
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018 869

Identifying a Probabilistic Boolean
Threshold Network From Samples

Avraham A. Melkman, Xiaoqing Cheng, Wai-Ki Ching, and Tatsuya Akutsu, Senior Member, IEEE

Abstract— This paper studies the problem of exactly identify-
ing the structure of a probabilistic Boolean network (PBN) from
a given set of samples, where PBNs are probabilistic extensions
of Boolean networks. Cheng et al. studied the problem while
focusing on PBNs consisting of pairs of AND/OR functions. This
paper considers PBNs consisting of Boolean threshold functions
while focusing on those threshold functions that have unit
coefficients. The treatment of Boolean threshold functions, and
triplets and n-tuplets of such functions, necessitates a deepening
of the theoretical analyses. It is shown that wide classes of PBNs
with such threshold functions can be exactly identified from
samples under reasonable constraints, which include: 1) PBNs
in which any number of threshold functions can be assigned
provided that all have the same number of input variables and
2) PBNs consisting of pairs of threshold functions with different
numbers of input variables. It is also shown that the problem of
deciding the equivalence of two Boolean threshold functions is
solvable in pseudopolynomial time but remains co-NP complete.

Index Terms— Network inference, probabilistic Boolean
networks (PBNs), threshold functions, threshold networks.

I. INTRODUCTION

IDENTIFYING the network structure is an important chal-
lenge both in neuroscience and in systems biology. Exten-

sive studies have been done for identifying the network
structure of a human brain by developing various experimental
techniques [1], [2]. However, the human brain’s network
is too huge to be determined by the current experimental
technologies, and thus, computational methods may be helpful
to support this big challenge. The identification of the structure
of gene regulatory networks has also been extensively studied.
Since it is quite difficult to identify the gene regulatory
network structure using only experimental technologies, many
computational methods have been developed to identify the
structure from gene expression time series data [3]–[5].

Manuscript received May 13, 2016; revised October 14, 2016; accepted
December 31, 2016. Date of publication January 25, 2017; date of current
version March 15, 2018. This work was supported by the Collaborative
Research Program of Institute for Chemical Research, Kyoto University. The
work of A. A. Melkman was supported by the invitation fellowship from
JSPS, Japan. The work of T. Akutsu was supported by JSPS, Japan, under
Grant 26540125.

A. A. Melkman is with the Department of Computer Science,
Ben-Gurion University of the Negev, Beersheva 84105, Israel (e-mail:
melkman@cs.bgu.ac.il).

X. Cheng is with the School of Mathematics and Statistics, Xi’an Jiaotong
University, Xi’an 710049, China (e-mail: xiaoqing9054@xjtu.edu.cn).

W.-K. Ching is with the Department of Mathematics, The University of
Hong Kong, Hong Kong (e-mail: wching@hku.hk).

T. Akutsu is with the Bioinformatics Center, Institute for Chemical
Research, Kyoto University, Kyoto 611-0011, Japan (e-mail:
takutsu@kuicr.kyoto-u.ac.jp).

Digital Object Identifier 10.1109/TNNLS.2017.2648039

Various mathematical models have been employed and/or
developed for computationally identifying network structures.
Among them, the Boolean network (BN) is a well-
studied discrete mathematical model, which was proposed by
Kauffman [6], [7] in 1969 as a model of gene regulatory
networks. The BN has also been used in modeling neural
networks [8], [9], because neurons are often modeled as
Boolean threshold functions. In a BN, each node takes a
Boolean value, 0 or 1, at each time step, where each node
corresponds to a gene (resp., a neuron), and 1 and 0 mean
that genes (resp., neurons) are active and inactive, respectively.
In a widely studied synchronous BN, the states of all nodes
are updated synchronously according to Boolean functions
assigned to nodes.

In order to identify BNs from gene expression time series
data, extensive studies have been done based on combinato-
rial methods [10]–[13] and on algebraic methods [14], [15]
with semitensor product [16]. It is known that a BN with
n nodes is uniquely determined with high probability from
randomly selected O(log n) state-transition samples if the
maximum indegree (i.e., the maximum number of input nodes)
is bounded by a constant, whereas O(2n) samples are required
if there is no constraint on the structure of a BN [11], where
log n stands for log2 n in this paper. It should be noted that this
result is independent of identification algorithms and holds for
BNs consisting of Boolean threshold functions with at most
K input variables.

While BNs are deterministic, both gene regularity
networks [17] and neural networks [18] contain intrinsic
stochasticity and observed data also include noise. Therefore,
various extensions of BNs have been proposed for includ-
ing effects of noise or control [19]–[23]. Among them, the
probabilistic BN (PBN) model has been extensively stud-
ied [24]–[27], including recent studies on its control [28]–[31].
In this model, multiple Boolean functions can be assigned
to each node and one of them is randomly selected at each
time step according to the prescribed probability distribution.
Although several studies have been done on the inference of
PBNs [24], [27], [32], there had been no result on the sample
complexity analogous to the one for BNs.

Recently, Cheng et al. [33] studied the number of samples
needed to exactly identify the structure of a PBN (i.e., a set
of Boolean functions assigned to each node). They showed
that there are cases for which it is impossible to uniquely
determine a PBN from samples, which is reasonable because
of stochasticity of a PBN. However, they also showed that the
structure of a PBN can be identified with high probability from

2162-237X © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

870 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

O(log n) samples for theoretically interesting classes of PBNs
of bounded indegree, in particular, a class in which a pair of
AND/OR functions with the same number of input variables is
assigned to each node under the condition that each variable
appears in the pair either positively or negatively (not both).
However, their work was limited because: 1) they focused
on AND/OR Boolean functions and a very limited subclass of
canalyzing functions [34] and 2) at most two functions could
be assigned to one node. In order to extend their approach
to neural networks, we need to be able to deal with threshold
functions. It is to be noted that the class of threshold functions
is much wider than that of AND/OR functions [9] and is very
different from the subclass of canalyzing functions considered
in [33].

In this paper, we describe broad classes of PBNs
with threshold functions whose structure can be exactly
identified from samples. Hereafter, PBNs with threshold
functions are referred to as probabilistic Boolean threshold
networks (PBTNs). As a first step toward this extension, we
mainly consider threshold functions with unit coefficients.
As in [33], we consider two models for identification: the
partial information model (PIM) and the full information
model (FIM), but we introduce novel ideas and deeper analy-
ses. We show that broad classes of PBTNs can be exactly
identified from samples, in particular the following classes:
1) PBTNs in which any number of threshold functions can
be assigned provided all functions assigned to a node have
the same number of input variables and satisfy certain reason-
able conditions and 2) PBTNs consisting pairs of threshold
functions with different numbers of input variables under
reasonable conditions, where the PIM and FIM are assumed
for 1) and 2), respectively. Furthermore, we show that a
certain class of PBTNs with general coefficients can be
identified under the PIM; we analyze the number of samples
required for identification in both models, and present some
biologically relevant class. In addition to the identification
problem, we study the problem of deciding the equivalence
of two given Boolean threshold functions, because it might be
needed to test whether an identified network is intrinsically the
same as some known network. We show that the problem is
co-NP complete although it can be solved in pseudopoly-
nomial time. Note that a co-NP complete problem is the
complement (i.e., exchanging “yes” and “no” in the output)
of the corresponding NP complete problem, and that no
co-NP complete problem has a polynomial time algorithm
unless P = NP [35].

II. BOOLEAN THRESHOLD FUNCTIONS

In this paper, we focus on threshold functions on Boolean
domains, which have been widely used in theoretical studies
on neural networks [9]. Let x1, . . . , xn be Boolean variables.
A Boolean threshold function f on x1, . . . , xn has the form

w1x1 + w2x2 + · · · + wn xn ≥ θ

meaning that f (x1, . . . , xn) = 1 if w1x1+w2x2+· · ·+wnxn ≥
θ and otherwise f (x1, . . . , xn) = 0, for all (x1, . . . , xn) ∈
{0, 1}n , where wi and θ are integers. Although the ranges
of integers are not fixed in general, we mainly consider

identification for the unit coefficient case in which wi ∈ {0, 1}
holds for all i and thus θ ∈ {1, . . . , n} holds. Let N denote
the maximum value of coefficients wi s and θ . It is known that
Boolean threshold functions cover various Boolean functions,
which include AND and OR functions, majority functions,
and decision lists [9]. For example, an AND function (resp.,
an OR function) is represented as x1 + x2 + · · · + xn ≥ n
(resp., x1 + x2 + · · · + xn ≥ 1). Certain types of conditional
functions can also be represented as threshold functions, by
using the property that x → y is equivalent to x ∨ y.
For example, x1 ∧ x2 ∧ · · · ∧ xk → xn is represented as
x1 + x2 + · · · + xk + xn ≥ 1, and x1 ∨ x2 ∨ · · · ∨ xk → xn

is represented as x1 + x2 + · · · + xk + kxn ≥ k. However,
Boolean threshold functions do not cover all conditional
functions. For example, x1 ⊕ x2 → x3 is not covered, because
exclusive OR (⊕) cannot be represented as a Boolean threshold
function [9].

Before considering the identification problem, we consider
the problem of deciding the equivalence of two threshold
functions. We think that this is a fundamental problem,
but we were nevertheless unable to find in the literature a
result that explicitly states the complexity of the problem,
although [36] gives an efficient algorithm for finding a kind
of canonical representation of a Boolean threshold function.
First, we present a positive result, i.e., a procedure for
deciding the equivalence, that bears some similarity with that
of [36].

Proposition 1: The equivalence of two Boolean thresh-
old functions can be decided in time that is polynomial
in n and N .

Proof: Suppose that f and g have the forms w1x1 +· · ·+
wk xk ≥ θ1 and u1x1+· · ·+uh xh ≥ θ2, respectively. We assume
without loss of generality that h = k because otherwise we can
let wi = 0 for i > k or ui = 0 for i > h. Then, equivalence is
decided by the following simple recursive procedure. If k = 1,
we decide the equivalence by examining x1 = 0 and x1 = 1.
Otherwise

w1x1 + · · ·+wk xk ≥ θ1 and u1x1 + · · ·+ uk xk ≥ θ2
are equivalent if and only if
w1x1 + · · · + wk−1xk−1 ≥ θ1 and u1x1 + · · · +
uk−1xk−1 ≥ θ2 are equivalent and
w1x1 + · · ·+ wk−1xk−1 ≥ θ1 − wk and u1x1 + · · ·+
uk−1xk−1 ≥ θ2 − uk are equivalent.

The correctness of the procedure is obvious by means of
mathematical induction on the number of variables.

The running time of this procedure is polynomial
in n and N if it is implemented using dynamic programming
while maintaining a table defined by

D[j, θ1, θ2] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if w1x1 + · · · + w j x j ≥ θ1

is equivalent to

u1x1 + · · · + u j x j ≥ θ2,

0, otherwise.

