘ str=1, pad=2 tr=1, pad=0 bigr[\]h[f;&)z sgNl)]{):]ilUZ ;

| BN ReLU BN, ReLU BN, ReLU ! BN RelLU BN, ReLU .

! pooling i pooling,

| N dgopout i L <Ny ‘ spfimax

e Block ] =----------m----EEzzsemmnmmmmmooee Block 2 Block 3  ----mmmmmmmmeee e
Fig. 3. Architecture of CiC-3-D.

TABLE I

TEST ERROR RATE (%) WITH DIFFERENT KERNEL LENGTH L% IN CHANNEL DIMENSION OF K4 IN BLOCK 2 OF CiC-1-D.
NOTE THAT MLP-010 IS APPLIED IN ONLY BLOCK 2 AND DENSE MLP 1S APPLIED IN BOTH BLOCK 1 AND BLOCK 3

L?2=3 L2 =6 L? =12 L2 =24 L? =48

Ko 5X 5x 3x 192 5X Hx 3x 192 5X Hx 3x 192 5X 5x 3x 192 55X Hx 3x 192
% K Ix1x192x 192 | 1x1x192x 192 | 1x1x192x 192 | 1x 1x192x 192 | 1x 1x 192x 192
i K> Ix1x192x 192 | 1x1x192x 192 | 1x1x192x 192 | 1x 1x192x 192 | 1x 1x 192x 192

Ks HX 5x 192X 192 | 5Xx 5x 192X 192 | 5Xx 5x 192x 192 | 5x 5X 192x 192 | 5x 5x 192x 192
% K4 I1x 1x3x 190 Ix 1x6x 187 Ix 1x12x 181 Ix 1x24x 169 I1x 1x 48x 143
: Ks Ix1x190x 192 | 1x 1x187x 192 | 1x1x 181x 192 | 1x1x169x 192 | 1x 1x 143x 192

Ks 3X3x192x 192 | 3x3x192x 192 | 3x 3x 192x 192 | 3x 3x 192x 192 | 3x 3x 192x 192
% K~ Ix1x192x 192 | 1x1x192x 192 | I1x1x192x 192 | 1x 1x192x 192 | 1x 1x 192x 192
z Ksg Ix 1x192x 10 Ix1x192x 10 I1x 1x192x 10 Ix 1x192x 10 Ix1x192x 10
error rate (%) 9.07 9.15 9.15 9.47 9.68

IV. EXPERIMENTAL RESULTS

We call the method proposed in Section III-B CiC-1-D
and the method proposed in Section III-C CiC-3-D. In this
section, we compare the proposed method CiC-3-D with
NiN [29], Maxout (maxout networks) [11], networks with
learned activation functions (NiN+4LA) [1], FitNet (thin and
deep networks) [37], deeply supervised network (DSN) [22],
DropConnect (networks using dropconnect) [48], deep
attention selective networks (dasNet) [39], highway (networks
allowing information flow on information highways) [44],
all convolutional networks (ALL-CNN) [40], recurrent
cnns (RCNNs) [24], VggNet-like network [43], and ResNet
(deep residual networks) [16] on the CIFARI10 data set [19],
the CIFAR100 data set [19], and their augmented versions. The
proposed methods are implemented using the MatConvNet
toolbox [47].

A. Data Sets

The CIFARI1O0 data set contains ten classes of images with
6000 images per class and 60000 images in total. Among
the 60000 images, 50000 ones are used for training and the
rest 10000 ones are used for testing. All the images have
three-color channels, and the image size is 32 x 32.

By randomly flipping each training images, we obtain an
augmented data set that we call CIFAR10+4. CIFAR10+ is
used for tuning the parameters and showing the intermediate
results. Moreover, we obtain a much larger augmented dataset
(called CIFAR10++) by padding four pixels on each side and
then randomly cropping and flipping on the fly.

The CIFAR100 data set [38] has the same number of
training images and test images as the CIFARI10. The

difference is that the CIFAR100 contains 100 instead of ten
classes. Therefore, the number of images in each class is only
one-tenth of that of CIFAR10. The 100 classes are grouped
into 20 superclasses. Each image has two labels. One is the
“fine” label indicating the specific class, and the other one
is the “coarse” label indicating the superclass. CIFAR100
is much challenging than CIFARI10 for classification. The
augmented version of CIFAR100 is called CIFAR100+.

