
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018 681

Experienced Gray Wolf Optimization Through
Reinforcement Learning and Neural Networks

E. Emary, Hossam M. Zawbaa, and Crina Grosan

Abstract— In this paper, a variant of gray wolf optimiza-
tion (GWO) that uses reinforcement learning principles combined
with neural networks to enhance the performance is proposed.
The aim is to overcome, by reinforced learning, the common chal-
lenge of setting the right parameters for the algorithm. In GWO,
a single parameter is used to control the exploration/exploitation
rate, which influences the performance of the algorithm. Rather
than using a global way to change this parameter for all the
agents, we use reinforcement learning to set it on an individual
basis. The adaptation of the exploration rate for each agent
depends on the agent’s own experience and the current terrain of
the search space. In order to achieve this, experience repository
is built based on the neural network to map a set of agents’
states to a set of corresponding actions that specifically influence
the exploration rate. The experience repository is updated by all
the search agents to reflect experience and to enhance the future
actions continuously. The resulted algorithm is called experienced
GWO (EGWO) and its performance is assessed on solving feature
selection problems and on finding optimal weights for neural
networks algorithm. We use a set of performance indicators to
evaluate the efficiency of the method. Results over various data
sets demonstrate an advance of the EGWO over the original
GWO and over other metaheuristics, such as genetic algorithms
and particle swarm optimization.

Index Terms— Adaptive exploration rate, artificial neural net-
work (ANN), experienced gray wolf optimization (EGWO), gray
wolf optimization (GWO), reinforcement learning.

I. INTRODUCTION

ACOMMON challenge for learning algorithms is the effi-
cient setting of their parameters, which is usually done

empirically, after a number of trials. In the majority of cases,
a setting of parameters is valid for that particular problem
only, and every time the algorithm is applied, a new set of

Manuscript received May 26, 2016; revised September 25, 2016; accepted
November 25, 2016. Date of publication January 10, 2017; date of current
version February 15, 2018. This work was supported in part by the IPROCOM
Marie Curie initial training network, funded through the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Pro-
gramme FP7/2007-2013/ under REA Grant 316555, and in part by the
Romanian National Authority for Scientific Research, CNDI-UEFISCDI,
under Project PN-II-PT-PCCA-2011-3.2-0917. (Corresponding author:
Hossam M. Zawbaa.)

E. Emary is with the Faculty of Computers and Information, Cairo Univer-
sity, Giza 12613, Egypt.

H. M. Zawbaa is with the Faculty of Computers and Information, Beni-
Suef University, Beni-Suef 62511, Egypt, and also with the Faculty of
Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca
400084, Romania (e-mail: hossam.zawbaa@gmail.com).

C. Grosan is with the Faculty of Mathematics and Computer Science, Babes-
Bolyai University, 400084 Cluj-Napoca, Romania, and also with the College
of Engineering, Design and Physical Sciences, Brunel University, London
UB8 3PH, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2016.2634548

parameters has to be initialized. The parameter values are at
most suboptimal, as there are never sufficient trials to get the
optimal values.

According to [1], learning algorithms suffer from the
following.

1) The Curse of Dimensionality: Many algorithms need to
discretize the state space, which is impossible for control
problems with high dimensionality, because the number
of discrete states is enormous.

2) A Large Number of Learning Trials: Most algorithms
need a large number of learning trials, specifically if
size of the state space is high, so it is very difficult to
apply reinforcement learning to real world tasks.

3) Finding Proper Parameters for the Algorithms: Many
algorithms work well, but only with the right parameter
setting. Searching for an appropriate parameter setting
is, therefore, crucial, in particular, for time-consuming
learning processes. Thus, algorithms which work with
fewer parameters or allow a wider range of parameter
setting are preferable.

4) The Need of a Skilled Learner: Since defining the reward
function is not enough, we must also determine a good
state-space representation or a proper function approx-
imator, choose an appropriate algorithm and set the
parameters of the algorithm. Consequently, additional
knowledge and experience are needed when dealing with
such learning.