The above-mentioned algorithm is a pseudopolynomial time
one with respect to the input size, because coefficients can be
represented by using O(log N) bits. The following proposition

MELKMAN et al.: IDENTIFYING A PBTN FROM SAMPLES 871

Fig. 1. Example of (part of) a PBTN. In this case, x4(t + 1) is determined
by f (4)

1 or f (4)
2 , where f (4)

1 and f (4)
2 are selected with probability c(4)

1 = 0.3

and c(4)
2 = 0.7, respectively.

indicates that probably there does not exist a polynomial time
algorithm for the equivalence problem.

Proposition 2: Deciding the equivalence of two Boolean
threshold functions is co-NP complete.

Proof: It is straightforward to see that the problem is
in co-NP.

In order to show that the problem is co-NP-hard, we
consider the subset sum problem, a well-known NP-complete
problem [35]. We reduce the complement of the subset prob-
lem to the problem of deciding whether two Boolean threshold
functions are equivalent.

The subset sum problem asks: given a set of positive
integers A = {a1, a2, . . . , an} and an integer b, is there a 0–1
assignment x1, . . . , xn such that a1x1 +a2x2 +· · ·+anxn = b?

From an instance A of the subset sum problem, we construct
two Boolean threshold functions by

a1x1 + a2x2 + · · · + an xn ≥ b
a1x1 + a2x2 + · · · + an xn ≥ b + 1.

These two functions are equivalent if and only if A does not
have a satisfying 0–1 assignment. Since the construction can
obviously be done in polynomial time with respect to the size
of A, the proposition holds.

III. PROBABILISTIC BOOLEAN THRESHOLD NETWORK

Here, we briefly review the definitions of the BN and define
PBTN (see also Fig. 1). Throughout this paper, a denotes
a 0–1 bit vector of length n, and ai denotes the 0–1 value of
its i th bit (i.e., a = (a1, . . . , an)). For a Boolean variable x ,
a literal is either x or its negation x .

Definition 3: Let x1, . . . , xn be Boolean variables.
An assignment of 0–1 values to the variables will be denoted
by a 0–1 bit vector a = (a1, . . . , an), and the value assigned
by a to a literal � will be denoted a(�), e.g., if ai = 0 then
a(xi) = 0 and a(xi) = 1.

Since we need to consider negative inputs (i.e., xi) in BNs
and PBNs, we redefine Boolean threshold functions as follows.

Definition 4: A Boolean function f is a threshold function
with (integer) threshold θ if there exists integers wi such that

f (x1, . . . , xn)
= 1 if and only if∑

i∈{1,...,n}
wi�i ≥ θ, for all (x1, . . . , xn) ∈ {0, 1}n

where �i is either xi or xi .

Henceforth, we will assume that a threshold function f is
given by its set of literals, L I T (f), the corresponding weights,
and the threshold θ(f). For example, for f defined by x1 +
3x2+2x3 ≥ 4, L I T (f) = {x1, x2, x3}, its weights are (1, 3, 2),
and θ(f) = 4.

Definition 5: A Boolean threshold network is a directed
network with n nodes x1, . . . , xn , in which node i has an
associated Boolean threshold function f (i). At time step t ,
node xi takes on a value xi (t) that is either 0 or 1, and xi (t+1)
is determined by xi (t + 1) = f (i)(x1(t), . . . , xn(t)).

A PBTN is a directed network with n nodes in which
node i is associated with a set F = { f (i)

1 , . . . , f (i)
mi } of

Boolean threshold functions, and with corresponding selection
probabilities c(i)

j ,
∑mi

j=1 c(i)
j = 1. The value of node xi at time

t + 1 is determined by

xi (t + 1) = f (i)
j (x1(t), . . . , xn(t)) with probability c(i)

j

where selection of f (i)
j is independent of selections at previous

time steps and of selections for other nodes.
Denote X (t) = (x1(t), . . . , xn(t)). We focus our attention

on the following setup. Suppose we are provided with a set
of observations each of which consists of a pair (X (0), X (1)).
We wish to investigate the conditions under which it is possible
to deduce the functions associated with the nodes from these
observations and, if so, how many observations are needed.
In this paper, we will not attempt to determine the selection
probabilities c(i), so that for our purposes duplicate pairs can
be unified.

Since at time step t a Boolean threshold function f (i)
j is

selected simultaneously with and independently of the selec-
tions for the other nodes, we can investigate these questions
by looking generically at the dynamics of a single node, as
in [33]. Henceforth, we will concentrate, therefore, on the
identification of a set F of Boolean threshold functions from
a set of samples S each of which is of the form (a, v), where
a is an initial assignment to the nodes of the network and
v is the value of the node in question at the next time step.
Furthermore, with a slight abuse of notation, we will call a
set F of Boolean threshold functions a PBTN.

IV. TWO MODELS

We assume that a class C of PBTNs is given, and that a
set of samples S is generated using some PBTN F ∈ C,
meaning that for each (a, v) ∈ S the value v belongs to the set
F(a) = { f1(a), . . . , f p(a)}. Many PBTNs from the class may
be consistent with the sample so generated, in the following
sense.

Definition 6: A PBTN F = { f1, . . . , f p} is consistent with
a sample (a, v) if v ∈ F(a) = { f1(a), . . . , f p(a)}. If F is
consistent with every sample in a set of samples S, it is called
consistent with S.

What we are interested in are classes C and sample sets S
having the property that it is possible to identify from S which
PBTN F ∈ C it was that generated S. In other words, our
purpose is to describe classes C of PBTNs having the property
that there is a unique F ∈ C that is consistent with S provided
the set of samples S is sufficiently large.

872 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

As in [33], we consider two models, the PIM and the FIM.
Speaking intuitively, in the PIM setting, we require that all
observed samples are consistent with the underlying PBN,
and no other PBN in the class under consideration could have
generated those samples. In the FIM setting, on the other hand,
this requirement is relaxed in that it allows for the possibility
that other PBNs could have generated the same samples,
but requires that, over time, these PBNs should generate
in addition different samples that are inconsistent with the
underlying PBN. PIM and FIM are defined via identifiability
as follows.

Definition 7: S identifies F from among C under the PIM
if F is the only PBTN in C that is consistent with all samples
in S. When the class is clear from the context, we will simply
say that S PIM-identifies F .

Under the FIM S identifies F from among C if it has the
following.

1) F is the only PBTN in C that is consistent with all
samples in S.

2) If (a, v) ∈ S, then a × F(a) ⊆ S, i.e., all possible
samples (a, f (a)), f ∈ F were generated.

When the class is clear from the context, we will say that S
FIM-identifies F .

Definition 8: A class C is identifiable from samples under
the PIM, respectively the FIM, if for every F ∈ C there
is a set of samples that PIM-identifies F , respectively,
FIM-identifies, F . We will usually say for short that C is
PIM-identifiable, respectively, FIM-identifiable.

Although the definition of FIM-identifiability is sim-
ple, it is far from trivial to determine which classes are
FIM-identifiable, as discussed in this paper and in [33].

The central observation that will guide us in exploring the
structure of PBTNs is the following Theorem, a rephrasing
of [33, Propositions 2 and 3]; for completeness, we provide
the proof in the Appendix.

Theorem 9: A class C of PBTNs is PIM-identifiable if and
only if for every F, G ∈ C, there is an assignment a such that

F(a) − G(a) 	= ∅. (1)

C is FIM-identifiable if and only if for every F, G ∈ C,
there is an assignment a such that

F(a) 	= G(a). (2)

Example 10: Let f1 = x1 + x2 ≥ 1, f2 = x1 + x2 +
x3 ≥ 2, f3 = x1 ≥ 1, and f4 = x1 + x2 + x3 ≥ 3. Let
F = { f1, f2}, G = { f2, f3}, H = { f2, f4}, C1 = {F, G} and
C2 = {G, H }. Then, C1 is identifiable from samples under
FIM but not under PIM, because G(a) ⊆ F(a) for all a,
whereas C2 is identifiable from samples under both PIM and
FIM because G(a′) − H (a′) = {1} for a′ = (1, 1, 0) and
H (a′′) − G(a′′) = {0} for a′′ = (1, 0, 1) (see also Table I).

The theorem highlights the fact that PIM-identifiability of C
requires that, for every F, G ∈ C, there is an assignment a
and an outcome y such that y ∈ F(a) but y /∈ G(a), whereas
FIM-identifiability only requires the existence of an assign-
ment a such that F(a) 	= G(a) (so that, for example,
F(a) ⊂ G(a) is possible). Indeed, if C is PIM-identifiable,

TABLE I

EXAMPLE ILLUSTRATING THE DIFFERENCE BETWEEN PIM AND FIM

it also is FIM-identifiable but, as we shall see, there are
FIM-identifiable classes that are not PIM-identifiable.
Although FIM allows identification of wider classes of PBTNs,
PIM has a merit as discussed in [33]: we can know whether or
not the current set of samples is enough to uniquely determine
the network structure. These facts suggest that PIM is more
appropriate when the number of samples is small, otherwise
FIM is.

Since our analysis will repeatedly make use of the con-
ditions of the theorem, it will be convenient to employ the
following definition.

Definition 11: F is PIM-distinguishable from G if there
is an assignment a such that F(a) − G(a) 	= ∅, and it is
FIM-distinguishable from G if F(a) 	= G(a). We will also
say that a PIM-distinguishes, respectively, FIM-distinguishes,
F from G.

Remark 12: F being PIM-distinguishable from G does not
imply G is PIM-distinguishable from F .

Throughout this paper, we consider only admissible PBTNs,
defined as follows.

Definition 13: Denote L I T (F) = ∪ f ∈F L I T (f). A PBTN
F is admissible if at most one of �, � appears in L I T (F), for
all �.

Remark 14: A class may be identifiable even though it
contains inadmissible PBTNs.

Example 15: Let C = {F, G} with F = {x1 + x2 ≥ 2, x1 +
x3 ≥ 1}, G = {x1+x3 ≥ 2, x1+x3 ≥ 1}. Then, the assignment
(x1, x2, x3) = (0, 1, 0), PIM-distinguishes F from G, whereas
the assignment(1, 0, 0) PIM-distinguishes G from F .

In Sections V - VIII, we present several theorems showing
identifiability of various classes of PBTNs under PIM and/or
FIM. Fig. 2 shows the relationships among these theorems.

V. PBTNS WITH UNIT COEFFICIENTS UNDER PIM

In this section, we consider identification of PBTNs under
the PIM model. For the sake of readability, all the proofs of
theorems in Sections V and VI are given in the Appendix.
We begin with a simple but important lemma, which can be
proven from the fact: if F ⊆ G then F(a) − G(a) = ∅ for
all a.