B. Configurations and Intermediate Results
on the CIFAR10+ Data Set

The CIFAR10+ data set is used for parameter selection,
and the selected parameters are to be used for evaluating
the proposed method on the CIFAR10, CIFAR10++, and
CIFAR100 data sets. To quickly obtain the optimal parameters,
only 60 training epochs are employed. It is note that 230
epochs are adopted in Sections IV-C-IV-E.

The sizes (parameters) of the kernels K;, i =0,...,8,
determine the performance of CiC-1-D and CiC-3-D. It is
difficult to jointly choose the optimal parameters. We exper-
imentally choose the optimal parameters of CiC-1-D in a
greedily manner where a parameter varies until the optimal
value is found and the other parameters are kept unchanged
during the greedy optimization process. The obtained optimal
parameters are shared with CiC-3-D.

To investigate the influence of the length of the kernel in
the channel dimension of CiC-1-D, in Table II, MLP-010 is
used for constructing block 2 (where sparsity holds because of
L% < N12) and dense MLPs are used for constructing block 1
and block 3 (where L! = Nl1 and L% = N21 hold for block 1
and L] = N; and L3 = Nj hold for block 3). The kernels
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TABLE III
TEST ERROR RATES (%) VARY WITH THE NUMBER le (MARKED IN RED) OF THE INPUT CHANNELS OF K4 IN BLOCK 2 WHEN THE
KERNEL LENGTH L% IN CHANNEL DIMENSION OF Ky Is FIXED L% = 3 (MARKED IN GREEN)
N? =160 N? =192 N2 =224 N? =256
- Ko 5X 5x 3x 192 5X 5x 3x 192 5X HxX 3x 192 H5X Hx 3x 192
g K1 Ix1x192x 192 | 1x1x192x 192 | 1x 1x192x 192 | 1x 1x 192x 192
o
— Ko Ix1x192x 192 | 1x1x192x 192 | 1x 1x192x 192 | 1x 1x 192x 192
- K3 5X 5x 192x 160 | 5x 5x 192x 192 | 5x 5x 192x 224 | 5x 5x 192x 256
8:_ K4 Ix 1x 3x 158 Ix 1x 3x 190 Ix 1x 3x 222 Ix 1x 3x 254
o Ks Ix1x158x 192 | 1x1x190x 192 | 1x 1x222x 192 | 1x 1x 254x 192
o Kg 3x3x192x 192 | 3x3x192x 192 | 3x 3x 192x 192 | 3x 3x 192x 192
§ K~ Ix1x192x 192 | 1x1x192x 192 | 1x 1x192x 192 | 1x 1x 192x 192
<K
w Ksg Ix 1x192x 10 1x 1x192x 10 1x 1x192x 10 Ix 1x192x 10
error rate (%) 9.42 9.07 8.97 9.33
9.7 9.5
9.6F 1 i
9.5 ] |
S S
§ 9 4 %
g~ g 1
= 5
8 9.3 1 =
g7 i
o 4
9.2+ 1
9.1r i
8.9 1 1 1 1
9O 1‘0 2‘0 3‘0 4‘0 50 160 180 200 220 240 260
2. . ) the number N° of the input channels
kernel length L | in channel dimension 1
’ Fig. 5. Test error rates versus the number le of the input channels of K4
Fig. 4. Test error rates (%) with different kernel lengths Ly in channel  jn plock 2.

dimension of Ky in block 2 of CiC-1-D.

(Ko, K, and K») in bock 1 and the kernels (Kg, K7, and Kg)
in block 3 are fixed. In block 2, the size of K4 is expressed
as 1 x1x L% X N22, where L% is the kernel length in the
channel dimension. Several values of L% are used with N22
and L3 changing with L? according to the N7 = N3 — L3 + 1
and L% = N22, respectively (i.e., valid convolution without
zero padding). The corresponding test error rates are given
in the bottom of Table II and are visualized in Fig. 4. The red
numbers in Table II are the various L%, and the blue numbers
are the corresponding N22 and N12.

From Fig. 4, one can find that small kernel length L3 =
in channel dimension results in the lowest error rate 9.07%.
Thus, we choose three as the optimal kernel length in channel
dimension whenever MLP-010 is used for sparse connection.