In this paper, we focus on the automatic setting of para-
meters used by gray wolf optimization (GWO) algorithm, in
particular, on the setting of a parameter that plays a significant
role in the final result: the exploration/exploitation rate. The
metalearner employed for the automatic parameter setting uses
reinforcement learning principles [2], [3].

In the conventional reinforcement learning model, an agent
is connected to its environment via perception and action.
On each step of interaction, the agent receives as input
some indications of the current state of the environment and
chooses an action that changes the state, and the value of
this state transition is reached to the agent through a scalar
reinforcement signal [4]. When the search agent chooses an
action, it obtains a feedback for that action and uses the
feedback to update its data of state-action map. The goal is to
determine the actions that tend to increase the long-run sum
of values of the reinforcement signal [5].

In order to determine the right set of actions and, in
particular, the right action at each time step in GWO, we
propose to use neural networks. The input of the neural

2162-237X © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

682 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018

TABLE I

CORRESPONDENCE BETWEEN GWO STAGES AND SPACE SEARCH

network is the set of all individual action history of all the
agents, and the output is the action to be taken by a particular
agent. Which means, the action of each agent is individually
set in a reinforcement learning manner and a neural network
learns it. The methodology is explained in detail in Section
III, after a brief introduction of the original GWO algorithm in
Section II. The validation of the proposed parameter learning
methodology is achieved by considering two optimization
problems: feature selection and weight training in neural
networks. We perform two types of experiments, one related to
feature selection and the other related to multilayer artificial
neural networks (ANNs) weights optimization. Experiments
on 21 data sets are performed in Section IV for feature
selection and on 10 data sets for ANNs weight training and
are validated using various metrics and statistical tests. The
results indicate a very promising performance of the proposed
methodology compared with the manual parameter setting
in the original GWO. A similar approach could be either
extended to other learning algorithms or, even more complex,
generalized to the classes of similar algorithms.

II. PRELIMINARIES

Bioinspired optimization methods are becoming common
among researchers due to their simplicity and extensibility.
GWO is a relatively new optimization algorithm inspired by
the social hierarchy and hunting behavior of the gray wolves
in nature [6]. A modified GWO is proposed which employed
a good balance between the exploration and exploitation [7].
A multiobjective variant of GWO is developed to optimize the
multiobjective problems [8]. A new binary version of GWO is
proposed and applied to feature selection problem [9]. In the
next subsections (II-A and II-B), we briefly explain the general
principles of GWO algorithm and the role of the parameters
in the search process.

A. Gray Wolf Optimization

GWO computationally simulates the hunting mechanism of
gray wolves. Gray wolves live in a pack with a strict hierarchy:
on the top are the alpha wolves, responsible for decision
making, followed by beta and delta wolf. The rest of the pack
is called omegas [6]. Table I shows the corresponding search

Fig. 1. GWO in the search space positioning (adapted from [6]).

and optimization stages of the GWO steps. Naturally, the
prey location is the optimal solution and the wolves represent
potential solutions in the search space. The wolves closer to the
prey are the alpha wolves and they are the best solutions so far.
Hierarchically, the beta wolves are the second best solutions
and the delta wolves are the third best solutions. Their location
in the search space is represented as Xα , Xβ , and Xδ . Omegas
update their position in the search space based on their relative
positions from alpha, beta, and delta wolves. Fig. 1 shows the
positioning of the wolves and prey and the parameters involved
in the equations used for updating the positions of the wolves
in the search space. For hunting prey, a set of steps are to be
applied as follows: prey encircling, hunting, attack, and search
again.