Lemma 16 (Necessary Condition for PIM): A class C of
admissible PBTNs is PIM-identifiable only if it does not
contain F and G, such that F ⊆ G.

In this section, we restrict attention to those classes C of
admissible PBTNs having the property that for given F ∈ C,

MELKMAN et al.: IDENTIFYING A PBTN FROM SAMPLES 873

Fig. 2. Relationships among theorems.

all threshold functions f ∈ F depend on exactly K vari-
ables and have unit coefficients (i.e., wi ∈ {0, 1} for all
i = 1, . . . , n).

A. Pairs of Threshold Functions

Our first result constitutes a generalization of [33, Th. 1],
which dealt with OR functions and AND functions (the case
θ1 = 1 and θ2 = K of Theorem 17).

Theorem 17: Let 1 ≤ θ1 < θ2 ≤ K be two fixed thresholds,
and let C be a class of admissible PBTNs satisfying the
necessary condition for PIM, such that each F ∈ C consists
of two (not necessarily different) threshold functions with
the following properties: every f ∈ F depends on exactly
K variables, has unit coefficients, and has a threshold that is
either θ1 or θ2. Then, C is PIM-identifiable.

B. Triplets of Threshold Functions

Theorem 17 can be partially generalized for triplets of
threshold functions as follows.

Theorem 18: Let 1 ≤ θ1 < θ3 ≤ K be two fixed
thresholds, and let C be a class of admissible PBTNs satis-
fying the necessary condition for PIM, such that each F =
{ f1, f2, f3} ∈ C consists of three (not necessarily different)
threshold functions with the following properties: every f ∈ F
depends on exactly K variables, has unit coefficients, and has
θ(f1) = θ1, θ(f3) = θ3 and θ1 ≤ θ(f2) ≤ θ3. Then, C is
PIM-identifiable if it meets one of the following conditions.

1) θ1 < θ(f2) < θ3 for all F ∈ C, and f1 	= g1 or f3 	= g3
for all pairs F, G ∈ C.

2) 1 < θ1 and θ3 < K , and |F ∩ G| ≤ 1 for all pairs
F, G ∈ C.

3) F ∩ G = ∅ for all pairs F, G ∈ C.
Note that conditions 2 and 3 permit f2 = f1 or f2 = f3.
Theorem 19 is in part a special case of Theorem 21.
Theorem 19: Let C be a class of admissible PBTNs that

satisfies the necessary condition for PIM, and is such that each
F ∈ C consists of three (not necessarily different) threshold

functions that have the same threshold, in addition to all three
depending on exactly K variables and having unit coefficients.
Then, C is PIM-identifiable if one of the following holds.

1) K ≥ 4, or K ≤ 2.
2) K = 3, each F ∈ C that has a threshold of 2 consists of

three different threshold functions, and if both F, G ∈ C
have a threshold of 2 then F ∩ G = ∅.

Following is an example of a class of triplet-PBTNs, which
is not PIM-identifiable, because the second condition fails to
hold, θ(F) = θ(G) = 2 and F ∩ G 	= ∅
F = {x1 + x2 + x3 ≥ 2, x1 + x2 + x4 ≥ 2, x2 + x3 + x4 ≥ 2}
G = {x1 + x2 + x3 ≥ 2, x1+x3 + x4 ≥ 2, x2 + x4 + x5 ≥ 2}.
F cannot be PIM-distinguished from G, because F(a) = G(a)
whenever G(a) is a singleton.

C. Partial Generalization to PBTNs Containing m Functions

One sufficient condition for PIM-identifiability of a class C
containing PBTNs of m functions is obtained by generalizing
the first condition of Theorem 18.

Theorem 20: Let 1 ≤ θ1 < θm ≤ K be two fixed
thresholds, and let C be a class of admissible PBTNs satisfying
the necessary condition for PIM, such that each F ∈ C consists
of m threshold functions with the following properties: every
f ∈ F depends on exactly K variables and has unit coeffi-
cients, and the thresholds of F are θ(f1) = θ1, θ(fm) = θm

and θ1 < θ(f) < θm, f 	= f1, fm . Then, C is PIM-identifiable
if f1 	= g1 or fm 	= gm for all pairs F, G ∈ C.

The proof of this theorem is virtually identical to the proof
of the first condition of Theorem 18. Another result concerns
PBTNs consisting of m threshold functions that all have the
same threshold.

Theorem 21: Let C be a class of admissible PBTNs each of
which consists of up to m functions, all depending on exactly
K variables, all having unit coefficients, and all having the
same threshold θ , with 1 ≤ θ ≤ max{1, K + 1 − m} or
min{m, K } ≤ θ ≤ K . Then, C is PIM-identifiable if and only
if C satisfies the necessary condition for PIM.

The ideas of the theorem can be pushed a bit further, as
stated in Theorem 22. Note that if m ≥ K , then θ = 2 and
θ = K − 1 do not satisfy the condition of Theorem 21.

Theorem 22: Let m ≥ K and let θ1 = 1, θ2 = 2 or θ1 =
K −1, θ2 = K . Let C be a class of admissible PBTNs each of
which consists of exactly m functions, all depending on exactly
K variables, having unit coefficients, and having thresholds
that are either all θ1 or all θ2. Then, C is PIM-identifiable if
and only if C satisfies the necessary condition for PIM.

VI. PAIRS OF THRESHOLD FUNCTIONS WITH

UNIT COEFFICIENTS UNDER FIM

As in Section V, we consider admissible pairs of threshold
functions each of which has all unit coefficients. The differ-
ence is that in this section, there is no constraint on the per-
missible thresholds nor is it required that all functions depend
on exactly K variables. There is one necessary condition that
needs to be imposed, however, to prevent the class from con-
taining pairs that are obviously FIM-indistinguishable, such as
F = {x1 ≥ 1, x2 ≥ 1}, G = {x1 + x2 ≥ 1, x1 + x2 ≥ 2}.

874 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

Lemma 23 (Necessary Condition for FIM): Let C be a
class of admissible PBTNs each of which consists of one
or two threshold functions that have unit coefficients. If C
is FIM-identifiable, then it does not contain F = { f1, f2} and
G = {g1, g2}, such that f1 = �1 ≥ 1 f2 = �2 ≥ 1, g1 =
�1 + �2 ≥ 1, g2 = �1 + �2 ≥ 2, with �1, �2 literals.

Note that our definitions imply that �1 	= �2 and �1 	= �2.
It is easily seen that indeed for the pair of functions of the
lemma, F(a) = G(a) for all a.

This much broader class is FIM-identifiable.
Theorem 24: Let C be a class of admissible PBTNs each

of which consists of one or two threshold functions that have
unit coefficients. Then, C is FIM-identifiable if and only if the
necessary condition for FIM holds.

The following example shows that the same class is not
PIM-identifiable.

Example 25: The pair F = {x1+x2+x3 ≥ 1, x1+x2+x4 ≥
2} cannot be distinguished from the pair G = {x1 + x2 +
x3 ≥ 1, x1 + x2 + x4 ≥ 3}, because F(a) ⊆ G(a) for all
assignments a.

VII. PAIRS OF THRESHOLD FUNCTIONS WITH

GENERAL COEFFICIENTS UNDER FIM

We have so far focused on unit coefficient cases under
both PIM and FIM. It appears difficult to extend the results
to threshold functions with general coefficients. With “unit
coefficients,” only the presence or absence of a literal plays
a role. This is technically reflected in the pervasive use
of L I T (f) in the analyses and proofs. A more substantial
manifestation is the following.

The essence of Theorem 24 is that if F = { f1, f2} and
G = {g1, g2} are admissible, then there always is an assign-
ment a such that F(a) 	= G(a) unless F and G have the forms
given in Lemma 23.

With general coefficients, however, a pair having the prop-
erties of Lemma 23 can take on many more forms that are
hard to catalog. For example, F ′(a) = G′(a) for all a if
F ′ = {2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2} and G′ = {x1 + x2 ≥
1, x1 + x2 ≥ 2}. Looking at the bright side, this example
does suggest the positive result stated in Corollary 27 of
Theorem 26.

Theorem 26: Suppose that for any nonidentical pair F =
{ f1, f2} ∈ C, G = {g1, g2} ∈ C, there does not exist a pair
of assignments (a, b) such that f1(a) = g1(a) 	= f2(a) =
g2(a) and f1(b) = g2(b) 	= f2(b) = g1(b). Then, C is
FIM-identifiable.

Proof: We prove the theorem by contrapositive. Suppose
that C is not FIM-identifiable. Then, there exists a nonidentical
pair (F, G), such that F(a) = G(a) holds for all assignments
a. For each a, F(a) = G(a) means that one of the following
holds:

f1(a) = g1(a) = f2(a) = g2(a) (#1)

f1(a) = g1(a) 	= f2(a) = g2(a) (#2)

f1(a) = g2(a) 	= f2(a) = g1(a). (#3)

If (#1) or (#2) always hold, (f1, f2) is identical to (g1, g2),
which contradicts the assumption that F and G are not

identical. Similarly, if (#1) or (#3) always holds, (f1, f2)
is identical to (g2, g1). Therefore, F(a) = G(a) holds only
if (#2) holds for some a and (#3) holds for another a for these
F and G.

To state Corollary 27, we consider the normalized form
of a threshold function in which θ = 1. For example,
“2x1 + x2 ≥ 2” is normalized to “x1 + 0.5x2 ≥ 1.” For a
threshold function f , let f̂ denote the left-hand side of its
normalized function and ŵ

f
i denote the coefficient of xi in f̂ .

For example, for f = 2x1 + x2 ≥ 2, f̂ = x1 + 0.5x2, ŵ
f

1 = 1,
and ŵ

f
2 = 0.5. If xi does not appear in f , we let ŵ

f
i = 0.

Corollary 27: C is FIM-identifiable if for any { f1, f2} ∈ C,
ŵ

f1
i ≥ ŵ

f2
i holds for all i .

Proof: If the condition is satisfied for { f1, f2},
{g1, g2} ∈ C, the following hold for all a: f̂1(a) ≥ f̂2(a) and
ĝ1(a) ≥ ĝ2(a), which means that f1(a) = g2(a) 	= f2(a) =
g1(a) does not hold for any a.

The class considered in this corollary bears some similarity
with (but is disjoint from) the class consisting of pairs of the
form { f, f ∧ g}, which is discussed in [33] as a biologically
relevant one.

VIII. SAMPLE COMPLEXITY AND PRACTICAL EXAMPLES

Here, we discuss sample complexity and identifiability of
some realistic models of biological networks.