The number N12 of the input channels of K4 in block 2
is also important for classification. To seek the optimal value
of N12, we fix the kernel length L? =3 in channel dimen-
sion and utilize different le (i.e., 160, 192, 224, and 256).

The resulting classification error rates on the CIFAR10+ data
set are given in Table III and shown in Fig. 5. It is observed
that the best classification performance is obtained when the
number of input channels of an MLP-010 is 224.

In Tables II and III, MLP-010 is applied only in block 2
and dense MLPs are employed in both block 1 and block 3.
To further investigate the importance of MLP-010, MLP-010
is applied in both block 1 and block 2, whereas dense MLP is
applied in block 3. Moreover, all the three blocks can employ
MLP-010. Note that the number of the input channels of the
sparsely connected layer of MLP-010 is 224 and the kernel
length in channel dimension is three. The corresponding
results are given in the second row of Table IV from which
one can observe that it is beneficial to apply MLP-010 in
more blocks. The third row of Table IV shows the test error
rates of CiC-3-D where the number of the input channels of
the sparsely connected layer of MLP-010 is also 224 and the
kernel length in channel dimension is also three. For CiC-3-D,
it is also desirable to apply MLP-010 in all the three blocks.
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TABLE IV

TEST ERROR RATES (%) WHEN MLP-010 IS APPLIED IN ONLY
BLOCK 1, BLOCK 1 AND BLOCK 2, AND ALL THE
THREE BLOCKS, RESPECTIVELY

only block 2 block 1 and 2 block 1, 2, and 3

CiC-1D 9.23 — —
CiC-3D 9.05 8.46 7.94
il block | ========-===22------------- |
K, :1x1x222x192 1
: K, :5x5x3x192 K, :5x5x3x222 Strél,x ;ad:a BN, :
i| str=1, pad=2 st=1,pad=2 | 7| ReLU, pooling 3x3T]
' dropout !
"""""" blok 2 T
K, :5x5x192x224] K :5x5x3x222 || s o0 0 PR
i|  str=1, pad=2 id str=1, pad=2 B ReLU, pooling 3x3, T
' dropout !
jmm——mm-——— - block3 -===-==-===-="-"="--------—----- )
! K, :1x1x222x10 1
K :3x3x192%224 K, :3x3x3x222 str:RI, pad=0, BN,|!
1| str=1, pad=1 str=1, pad=1 ReLU, pooling 8x8,|,
e L softmax ________| :

Fig. 6. Configuration of the proposed CiC-3-D.

TABLE V
LEARNING RATES USED FOR TRAINING CiC

Epoch interval 1, 80] [81, 180] [181, 230]
From 0.5 0.5 0.005
To 0.5 0.005 0.0005
Step 0 -0.005 -0.0001

Comparing the second row and the third row of Table III,
one can conclude that CiC-3-D outperforms CiC-1-D signif-
icantly. Thus, in the following experiments, only CiC-3-D is
employed with MLP-010 being used in all the three blocks.
The main parameters and operation of the proposed CiC-3-D
are shown in Fig. 6.

In Fig. 6, “str” and “pad” stands for the
convolution stride and padding pixels. “pooling 3 x 3”
and “pooling 8 x 8" mean that max pooling are
conducted with 3 x 3 template and 8 x 8 template,
respectively.

The learning rate of a CNN is important for training. The
learning rates in the first 80 epochs are identical to 0.5. From
the 81th epoch to the 180th epoch, the learning rate decreases
from 0.5 to 0.005 with step —0.005. From the 181th epoch
to the 230th epoch, the learning rate decreases from 0.005 to
0.00005 with step —0.0001. Table V shows the learning rates
of different training epochs.

C. Comparison With Other Methods
on the CIFARIO Data Set

In Section IV-B, only 60 training epochs are employed.
Hereinafter, the training epochs of CiC-3-D are up to
230 epochs. Note that the CIFAR10+ data set is used in
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0.4 :
= ==NiN
0351 — CiC-3D||
n
0.3 J
0.25 1

test error rate (%)

0.05 ‘
0

50 100 150 200
training epochs

250

Fig. 7. Training error (%) versus training epoch of NiN and CiC-3-D on the
CIFAR-10 data set.

K, :5x5%x3x192 K, :1x1x192x160 K, :1x1x160x96
str=1,pad=2 [ P{ str=1,pad=0 [P str=1, pad=0, ReLU
ReLU ReLU pooling 3x3; dropout —‘
LK3;5><5><96><192 K, :1x1x192x192 K :1x1x192%192
str=1, pad=2 [P str=1, pad=0 > StFl_’ pad=0, ReLU
ReLU ReLU pooling 3x3; dropout _|

LKaf3x3xl92x192 K, :1x1x192x192 Ky :1x1x192x10
str=1, pad=1 B - p{str=1, pad=0, ReLU

str=1, pad=0 R
ReLU ReLU pooling 7x7; dropout
Fig. 8. Configuration of NiN [29] for the CIFARI10 data set.
TABLE VI
TEST ERROR RATES (%) ON THE CIFAR10 DATA SET
NiN [29] DSN [22] NiN-LA [1]  RCNN-160 [24]
10.41 9.78 9.59 8.69
CiC-3D DropConnect [48]  dasNet [39] All-CNN [40]
8.46 9.41 9.22 9.08

Section IV-B and the original CIFAR10 data set is used in
this section.

We first show in Fig. 7 the curves of training error
rates versus training epochs of NiN [29] (see Fig. 8 for its
architecture) and the proposed CiC-3-D (see Fig. 6) on the
CIFAR-10 data set. It is observed that CiC-3-D has smaller
training error rates than NiN. Moreover, the proposed method
CiC-3-D convergences much faster than NiN.

Table VI gives the test error rates of NiN [29],
DSN [22], NiN-LA units [1], RCNN-160 [24],
DropConnect [48], dasNet [39], All-CNN [40], and CiC-3-D
on the CIFAR10 data set. One can see from Table VI that
CiC-3-D outperforms NiN by 1.95%. In addition, CiC-3-D
gives 1.13% improvement over the NiN-LA. In Table VI, the
proposed CiC-3-D outperforms all the other methods.
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TABLE VII
TEST ERROR RATES (%) ON THE CIFAR10+4+ DATA SET

NiN [29] ResNet-1202 [24]  NiN-LA [1] RCNN-160 [24]
8.81 7.93 7.51 7.09
CiC-3D Maxout [11] FitNet [37] DSN [22]
6.68 9.38 8.39 8.22
Highway [44] All-CNN [40] ResNet-110 [16] -
7.54 7.25 6.43 -
TABLE VIII
TEST ERROR RATES (%) ON THE CIFAR100 DATA
SET WITHOUT AUGMENT

NiN [29] NiN-LA [1] Highway [44] RCNN-160 [24]
35.68 34.40 32.24 31.75
CiC-3D Maxout [11] FitNet [37] DSN [22]
31.40 38.57 35.04 34.57
dasNet [39] All-CNN [40] - -
33.78 33.71 - -

D. Comparison With Other Methods
on the CIFARIO++ Dataset

As stated in Section IV-A, the CIFAR10++ data set is a
large version of CIFAR10. The configuration of CiC-3-D is
the same as that in Section I'V-C (i.e., Fig. 6).

The test error rates on the CIFAR10+4 data set are
given in Table VII. The test error rates of NiN and CiC-3-D
are 8.81% and 6.68%, respectively. Consequently, CiC-3-D
gives 2.13% improvement over NiN. The superiority of
CiC-3-D grows as the training set increases. It is observed
from Table VII that the proposed CiC-3-D is top two
among all the 11 methods and the proposed CiC-3-D is
comparable with the top one method, ResNet-110, which
utilizes 110 computational layers.

E. Comparison With Other Methods
on the CIFARI00 Data Set

The CIFAR100 data set is challenging than the CIFAR10
data set. But we still adopt the configuration in Fig. 6 for
constructing CiC-3-D.

Table VIII shows that the test error rates of NiN [29],
NiN+LA units [1], highway [44], RCNN-160 [24], and
CiC-3-D are 35.68%, 34.40%, 32.24%, 31.75%, and 31.40%,
respectively. CiC-3-D arrives at the lowest test error rate and
outperforms NiN and NiN-LA by 4.28% and 3%, respectively.

The above experimental results show that the proposed
CiC-3-D method significantly outperforms NiN in reducing
the test error rate.