A. Sample Complexity

PBNs that have doublets of functions at the nodes, where
for each input sample, one of the two functions is selected
with probability 0.5 to generate the output at that node,
are considered in [33]. They show, by adapting a result for
BNs [11] to PBNs, that some classes of such PBNs can
be identified from O(log n) samples, in the PIM and/or the
FIM setting.

Here, we generalize that result so that node k has an
L-tuplet of functions, F (k) = { f (k)

1 , . . . f (k)
L }, and the prob-

ability c(k)
j associated with f (k)

j is lower bounded by c > 0.
Note that in this section, we consider not a single output node
but rather all n nodes, so that a sample is of the form (a, b),
with a and b n-bit vectors. We assume that each input sample
a is generated uniformly at random, bit by bit, and that the
kth bit of the corresponding n-bit output vector b is obtained
by first choosing j according to the underlying probabilities

c(k)
j , j ∈ {1, . . . , L}, independently of other nodes, and then

computing f (k)
j (a). The proof is given in the Appendix.

Theorem 28: Let C be a class of PBNs consisting of
L-tuplets of functions, each of which has at most K inputs, that
satisfies the condition of PIM (resp., FIM) of Theorem 9. If, for
fixed L and K , O((1/c) ·22L K ·(2L K +1+α) · log n) samples
are generated uniformly at random, as described ealier, then
the correct PBN can be uniquely identified at all nodes with
probability no less than 1 − (1/nα) under PIM (resp., FIM).

It is to be noted that for L = 2, the increase in the sample
complexity is not large (only a factor of (1/2c)), compared
with the case of c = 0.5 [33]. The constant factors depending
on L and K might be reduced by using the techniques
in [13] and [37], which is left as future work.

MELKMAN et al.: IDENTIFYING A PBTN FROM SAMPLES 875

B. Practical Examples

Kobayashi and Hiraishi [38] considered the following prob-
abilistic model of an apoptosis network:

f (i)
1 c(i)

1 f (i)
2 c(i)

2

f (1)
j x2 + u ≥ 2 0.6 x1 ≥ 1 0.4

f (2)
j x1 + x3 ≥ 2 0.7 x2 ≥ 1 0.3

f (3)
j x2 + u ≥ 1 0.8 x3 ≥ 1 0.2

where x1, x2, and x3 denote the concentration levels (high or
low) of the inhibitor of apoptosis proteins, the active caspase 3,
and the active caspase 8, and u denotes the concentration level
of the tumor necrosis factor (a stimulus), which is regarded
as the control input (i.e., an external input). Note that the
probabilities c(i)

j are not relevant in this paper. Each function
pair can be represented as {xi ≥ 1,

∑
j 	=i w j � j ≥ θi }, where

each w j is 0 or 1, and θ is 1 or 2. Let C be the class
of such function pairs. Clearly, C satisfies the conditions of
Lemma 23. Therefore, we see from Theorem 24 that C is
FIM-identifiable.

It is to be noted that although class C bears some similarity
with the class of complementary canalyzing pairs studied
in [33], it is not covered by that class or any other class
in [33].

Furthermore, we can show that a wider class of PBNs is
PIM-identifiable.

Theorem 29: Let C be a class of Boolean function pairs
of the form {xi , f }, where f is any Boolean function not
including xi or xi . Then, C is PIM-identifiable.

Proof: We consider two cases. First, suppose that F =
{xi , f } and G = {xi , g} [case (A)]. Since F 	= G, there exists
a such that f (a) 	= g(a). We assume without loss of generality
that f (a) = 1 and g(a) = 0. Let a0

i (resp., a1
i) be a bit

vector obtained by assigning 0 (resp., 1) to the i th bit in a.
Since xi does not appear in f or g, we have F(a1

i) = {1},
G(a1

i) = {0, 1}, F(a0
i) = {0, 1}, and G(a0

i) = {0} from which

F(a0
i) − G(a0

i) 	= ∅ and G(a1
i) − F(a1

i) 	= ∅ follow.
Next, suppose that F = {xi , f } and G = {x j , g}, where

xi 	= x j [case (B)]. We will show that G(a) − F(a) 	= ∅
holds for some a. Existence of a such that F(a) − G(a) 	= ∅
can also be shown in an analogous way. Suppose that f is a
constant. We assume without loss of generality that f = 0.
Then, G(a) − F(a) 	= ∅ holds for a, such that a[i] = 0 and
a[j] = 1, where a[i] denotes the i th bit of a. Otherwise, f is
not a constant. Then, for some a, a[i] = 0 and f (a) = 0 hold.
If a[j] = 0 holds for all such a, f (a) = 0 implies a[j] = 0,
because xi or xi does not appear in f . For some a, a[i] = 1
and f (a) = 1 also hold. If a[j] = 1 holds for all such a,
f (a) = 1 implies a[j] = 1. Therefore, at least one of the
following holds.

1) a[i] = 0, f (a) = 0, and a[j] = 1 hold for some a.
2) a[i] = 1, f (a) = 1, and a[j] = 0 hold for some a.
3) f = x j holds.

If 1) or 2) holds, G(a)− F(a) 	= ∅ holds. Case 3) corresponds
to case (A) and thus can be ignored.

Therefore, class C satisfies the condition of
PIM-identifiability of Theorem 9 and the theorem follows.

As noted in [38], asynchronous BNs can be represented by
PBNs consisting of pairs in the above class C by replacing
fi assigned to the i th node in a BN with {xi , fi }. Therefore,
Theorem 29 implies that all asynchronous BNs without self-
loops are PIM-identifiable. Even if there are some self-loops,
function pairs can be PIM-identified for all nodes without self-
loops, because function pairs can be identified independently
for different nodes. Therefore, this result covers a wide range
of asynchronous BNs. For example, asynchronous BN models
without self-loops have been studied for the following biolog-
ical processes: T-cell activation (several tens of nodes) [39],
differentiation of T-helper cells (23 nodes) [40], and guard cell
ABA signal transduction (11 nodes) [41]. Our results imply
that these asynchronous BN models are PIM-identifiable.
Of course, efficient algorithms should be developed in order
to identify practical networks, because theorems in this paper
discuss the identifiability based on exhaustive enumeration. It
should also be noted that asynchronous BNs with threshold
functions have been studied for theoretical analysis of neural
networks [42].

IX. CONCLUSION

We have studied the problem of exactly identifying the
structure of a PBTN with unit coefficients and with general
coefficients. We proved that broad classes of such PBTNs
can be identified from O(log n) samples. We also showed
some impossibility results on extensions of these classes,
which somewhat clarified the identifiable classes of PBTNs.
These results give a theoretical foundation on computational
identification of stochastic biological and neural networks.

One important future direction is to further study the identi-
fication of PBTNs with general coefficients. For that purpose,
we may need to develop new techniques because most of the
present analyses make heavy use of the properties of threshold
functions with unit coefficients. Another important future work
is to develop efficient algorithms, because the present results
are based on implicit enumeration of all possible combinations.
Further studies would strengthen the theoretical foundation
and might stimulate developments of practical identification
methods.

APPENDIX

NOTATION

To prove PIM-identifiability, we will typically reason as
follows. Given any F, G ∈ C, we will show how to construct
an assignment a that PIM-distinguishes F from G, i.e., is
such that G(a) is a singleton while F(a) − G(a) 	= ∅. The
assignment will be partially specified by two sets of literals,
say Y and L, and requiring either that a(�) = 1 if � ∈ Y , and
a(�) = 0 if � ∈ L−Y or that a(�) = 0 if � ∈ Y and a(�) = 1 if
� ∈ L − Y ; any literal whose value is not determined by these
assignments can be given an arbitrary value, because this value
does not figure in the proof. It will therefore be convenient to
employ an indicator notation, as follows.

Notation: Denote by a ⊃ 1L
Y an assignment a such that

a(�) = 1 if � ∈ Y , a(�) = 0 if � ∈ L − Y , while the values
of a(�) for � /∈ Y ∪ L are irrelevant (as long as they are
consistent with the defined values).

876 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

Thus, a ⊃ 1L
L−Y specifies that a(�) = 0 if � ∈ Y , a(�) = 1

if � ∈ L − Y .

PROOF OF THEOREM 9

Proof: Suppose first that condition (1) holds. Then, for
each G ∈ C, G 	= F, there is an aG such that vG ∈
F(aG)−G(aG). Let S = {(aG, vG) : G ∈ C, G 	= F}. Clearly,
F is consistent with S, whereas every G ∈ C, G 	= F, is
inconsistent with S.

For the converse suppose that C is PIM-identifiable, and
let F, G ∈ C. Let S be a set of samples that PIM-identifies F .
Then, there is a sample (a, v) with which F is consistent
but G is inconsistent, i.e., v ∈ F(a) but v /∈ G(a). Hence,
F(a) − G(a) 	= ∅.

Similarly, if condition (2) holds then for each G ∈ C,
G 	= F, there is an aG , such that F(aG) 	= G(aG). Let
S = ∪G∈C,G 	=F F(aG). Clearly, F is consistent with S, and for
all (a, v) ∈ S in fact a× F(a) ⊆ S. For every G ∈ C, G 	= F ,
in contrast, there either is a v ∈ F(aG) − G(aG) or a
v ∈ G(aG) − F(aG). In the first case, G is inconsistent with
(aG, v), and in the second case, G(aG) 	⊆ S.

Conversely, if C is FIM-identifiable and F, G ∈ C, let
S be a set of samples that FIM-identifies F . Then, either
G is inconsistent with S, i.e., there is an (a, v) such that
v ∈ F(aG) − G(aG), or there is (a, v) such that G(a) 	⊆ S,
i.e., v ∈ G(aG) − F(aG). In both cases, F(a) 	= G(a).

PROOF OF THEOREM 17

Proof: We will consider separately the possible combina-
tions of thresholds. For brevity, we will denote, for example,
the case that f1, f2 and g1 have threshold θ1 and g2 has
threshold θ2 by “{θ1, θ1} versus {θ1, θ2}.” We assume always
that θ(f1) ≤ θ(f2), and θ(g1) ≤ θ(g2).

1) {θ1, θ1} versus {θ2, θ2}, or {θ1, θ2} versus {θ2, θ2}.
Let Y ⊆ L I T (f1) be such that |Y | = θ1, and
let a ⊃ 1L I T (G)

Y . Note that the assignment a is
not self-contradictory, because G is admissible, i.e., if
� ∈ L I T (g1), then � /∈ L I T (g2). Now 1 ∈ F(a)
because |L I T (f1) ∩ Y | = θ1, while |L I T (gi) ∩ Y | ≤
θ1 < θ2, i = 1, 2, so that 1 /∈ G(a), and hence,
F(a) − G(a) 	= ∅.