FE. Generalize the Idea to VggNet-Like Network

The nature of the proposed method is applying fully sparse
channel connection or partially sparse channel connection
deep CNN. In addition to applying partially sparse channel
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K, :3x3x3x64 Iy

K, :3x3x64x64

K2:3><3><64><]28_»

K, :3x3x128x128

Fig. 9.

str=1, pad=2 str=1, pad=2 str=1, pad=2 str=1, pad=2
K, :1x1x256%256 K§:3><3><256><256<_ K, :3x3x128x256 pooling :3x3
str=1, pad=2 str=1, pad=2 str=1, pad=2 dropout
pooling:3x3 K, :3x3x256x512 K, :3x3x512x512 N K, :1x1x512x512
dropout str=1, pad=2 str=1, pad=2 str=1, pad=2

<]
average

Architecture of a VggNet-like network for the CIFAR data sets.

Global

K, :1x1x512x10 or 1x1x512x100
str=1, pad=2

K, :3x3x3x64 Iy

K, :3x3x3x64

K2:3><3><64><]28_»

K, :3x3x128x128

str=1, pad=2 str=1, pad=2 str=1, pad=2 str=1, pad=2
K, :1x1x256%256 K§:3><3><256><256<_ K, :3x3x3%256 pooling :3x3
str=1, pad=2 str=1, pad=2 str=1, pad=2 dropout
pooling:3x3 K, :3x3x3x512 K, :3x3x512x512 N K, :1x1x512x512
dropout str=1, pad=2 str=1, pad=2 str=1, pad=2

K, :1x1x512x10 or 1x1x512x100
str=1, pad=2

e
average

Fig. 10. Architecture of the CiC-VggNet for the CIFAR data sets.

TABLE IX

COMPARISON WITH VggNet AND CiC-VGGNet, AND NiN IN TERMS
OF THE TEST ERROR RATE (%) ON THE CIFAR DATA SETS

Method ~ CIFARI0O  CIFARIO+  CIFAR100+
VggNet 7.91 6.36 27.33
CiCNet 6.43 5.06 24.82

connection to NiN, the proposed idea can be generalized to
other types of CNNs. In this section, we generalize the idea
to VggNet-like network [43].

The basic idea of VggNet is constructing an architecture
with very small (3 x3) convolutional filters. Given the data
sets of CIFAR10, CIFAR10+, and CIFAR100+ in Fig. 9, we
construct a VggNet-like network. In Fig. 9, the last kernel Ko
is of size 1 x1x512x 10 for the CIFAR10 and CIFAR10+ data
sets, and its size is 1 x 1 x 512 x 100 for the CIFAR100+
data set. The CIFARI00+ is the augmented version of the
CIFARI100 data set. We denote the method by VggNet. The
depth of the VggNet is 11. The first nine kernels are of spatial
size 3 x 3, and the last two kernels are of spatial size 1 x 1.

Corresponding to the architecture shown in Fig. 9, we
show in Fig. 10 the architecture of the proposed network
where sparse channel connection is adopted. Our method
is called CiC-VggNet. Sparse channel connection is applied
on Ky, K4, and K7.

The experimental results are given in Table IX. On the
CIFAR10, CIFAR10+, and CIFAR100+ data sets, the test
error rates of VggNet are 7.91%, 6.36%, and 27.33%,
respectively. On the three data sets, the test error rates of
the proposed CiC-VggNet are 6.43%, 5.06%, and 24.82%,
respectively. The results also demonstrate the effectiveness of
the proposed idea.

V. CONCLUSION

In this paper, we have presented a CNN method (called
CiC) where sparse shallow MLP is used for convolution.
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Full sparse MLP and several types of partial sparse MLPs
(e.g., MLP-010, MLP 011, MLP-100, and MLP-110) were
proposed. The MLP-010 was employed in the experiments.
The main idea is to sparsely connect different channels in an
unshared convolutional manner. The basic version of CiC is
CiC-1-D and its generalized version is CiC-3-D. In CiC-1-D, a
1-D filter is employed for connecting the second layer of each
block. CiC-1-D was then generalized to CiC-3-D by utilizing
a 3-D filter across channel-spatial domain.

In the experiments, a partially spare MLP, MLP-010, was
adopted. In the future, other types of partially sparse MLPs
can be implemented. Moreover, the proposed idea can be
integrated to other state-of-the-art CNNs [21] so that better
results can be expected. In addition, experiments on the task
of object detection [35], [36] will be conducted.
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