2) {θ1, θ2} versus {θ1, θ1}, or {θ2, θ2} versus {θ1, θ1}.
Let Z ⊆ L I T (f2) be such that |Z | = K −θ2 +1, and let
a ⊃ 1L I T (G)

L I T (G)−Z . Then, 0 ∈ F(a), since |L I T (f2)−Z | ≤
θ2 − 1 < θ2, but 0 /∈ G(a), because |L I T (gi) − Z | ≥
θ2 − 1 ≥ θ1, as gi depends on exactly K variables,
i = 1, 2.

3) {θ1, θ2} versus {θ1, θ2}.
If there is a literal y ∈ L I T (f1) − L I T (g1) 	= ∅ then
let Y ⊆ L I T (f1) be such that y ∈ Y and |Y | = θ1. Let
a ⊃ 1L I T (G)

Y . Then, 1 ∈ F(a), since |L I T (f1)∩Y | = θ1,
but G(a) = {0}, because |L I T (g1) ∩ Y | ≤ θ1 − 1 < θ1,
and |L I T (g2) ∩ Y | ≤ θ1 < θ2.
If, on the other hand, L I T (f1) − L I T (g1) = ∅, then
in fact L I T (f1) = L I T (g1), because both functions
depend on exactly K variables. Consequently, f1 =
g1, since the two functions have the same threshold.

Moreover, necessarily L I T (f2)−L I T (g2) 	= ∅, because
otherwise it would follow, similarly, that f2 = g2.
There is therefore a z ∈ L I T (f2) − L I T (g2). Let
Z ⊆ L I T (f2) be such that |Z | = K − θ2 + 1 and
z ∈ Z . Now let a ⊃ 1L I T (G)

L I T (G)−Z . Then, 0 ∈ F(a), since
|L I T (f2) − Z | ≤ θ2 − 1 < θ2, but 0 /∈ G(a), because
|L I T (g1)− Z | ≥ θ2 − 1 ≥ θ1, and |L I T (g2)− Z | ≥ θ2.

4) {θ1, θ1} versus {θ1, θ2}, or {θ2, θ2} versus {θ1, θ2}.
We deal with the two cases together by considering {s, s}
versus {s, t}, s 	= t , i.e., s = θ1, t = θ2 or s = θ2,
t = θ1. Note that in the second case, θ(g2) < θ(g1).
To begin with we prove that there is a literal z ∈
L I T (f1) − L I T (g1). Consider first the possibility that
L I T (f1) 	= L I T (f2). Then, |L I T (F)| ≥ K + 1 >
|L I T (g1)| = K , so that L I T (F) − L I T (g1) 	= ∅
and without loss of generality, we can assume that
L I T (f1) − L I T (g1) 	= ∅. If, on the other hand,
L I T (f1) = L I T (f2), then f1 = f2, so that f1 	= g1,
because of the necessary condition, and in particular
L I T (f1) − L I T (g1) 	= ∅.
In case s = θ2, let Z ⊆ L I T (f1) with |Z | = K − s + 1
be such that z ∈ Z , and let a ⊃ 1L I T (G)

L I T (G)−Z . Then,
0 ∈ F(a), since |L I T (f1) − Z | ≤ s − 1 < s, while
G(a) = {1}, because |L I T (g1) − Z | ≥ s − 1 ≥ t , and
|L I T (g2) − Z | ≥ s.
In case s = θ1, let Y ⊆ L I T (f1) be such that y ∈ Y
and |Y | = s. Letting a ⊃ 1L I T (G)

Y , it is readily seen that
1 ∈ F(a) but G(a) = {0}.

5) {θ1, θ1} versus {θ1, θ1}, or {θ2, θ2} versus {θ2, θ2}.
We deal with the two cases together by considering {t, t}
versus {t, t}, for t = θ1 or t = θ2. Observe that for
one of j = 1 and j = 2, there are zi ∈ L I T (f j) −
L I T (gi), i = 1, 2, say j = 1. Indeed, were that not to
be the case then from L I T (f1)−L I T (gi) = ∅ for i = 1
or 2, say for i = 1, it follows that f1 = g1, and from
L I T (f2) − L I T (gi) = ∅ for i = 1 or 2 it follows that
f2 = g1 or f2 = g2. Neither of the latter eventualities
can happen because f1 = f2 = g1 violates the necessary
condition, while f1 = g1, f2 = g2 means that F = G.

a) 1 ≤ t ≤ K − 1.
Let Z contain both z1 and z2, Z ⊆ L I T (f1) and
|Z | = K − t + 1 ≥ 2, and let a ⊃ 1L I T (G)

L I T (G)−Z .
Then, 0 ∈ F(a) since |L I T (f1)−Z | = t−1, while
G(a) = {1}, because |L I T (gi)− Z | ≥ t, i = 1, 2.

b) 2 ≤ t ≤ K .
Let Y contain both z1 and z2, Y ⊆ L I T (f1) and
|Y | = t , and let a ⊃ 1L I T (G)

Y . Then, 1 ∈ F(a),
since |L I T (f1) ∩ Y | = t , while G(a) = {0},
because |L I T (gi) ∩ Y | ≤ t − 1, i = 1, 2.

REMARKS ON THEOREM 17

Remark 30:

1) Theorem 17 may not be true if some functions do not
have exactly K variables, as the following example
shows. If F = {x1 ≥ 1, x2 ≥ 1}, G = {x1 + x2 ≥
1, x1 + x2 ≥ 2}, then F(a) = G(a) for all a.

MELKMAN et al.: IDENTIFYING A PBTN FROM SAMPLES 877

2) Theorem 17 may also not hold if instead of a choice
between two thresholds there is a choice between three,
as the following example shows. If F = {x1 + x2 + x4 ≥
2, x2+x3+x5 ≥ 2}, G = {x1+x2+x3 ≥ 1, x1+x2+x5 ≥
3}, then F(a) = G(a) whenever G(a) is a singleton.

3) In contrast to the previous comment, we note the fol-
lowing special case of Theorem 21 in Section V-C.
Let C be a class of admissible PBTNs that satisfies
the necessary condition for PIM, and is such that each
F ∈ C consists of two (not necessarily different) thresh-
old functions that have the same threshold, in addition
to both depending on exactly K variables and having
unit coefficients. Then, C is PIM-identifiable.
Note that here the common threshold of F is not
restricted to two values.

PROOF OF THEOREM 18

Proof: Suppose the first condition holds, and consider a
pair F, G ∈ C. If f1 	= g1 let Y ⊆ L I T (f1) be such that |Y | =
θ1 and Y ∩ (

L I T (f1) − L I T (g1)
) 	= ∅, and let a ⊃ 1L I T (G)

Y .
Then, 1 ∈ F(a), while |Y ∩ L I T (g1)| ≤ θ1 − 1 means that
g1(a) = 0, and |Y ∩ L I T (gi)| ≤ θ1 < θ(gi) means that also
gi (a) = 0, i = 2, 3. Hence, G(a) = {0}. The proof for the
case f3 	= g3 is similar: there must be a set Z ⊆ L I T (f3),
|Z | = K − θ3 + 1, such that Z ∩ (

L I T (f3) − L I T (g3)
) 	= ∅.

Defining a ⊃ 1L I T (G)
L I T (G)−Z , it is easily seen that 0 ∈ F(a) but

G(a) = {1}.
Conditions (2) and (3) are different ways of imposing more

stringent restrictions in order to deal with the difficulty that
arises when θ(g2) = θ1 or θ(g2) = θ3. If (3) holds, then the
previous proof is again applicable, because it ensures that both
f1 	= g1 and f3 	= g3. Even if θ(g2) = θ3, the previous proof
for the case f1 	= g1 is still applicable, because θ(g1) < θ(g2).

If (2) holds and, say, f3 = g3, then we know that f1 	= g1
and f1 	= g2, so that there are yi ∈ L I T (f1) − L I T (gi), i =
1, 2. Since θ1 ≥ 2, there is Y ⊆ L I T (f1) with |Y | = θ1, such
that Y ⊃ {y1, y2}. Letting a ⊃ 1L I T (G)

Y , it is again seen that
1 ∈ F(a), while G(a) = {0}.

REMARKS ON THEOREM 18

Remark 31:

1) The first two conditions cannot be weakened to permit
both f1 = g1 and f3 = g3.
Consider f1 = g1 ≡ x1 + x2 + x3 + x4 + x5 ≥ 2,
f3 = g3 ≡ x1 + x2 + x3 + x4 + x5 ≥ 4, f2 ≡ x1 + x2 +
x3 + x4 + x5 ≥ 3, g2 ≡ x1 + x2 + x4 + x5 + x6 ≥ 3. It
is readily seen that F(a) = G(a) if |G(a)| = 1.

2) The third condition cannot be weakened to permit f1 =
g1 or f3 = g3.
Here, these are two counterexamples. In the first, f1 =
g1 ≡ x1 + x2 + x3 ≥ 2, f2 ≡ x2 + x3 + x4 ≥ 3,
f3 ≡ x1 + x2 + x3 ≥ 3, g2 ≡ x1 + x2 + x4 ≥ 3, and
g3 ≡ x1 + x3 + x4 ≥ 3.
In the second f1 ≡ x1+x2+x3 ≥ 1, f2 ≡ x3+x4+x5 ≥
2, f3 = g3 ≡ x1 + x3 + x5 ≥ 3, g1 ≡ x1 + x2 + x4 ≥ 1,
and g2 ≡ x2 + x3 + x5 ≥ 1.

In both cases, it can be verified that F(a) = G(a) if
|G(a)| = 1.

3) In the first counterexample of the previous comment, the
absence of an assignment that PIM-distinguishes F from
G is the result of the fact that θ(f2) = θ(f3) = θ(g2) =
θ(g3) = K = 3 and

(
L I T (f2)∪L I T (f3)

)−(
L I T (g2)∪

L I T (g3)
) = ∅. Similarly, in the second, counterexample

θ(f1) = θ(g1) = θ(g2) = 1 and L I T (f1)−
(
L I T (g2)∪

L I T (g3)
) = ∅.

It is possible to weaken the third condition as follows:
if θ1 = 1, then for all F, G ∈ C such that θ(g2) = 1
and f3 = g3 it holds that L I T (f1) − (

L I T (g1) ∪
L I T (g2)

) 	= ∅, or, if also θ(f2) = 1, that L I T (f2) −(
L I T (g1) ∪ L I T (g2)

) 	= ∅. And if θ3 = K , then
for all F, G ∈ C such that θ(g2) = 3 and f1 = g1
it holds that L I T (f3) − (

L I T (g2) ∪ L I T (g3)
) 	= ∅,

or, if also θ(f2) = 3, that L I T (f2) − (
L I T (g2) ∪

L I T (g3)
) 	= ∅.

PROOF OF THEOREM 19

Proof: The first condition follows from Theorem 21.
Consider, then, K = 3 and F, G ∈ C. Denote by θ(F) the
threshold that is common to all f ∈ F . If θ(F) 	= θ(G) or
θ(F) = θ(G) 	= 2, then the proofs of these cases given in the
section proof of Theorem 21 in the Appendix apply here as
well. It remains to examine the case θ(F) = θ(G) = 2.

Observe that |L I T (fi)∩L I T (g j)| ≤ 2, i, j = 1, 2, 3, since
F ∩ G = ∅. The following cases are exhaustive.

1) |L I T (fi) ∩ L I T (g j)| ≤ 1 for some i, j .
Without loss of generality assume i = j = 1. If also
|L I T (f1) ∩ L I T (g2)| ≤ 1, let y ∈ L I T (f1) − L I T (g3)
and if |L I T (f1) ∩ L I T (g3)| ≤ 1, let y ∈ L I T (f1) −
L I T (g2). Let z ∈ L I T (f1) − {y}, set Y = {y, z} and
note that |L I T (g j) ∩ Y | ≤ 1, j = 1, 2, 3.
Otherwise, |L I T (f1) ∩ L I T (g2)| = |L I T (f1) ∩
L I T (g3)| = 2, and it follows that there is a y ∈
L I T (f1), such that y ∈ L I T (g2) ∩ L I T (g3). Let Y =
L I T (f1) − {y} and note that again |L I T (g j) ∩ Y | ≤
1, j = 1, 2, 3.
Letting a ⊃ 1L I T (G)

Y , it is seen that 1 ∈ F(a), while
G(a) = {0}, i.e., that F is PIM-distinguishable from G.

2) |L I T (fi) ∩ L I T (g j)| = 2, i, j = 1, 2, 3, and for some
i, j1, j2, |L I T (fi) ∩ L I T (g j1) ∩ L I T (g j2)| = 2.
Without loss of generality, assume i = j1 = 1, j2 =
2. Let y ∈ L I T (f1) − L I T (g1), and z ∈ L I T (f1) −
L I T (g3). Setting Y = {y, z}, note that |L I T (g j)∩Y | ≤
1, j = 1, 2, 3. Thus, a ⊃ 1L I T (G)

Y PIM-distinguishes F
from G.

3) |L I T (fi) ∩ L I T (g j)| = 2, i, j = 1, 2, 3, and
|L I T (fi) ∩ L I T (g j1) ∩ L I T (g j2)| = 1 for all i, j1, j2.
We prove that this case cannot occur. Let L I T (f1) =
{y1, y2, y3}. Then, L I T (g1) = {y1, y2, �1}, L I T (g2) =
{y1, y3, �2}, and L I T (g3) = {y2, y3, �3}, with �i /∈
{y1, y2, y3}, i = 1, 2, 3.
Observe that the multiset obtained by adjoining
L I T (g1), L I T (g2), and L I T (g3) consists of two copies
each of y1, y2, and y3, in addition to �1, �2, and �3.

878 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

At the same, this multiset can also be viewed as con-
taining two copies of each of the literals in the set
L I T (f2) = {z1, z2, z3}. But L I T (f1) 	= L I T (f2), and
hence, one of the pair of copies must involve �i s, i.e.,
�i = � j for some i 	= j .
Suppose, without loss of generality, that �1 = �2. The
preconditions of this case imply that one of the zi s is �1,
and the other two are yi s, in fact L I T (f2) = {y1, y3, �1},
and �3 	= �1.
However, the multiset can also be viewed as con-
taining two copies of each of the literals in the
set L I T (f3), and reasoning as before we reach
the conclusion that L I T (f3) = {y1, y3, �1} =
L I T (f2) when �1 = �2. This contradicts the pre-
requisite that F consists of three different threshold
functions.

PROOF OF THEOREM 21

Proof: The proof is an adaptation of the cases {t, t} versus
{t, t}, and {s, s} versus {t, t} of Theorem 17 to the present
setting.

1) t = θ(F) = θ(G).
For at least one of j = 1, . . . , m, there are zi ∈
L I T (f j) − L I T (gi), i = 1, . . . , m, say j = 1. Where
there no such j then for each j , there is an i j such that
f j = gi j , which means that F ⊆ G.

a) 1 ≤ t ≤ max{1, K + 1 − m}.
Let Z ⊆ L I T (f1) with |Z | = K −t+1 be such that
zi ∈ Z , i = 1, . . . m, and let a be an assignment
such that a(�) = 0 if � ∈ Z and a(�) = 1 if � ∈
L I T (G) − Z . Then, w f1(a) = |L I T (f1) − Z | =
t − 1, while wg(a) = |L I T (g) − Z | ≥ t for all
g ∈ G, so that 0 ∈ F(a), while G(a) = {1}. Note
that |{z1, . . . , zm}| ≤ K even if m > K , because
all zi are in L I T (f1); in particular, if t = 1, then
Z = L I T (f1) regardless of the value of m.

b) min{m, K } ≤ t ≤ K .
Let Y ⊆ L I T (f1) with |Y | = t such that zi ∈
Y, i = 1, . . . m, and let a be an assignment such
that a(�) = 1 if � ∈ Y and a(�) = 0 if � ∈
L I T (G) − Y . Then, w f1(a) = |L I T (f1) ∩ Y | = t ,
while wg(a)|L I T (g) ∩ Y | ≤ t − 1 for all g ∈ G,
so that 1 ∈ F(a) while G(a) = {0}.

2) θ(F) = s 	= t = θ(G).
In case s < t , let Y be any subset of L I T (f1) such that
|Y | = s, and let a be an assignment such that �(a) = 1
if � ∈ Y and �(a) = 0 if � ∈ L I T (G) − Y . Then,
|L I T (f1) ∩ Y | = s so that 1 ∈ F(a), while |L I T (gi) ∩
Y | ≤ s < t, i = 1, . . . , m, so that G(a) = {0}, and
F(a) − G(a) 	= ∅.
In case s > t , let Z be a subset of L I T (f1) such that
|Z | = K − s + 1, and let a be an assignment such that
a(�) = 0 if � ∈ Z and a(�) = 1 if � ∈ L I T (G) − Z .
Then, |L I T (f1) − Z | ≤ s − 1 so that 0 ∈ F(a), but
|L I T (gi) − Z | ≥ s − 1 ≥ t , i = 1, . . . , m. Hence,
G(a) = {1}.

REMARKS ON THEOREM 21

Remark 32:

1) If the class C contains only AND-PBTNs (θ = K)
and OR-PBTNs (θ = 1), then it is PIM-identifiable
for all m (provided all functions depend on exactly
K variables).

2) If m ≤ K ÷ 2 + 1, then C is PIM-identifiable without
any restriction on possible θs.

3) There is no straightforward generalization of Theo-
rem 17 to the case that C contains PBTNs with a mixture
of thresholds. Here, it is an example for m = 3, K = 2
and thresholds θ1 = 1, θ2 = 2

F = {x1 + x2 ≥ 2, x2 + x3 ≥ 2, x3 + x4 ≥ 2}
G = {x1 + x3 ≥ 2, x2 + x4 ≥ 2, x1 + x3 ≥ 1}.

To verify that F is not PIM-distinguishable from G
observe that 0 ∈ F(a) means that at least one of
a1, a2, a3, and a4 is assigned 0, so that 0 ∈ G(a), and
that there exists no assignment a such that 1 ∈ F(a)
while G(a) = {0}, because the latter implies that both
a1 = a3 = 0. However, the assignment a = (1, 0, 0, 0)
FIM-distinguishes the two PBTNs.

PROOF OF THEOREM 24

Proof: We base the proof on condition 2 of Theorem 9,
and show that given an F = { f1, f2} ∈ C and any other
G = {g1, g2} ∈ C, F 	= G, there is an assignment a such
that F(a) 	= G(a). In doing so, we assume that θ(f1) ≤
θ(f2), θ(g1) ≤ θ(g2), and θ(f1) ≤ θ(g1).

1) f1 = g1 or f2 = g2, i.e., F ∩ G 	= ∅.
Assume, for example, f1 = g1 and f2 	= g2, the proof
for f2 = g2 and f1 	= g1 being entirely similar. If
θ(f2) < θ(g2), then let Y ⊆ L I T (f2) have size θ(f2),
and let a ⊃ 1L I T (g2)

Y . Then, f2(a) = 1 while g2(a) = 0.
If θ(f2) = θ(g2), then necessarily L I T (f2) 	=
L I T (g2) because f2 	= g2. This means that L I T (f2) −
L I T (g2) 	= ∅ or L I T (g2) − L I T (f2) 	= ∅. Assume the
former, let y ∈ L I T (f2) − L I T (g2), let Y be a subset
of L I T (f2) of size θ(f2) such that y ∈ Y , and let a ⊃
1L I T (g2)

Y . Then, f2(a) = 1, while |L I T (g2)∩Y | < θ(g2)
means that g2(a) = 0.
Consequently, in both cases, F(a) 	= G(a), regardless
of the value of f1(a).
Note that included in this case is the possibility that F =
{ f1}, i.e., f2 = f1, a possibility which was excluded in
the PIM setting.
In the following cases, we can therefore assume that
f j 	= gi , i = 1, 2, j = 1, 2.

2) θ(f1) < θ(g1).
Let Y be an arbitrary subset of L I T (f1) of size θ(f1),
and let a ⊃ 1L I T (G)

Y . The admissibility of G ensures
that such an assignment exists. Then, f1(a) = 1, while
|Y ∩ L I T (gi)| < θ(gi) means that gi (a) = 0, i = 1, 2.
Hence, F(a) 	= G(a).

3) θ(f1) = θ(g1) < min{θ(f2), θ(g2)}.
L I T (f1) 	= L I T (g1) because f1 	= g1. Assume without
loss of generality that L I T (f1) − L I T (g1) 	= ∅, define

MELKMAN et al.: IDENTIFYING A PBTN FROM SAMPLES 879

Y as in the previous case but impose the additional
requirement that Y ∩ (

L I T (f1) − L I T (g1)
) 	= ∅.

It follows as above that f1(a) = 1 and gi (a) = 0,
i = 1, 2.

4) θ(f1) = θ(g1) = θ(f2) = t < θ(g2).

a) L I T (g1) − L I T (F) 	= ∅, t ≥ 1.
Let Y ⊆ L I T (g1) be of size t with Y ∩(

L I T (g1)−
L I T (F)

) 	= ∅. Arguing as in case 3, it is
easily seen that g1(a) = 1 and fi (a) = 0,
i = 1, 2.

b) L I T (F) − L I T (g1) 	= ∅, t ≥ 1.
Assume without loss of generality that L I T (f1)−
L I T (g1) 	= ∅. Let Y ⊆ L I T (f1) be of size t
with Y ∩ (

L I T (f1) − L I T (g1)
) 	= ∅. Arguing as

in case 3, it is easily seen that f1(a) = 1 and
gi (a) = 0, i = 1, 2.

c) L I T (F) = L I T (g1), t ≥ 2.
There exist yi ∈ L I T (g1) − L I T (fi), because
g1 	= f1, g1 	= f2. Let Y ⊆ L I T (g1) be of size t
with yi ∈ Y, i = 1, 2. Arguing as in case 3, it is
easily seen that g1(a) = 1 and fi (a) = 0, i = 1, 2.

d) L I T (F) = L I T (g1), t = 1, and θ(g2) > 2.
With yi defined as in the previous item, let
Y = {y1, y2}. Note that y1 ∈ L I T (f2), y2 ∈
L I T (f1), because L I T (F) = L I T (g1). Hence,
|Y ∩L I T (fi)| = 1, and so g1(a) = fi (a) = 1, i =
1, 2, while g2(a) = 0. Note that |L I T (g1)| ≥ 2
because L I T (g1) = L I T (F), and f1 	= f2.

e) L I T (F) = L I T (g1), t = 1, θ(g2) = 2, and
L I T (f1) ∩ L I T (f2) 	= ∅.
Let y ∈ L I T (f1) ∩ L I T (f2), and a ⊃ 1L I T (g2)

{y} .
Then, g1(a) = fi (a) = 1, i = 1, 2 while
g2(a) = 0.

f) L I T (F) = L I T (g1), t = 1, θ(g2) = 2, L I T (f1)∩
L I T (f2) = ∅, and L I T (g1) 	= L I T (g2).
If there exists y ∈ L I T (g1) − L I T (g2), then y ∈
L I T (f1) or y ∈ L I T (f2), but not both, say y ∈
L I T (f1), y /∈ L I T (f2).Let y ′ ∈ L I T (f2), and let
a ⊃ 1L I T (g2)

{y,y′} . Then, g1(a) = fi (a) = 1, i = 1, 2,
while g2(a) = 0.
If L I T (g1) ∩ L I T (g2) = ∅, then trivially there is
an assignment, such that g1(a) = fi (a) = 0, i =
1, 2 while g2(a) = 1.
If none of these occurs, then there exist y ∈
L I T (g2)−L I T (g1) and y ′ ∈ L I T (g1)∩L I T (g2),
and for an assignment a such that a(y) = a(y ′) = 1
and a(�) = 0 if � ∈ L I T (F) − {y ′}, g1(a) =
g2(a) = 1, while f1(a) 	= f2(a).

g) L I T (F) = L I T (g1) = L I T (g2), t = 1, θ(g2) =
2, L I T (f1) ∩ L I T (f2) = ∅, and L I T (f1) ≥ 2 or
L I T (f2) ≥ 2.
If, say, L I T (f1) ≥ 2, then F(a) = {0, 1} 	=
G(a) = {1} for the assignment a that assigns 1
to all literals in L I T (f1) and 0 to all literals in
L I T (f2).

5) min{θ(f1), θ(g1)} = max{θ(f2), θ(g2)} = t .
a) L I T (F) − L I T (G) 	= ∅ or L I T (G) −

L I T (F) 	= ∅.

Suppose, for example, that there is a y ∈
L I T (f1) − L I T (G) 	= ∅. Let Y ⊆ L I T (f1) be

such that |Y | = t and y ∈ Y , and let a ⊃ 1L I T (G)
Y .

Then, f1(a) = 1 while |Y ∩ L I T (gi)| < t,
i = 1, 2, means that G(a) = {0}.

b) L I T (F) = L I T (G) and t ≥ 2.
If there are y1 ∈ L I T (f1) − L I T (g1) 	= ∅ and
y2 ∈ L I T (f1) − L I T (g2) 	= ∅ let Y ⊆ L I T (f1)

have size t with {y1, y2} ⊆ Y , and let a ⊃ 1L I T (G)
Y .

Then, gi(a) = 0 since |L I T (gi)∩ Y | ≤ t − 1, i =
1, 2, while f1(a) = 1.
Let us examine next the case that the previous
condition does not hold, say L I T (f1)−L I T (g1) =
∅, which means that L I T (f1) is a strict subset
of L I T (g1), L I T (g1) − L I T (f1) 	= ∅, because
f1 	= g1. If also L I T (g1) − L I T (f2) 	= ∅ then,
reasoning as above, it is possible to construct an
assignment a such that f j (a) = 0, j = 1, 2, while
g1(a) = 1.
If, on the other hand, L I T (g1) − L I T (f2) =
∅, then L I T (g1) is a strict subset of L I T (f2),
L I T (f2) − L I T (g1) 	= ∅, so that L I T (f1) ⊂
L I T (g1) ⊂ L I T (f2). Recalling that L I T (F) =
L I T (G), we conclude that L I T (f2) cannot be
a strict subset of L I T (g2), i.e., L I T (f2) −
L I T (g2) 	= ∅. It is therefore possible to construct
an assignment a such that gi(a) = 0, i = 1, 2,
while f2(a) = 1.

c) L I T (F) = L I T (G) and t = 1.

i) L I T (f1) ∩ L I T (f2) 	= L I T (g1) ∩ L I T (g2).
Say there exists a y ∈ (

L I T (f1)∩ L I T (f2)
)−

(
L I T (g1) ∩ L I T (g2)

)
. Let a ⊃ 1L I T (G)

{y} .
Then, f1(a) = f2(a) = 1, while g1(a) 	=
g2(a).

ii) L I T (f1) ∩ L I T (f2) = L I T (g1) ∩
L I T (g2) = I .
Let us deal first with the cases that one of
L I T (fi) = I, i = 1 or one of L I T (g j) =
I, j = 1, 2, say L I T (f1) = I . Then,
L I T (f2)− I = (

L I T (g1)− I
)∪(

L I T (g2)− I
)

(because L I T (F) = L I T (G)), none
of these three sets is empty (because
f1 	= gi , i = 1, 2) and

(
L I T (g1) − I

) ∩(
L I T (g2) − I

) = ∅. Consequently, there are
yi ∈ (

L I T (f2)− I
)∩(

L I T (gi)− I
)
, i = 1, 2.

Let Y = {y1, y2}, and observe that
|Y ∩L I T (f2)| = 2, |Y ∩L I T (gi)| = 1, i = 1, 2
and |Y ∩ L I T (f1)| = 0. Thus, for any
assignment, a ⊃ 1I{y1,y2}. f2(a) = 1, and
gi (a) = 1, i = 1, 2, while f1(a) = 0.
Assuming next that L I T (f j)− I 	= ∅, j = 1, 2
and L I T (gi) − I 	= ∅, i = 1, 2, consider
the case that there are y j ∈ (

L I T (f j) −
I
) ∩ (

L I T (g1) − I
)
, j = 1, 2. Then, for any

assignment a such that a(y j) = 1, j = 1, 2 and
a(�) = 0, if � ∈ L I T (G) − {y1, y2}, f j (a) =
1, j = 1, 2, and g1(a) = 1, while g2(a) = 0

880 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

because (L I T (g1) − I
) ∩ (L I T (g2) − I

) = ∅.
If, on the other hand,

(
L I T (f j) − I

) ∩(
L I T (g1) − I

) = ∅ for j = 1 or j = 2,
say

(
L I T (f1) − I

) ∩ (
L I T (g1) − I

) = ∅, then(
L I T (f2) − I

) ∩ (
L I T (g1) − I

) 	= ∅, because
L I T (g1) − I 	= ∅ (and L I T (F) = L I T (G)).(
L I T (f1) − I

) ∩ (
L I T (g1) − I

) = ∅ also
implies that L I T (f2) − L I T (g1) 	= ∅. The
reason is that otherwise L I T (f2) ⊆ L I T (g1),
and since L I T (f2) cannot be a strict subset
of L I T (g1) (because L I T (F) = L I T (G) and
L I T (f1) ∩ L I T (g1) = I), this would imply
that L I T (f2) = L I T (g1), i.e., f2 = g1 which
we assumed was not the case. Now L I T (f2)−
L I T (g1) 	= ∅ taken together with L I T (f2) −
L I T (G) = ∅ shows that

(
L I T (f2) − I

) ∩(
L I T (g2) − I

) 	= ∅. In summary, we have
proven that there are yi ∈ (

L I T (f2) − I
) ∩(

L I T (gi)− I
)
, i = 1, 2. Thus, for any assign-

ment a ⊃ 1G{y1,y2}. f2(a) = 1, and gi (a) =
1, i = 1, 2, while f1(a) = 0.

PROOF OF THEOREM 28

Proof: We prove the theorem for the case of PIM; the
FIM case can be proved in the same manner. Suppose that
F = { f1, f2, . . . , fL} is the underlying function tuple for the
kth node in a PBN and that G = {g1, . . . , gL} is another
possible function tuple for the same node. It is seen from the
proof of Theorem 9 that if all possible 0–1 assignments on a
set I of input nodes to f1, . . . , fL and to g1, . . . , gL , and all
possible corresponding values output by f1, . . . , fL are given,
the inconsistency of G(= F) can be detected.

We refer to this condition as Condition C1. Note that there
are at most K L input nodes to f1, . . . , fL and another K L to
g1, . . . , gL , for a grand total of at most 2K L.

Since we do not know I in advance, we consider all possible
I with |I | = 2K L. The probability that ai = 1 does not
hold for some i ∈ {1, . . . , 2K L} or f j is not selected (for
any fixed j ∈ {1, . . . , L}) in a given sample (a, b) is at most
1−c·1/22K L, and thus, the probability that the same condition
does not hold in any m samples is at most (1 − c · 1/22K L)m .
Since the number of combinations of 2K L variables is less
than n2K L , the number of functions assigned per node is L,
and the number of 0-1 assignments on 2K L bits is 22K L ,
the probability that Condition C1 does not hold is bounded
above by L · 22K L · n2K L · (1 − c · 1/22K L

)m
. Since there are

n nodes, the probability that Condition C1 does not hold for
one or more nodes is bounded above by

pK ,L ,n,m = L · 22K L · n2K L+1 ·
(

1 − c · 1

22K L

)m

.

By taking log(· · ·) of both sides and using ln(1 − x) ≤ −x ,
it is seen that pK ,L ,n,m ≤ p holds if

m >
1

c
· ln 2 · 22K L

[log L + 2K L + (2K L + 1) log n − log p].
Setting p = 1/nα, the theorem holds.

REFERENCES

[1] R. W. Baughman, R. Farkas, M. Guzman, and M. F. Huerta, “The
national institutes of health blueprint for neuroscience research,”
J. Neurosci., vol. 26, no. 41, pp. 10329–10331, 2006.

[2] J. W. Lichtman and W. Denk, “The big and the small: Challenges
of imaging the brain’s circuits,” Science, vol. 334, pp. 618–623,
Nov. 2011.

[3] K. H. Cho, S. M. Choo, S. H. Jung, J. R. Kim, H. S. Choi, and
J. Kim, “Reverse engineering of gene regulatory networks,” IET Syst.
Biol., vol. 1, no. 3, pp. 149–163, May 2007.

[4] M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, and R. Guthke,
“Gene regulatory network inference: Data integration in dynamic
models—A review,” Biosystems, vol. 96, no. 1, pp. 86–103, 2009.

[5] G. Karlebach and R. Shamir, “Modelling and analysis of gene regulatory
networks,” Nature, vol. 9, pp. 770–780, Oct. 2008.

[6] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” J. Theoret. Biol., vol. 22, no. 3, pp. 437–467,
1969.

[7] S. A. Kauffman, The Origins of Order: Self-Organization and Selection
in Evolution. New York, NY, USA: Oxford Univ. Press, 1993.

[8] L. P. Wang, E. E. Pichler, and J. Ross, “Oscillations and chaos in
neural networks: An exactly solvable model,” Proc. Nat. Acad. Sci. USA,
vol. 87, no. 23, pp. 9467–9471, 1990.

[9] M. Anthony, Discrete Mathematics of Neural Networks, Selected Topics.
Philadelphia, PA, USA: SIAM, 2001.

[10] S. Liang, S. Fuhrman, and R. Somogyi, “REVEAL, a general reverse
engineering algorithm for inference of genetic network architectures,”
in Proc. Pacific Symp. Biocomput., 1998, pp. 18–29.

[11] T. Akutsu, S. Miyano, and S. Kuhara, “Identification of genetic networks
from a small number of gene expression patterns under the Boolean
network model,” in Proc. Pacific Symp. Biocomput., 1999, pp. 17–28.

[12] R. Laubenbacher and B. Stigler, “A computational algebra approach to
the reverse engineering of gene regulatory networks,” J. Theor. Biol.,
vol. 229, no. 4, pp. 523–537, Aug. 2004.

[13] T. J. Perkins and M. T. Hallett, “A trade-off between sample complexity
and computational complexity in learning Boolean networks from time-
series data,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 7, no. 1,
pp. 118–128, Jan. 2010.

[14] D. Cheng, H. Qi, and Z. Li, “Model construction of Boolean network via
observed data,” IEEE Trans. Neural Netw., vol. 22, no. 4, pp. 525–536,
Apr. 2011.

[15] X. Zhang, H. Han, and W. Zhang, “Identification of Boolean networks
using premined network topology information,” IEEE Trans. Neural
Netw. Learn. Syst., doi: 10.1109/TNNLS.2015.2499446.

[16] D. Cheng and H. Qi, “State–space analysis of Boolean networks,” IEEE
Trans. Neural Netw., vol. 21, no. 4, pp. 584–594, Apr. 2010.

[17] T. S. Gardner and J. J. Collins, “Gene regulation: Neutralizing noise in
gene networks,” Nature, vol. 405, pp. 520–521, Jun. 2000.

[18] C. Allen and C. F. Stevens, “An evaluation of causes for unreliability
of synaptic transmission,” Proc. Nat. Acad. Sci. USA, vol. 91, no. 22,
pp. 10380–10383, 1994.

[19] E. N. Miranda and N. Parga, “Noise effects in the Kauffman model,”
Europhys. Lett., vol. 10, no. 4, pp. 293–298, 1989.

[20] T. Akutsu, S. Miyano, and S. Kuhara, “Inferring qualitative relations
in genetic networks and metabolic pathways,” Bioinformatics, vol. 16,
no. 8, pp. 727–734, 2000.

[21] T. P. Peixoto, “Redundancy and error resilience in Boolean networks,”
Phys. Rev. Lett., vol. 104, p. 048701, Jan. 2010.

[22] H. Chen, J. Liang, T. Huang, and J. Cao, “Synchronization of arbitrarily
switched Boolean networks,” IEEE Trans. Neural Netw. Learn. Syst., doi
10.1109/TNNLS.2015.2497708.

[23] Y. Liu, H. Chen, and B. Wu, “Controllability of Boolean control
networks with impulsive effects and forbidden states,” Math. Methods
Appl. Sci., vol. 37, no 1, pp. 1–9, Jan. 2014.

[24] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, “Probabilistic
Boolean networks: A rule-based uncertainty model for gene regulatory
networks,” Bioinformatics, vol. 18, no. 2, pp. 261–274, 2001.

[25] I. Shmulevich and E. R. Dougherty, Probabilistic Boolean Networks:
The Modeling and Control of Gene Regulatory Networks. Philadelphia,
PA, USA: SIAM, 2010.

[26] Y. Xiao, “A tutorial on analysis and simulation of Boolean gene
regulatory network models,” Current Genomics, vol. 10, no. 7, pp. 511–
525, 2009.

MELKMAN et al.: IDENTIFYING A PBTN FROM SAMPLES 881

[27] P. Trairatphisan, A. Mizera, J. Pang, A. A. Tantar, J. Schneider, and
T. Sauter, “Recent development and biomedical applications of prob-
abilistic Boolean networks,” Cell Commun. Signaling, vol. 11, p. 46,
Jul. 2013.

[28] Y. Zhao and D. Cheng, “On controllability and stabilizability of
probabilistic Boolean control networks,” Sci. China Inf. Sci., vol. 57,
p. 012202, Dec. 2014.

[29] R. Li, M. Yang, and T. Chu, “State feedback stabilization for proba-
bilistic Boolean networks,” Automatica, vol. 50, no. 4, pp. 1272–1278,
2014.

[30] Y. Liu, H. Chen, J. Lu, and B. Wu, “Controllability of probabilistic
Boolean control networks based on transition probability matrices,”
Automatica, vol. 52, pp. 340–345, Feb. 2015.

[31] H. Li, Y. Wang, and P. Guo, “State feedback based output tracking
control of probabilistic Boolean networks,” Inf. Sci., vols. 349–350,
pp. 1–11, Jul. 2006.

[32] S. Marshall, L. Yu, Y. Xiao, and E. R. Dougherty, “Inference of
a probabilistic Boolean network from a single observed temporal
sequence,” EURASIP J. Bioinform. Syst. Biol., vol. 2007, p. 32454,
Dec. 2007.

[33] X. Cheng, T. Mori, Y. Qiu, W.-K. Ching, and T. Akutsu, “Exact
identification of the structure of a probabilistic Boolean network from
samples,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 13, no. 6,
pp. 1107–1116, Nov. 2016.

[34] S. E. Harris, B. K. Sawhill, A. Wuensche, and S. Kauffman, “A model
of transcriptional regulatory networks based on biases in the observed
regulation rules,” Complexity, vol. 7, no. 4, pp. 23–40, Mar. 2002.

[35] M. R. Garey and D. S. Johnson, Computers and Intractability.
New York, NY, USA: Freeman, 1979.

[36] T. Gowda, S. Vrudhula, and G. Konjevod, “Combinational equivalence
checking for threshold logic circuits,” in Proc. ACM Great Lakes
Symp. (VLSI), 2007, pp. 102–107.

[37] J. Lawrence, R. N. Kacker, Y. Lei, D. R. Kuhn, and M. Forbes, “A survey
of binary covering arrays,” Electron. J. Combinat., vol. 18, no. 1, p. 84,
Jul. 2011.

[38] K. Kobayashi and K. Hiraishi, “An integer programming approach
to optimal control problems in context-sensitive probabilistic Boolean
networks,” Automatica, vol. 47, no. 6, pp. 1260–1264, Jun. 2011.

[39] S. Klamt, J. Saez-Rodriguez, J. A. Lindquist, L. Simeoni, and
E. D. Gilles, “A methodology for the structural and functional analysis
of signaling and regulatory networks,” BMC Bioinform., vol. 7, p. 56,
Feb. 2006.

[40] A. Garg, A. D. Cara, I. Xenarios, L. Mendoza, and G. De Micheli, “Syn-
chronous versus asynchronous modeling of gene regulatory networks,”
Bioinformatics, vol. 24, no. 17, pp. 1917–1925, 2008.

[41] A. Saadatpour, I. Albert, and R. Albert, “Attractor analysis of asynchro-
nous Boolean models of signal transduction networks,” J. Theoret. Biol.,
vol. 266, no. 4, pp. 641–656, Oct. 2010.

[42] N. Alon, “Asynchronous threshold networks,” Graphs Combinat., vol. 1,
no. 1, pp. 305–310, 1985.

Avraham A. Melkman received the B.Sc. degree
in mathematics and physics from The Hebrew Uni-
versity of Jerusalem, Jerusalem, Israel, in 1965, and
the Ph.D. degree in physics from the University of
California at Berkeley, Berkeley, CA, USA, in 1971.

From 1971 to 1976, he was with the Applied
Mathematics Institute, The Hebrew University of
Jerusalem. In 1976, he was a Visiting Scientist with
the Thomas J. Watson Research Center, Yorktown
Heights, NY, USA. He joined the Department of
Computer Science, Ben-Gurion University of the

Negev, Beersheba, Israel in 1977, becoming an Associate Professor in 1987.
His current research interests include bioinformatics and algorithms.

Xiaoqing Cheng received the B.E. degree from the
Department of Mathematics, University of Science
and Technology of China, Hefei, China, in 2012,
and the Ph.D. degree from The University of Hong
Kong, Hong Kong, in 2016.

She is currently an Assistant Professor with the
School of Mathematics and Statistics, Xi’an Jiao-
tong University, Xi’an, China. Her current research
interests include bioinformatics and data mining.

Wai-Ki Ching received the B.Sc. degree (Hons.)
and the M.Phil. degree from The University of Hong
Kong, Hong Kong, and the Ph.D. degree from the
Chinese University of Hong Kong, Hong Kong.

He is currently a Professor and the Head of the
Department of Mathematics, The University of Hong
Kong. He is also a Visiting Fellow with Hughes
Hall, Cambridge University, Cambridge, U.K., and
a Visiting Professor with the Beijing University
of Chemical Technology, Beijing, China. His cur-
rent research interests include stochastic modeling,

matrix computations, the applications of mathematical models and numerical
algorithms in solving problems related to Markov chains, bioinformatics,
mathematical finance, and management science.

Tatsuya Akutsu (SM’–) received the B.E. and M.E.
degrees in aeronautics and the D.E. degree in infor-
mation engineering from the University of Tokyo,
Tokyo, Japan, in 1984, 1986, and 1989, respectively.

He has been a Professor with the Bioinformat-
ics Center, Institute for Chemical Research, Kyoto
University, Kyoto, Japan, since 2001. His current
research interests include bioinformatics and discrete
algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