1) Prey Encircling: The pack encircles a prey by reposi-
tioning individual agents according to the prey location, as
follows:

−→
X (t + 1) = −→

X p(t) + −→
A · −→

D (1)

where t is the iteration,
−→
X p is the prey position,

−→
X is the

gray wolf position, the . operator indicates vector entrywise
multiplication, and

−→
D is defined as follows:

−→
D = |−→C · −→X p(t) − −→

X (t)| (2)

where
−→
A and

−→
C are coefficient vectors calculated as follows:

−→
A = 2a · −→r1 − a (3)−→
C = 2−→r2 (4)

where a is linearly diminished over the course of iterations
controlling exploration and exploitation, and −→r1 and −→r2 are
random vectors in the range of [0, 1]. The value of a is the
same for all wolves. These equations indicate that a wolf can
update its position in the search space around the prey in any
random location.

2) Hunting: It is performed by the whole pack based on the
information coming from the alpha, beta, and delta wolves,
which are expected to know the prey location, as given in the
following:

−→
X (t + 1) =

−→
X1 + −→

X2 + −→
X3

3
(5)

EMARY et al.: EXPERIENCED GWO THROUGH REINFORCEMENT LEARNING AND NEURAL NETWORKS 683

where
−→
X1,

−→
X2, and

−→
X3 are defined as follows:
−→
X1 = |−→Xα − −→

A1 · −→Dα| (6)−→
X2 = |−→Xβ − −→

A2 · −→
Dβ | (7)

−→
X3 = |−→Xδ − −→

A3 · −→Dδ| (8)

where
−→
Xα ,

−→
Xβ , and

−→
Xδ are the first three best solutions at a

given iteration t ,
−→
A1,

−→
A2, and

−→
A3 are defined as in (3), and−→

Dα ,
−→
Dβ , and

−→
Dδ are defined using the following:

−→
Dα = |−→C1 · −→Xα − −→

X | (9)−→
Dβ = |−→C2 · −→

Xβ − −→
X | (10)

−→
Dδ = |−→C3 · −→Xδ − −→

X | (11)

where
−→
C1,

−→
C2, and

−→
C3 are defined as in (4).

This is interpreted by the fact that alpha, beta, and
delta wolves know the best position of the prey and all the
other wolves adapt their positions based on the position of
these wolves.

3) Attacking Stage: The agents approach the prey, which is
achieved by decrementing the exploration rate a. Parameter a
is linearly updated in each iteration to range from 2 to 0 as
follows:

a = 2 − t
2

MaxIter
(12)

where t is the iteration number and MaxIter is the total number
of iterations allowed for the optimization. According to [6],
exploration and exploitation are guaranteed by the adaptive
values of a allowing GWO to transit smoothly between
exploration and exploitation, while half of the iterations are
dedicated to the exploration and the other half is assigned to
exploitation. This stage is interpreted as wolves moving or
changing their position to any random position between their
current position and the prey position.

4) Search for Prey: Wolves diverge from each other to
search for prey. This behavior is modeled by setting large
values for parameter a to allow for exploration of the search
space. Hence, the wolves diverge from each other to better
explore the search space and then converge again to attack
when they find a better prey. Any wolf can find a better prey
(optimum). If they get closer to the prey, they will become
the new alphas and the other wolves will be split into beta,
delta, and omega according to their distance from the prey.
Parameter a gives random weights to the prey and shows the
impact of the prey in characterizing the separation of wolves as
in (1) and (2). That helps GWO to demonstrate a more random
behavior, favoring exploration and local optima evasion. It is
worth mentioning that a provides random values at all times
keeping in mind the aim to accentuate exploration not only
at the beginning of the optimization process but until its end.
GWO is described in Algorithm 1.

B. Feed-Forward Artificial Neural Networks

ANNs are a family of models inspired by biological neural
networks. They are represented as systems of interconnected
neurons that exchange messages between each other. The
neural connections have numeric weights that can be tuned

Algorithm 1 GWO
Input: Number of gray wolves (n), maximum iterations
(MaxI ter).
Result: The optimal wolf position and its fitness.

1) Initialize a population of n gray wolves positions
randomly.

2) Find α, β, and δ as the first three best solutions
based on their fitness values.

3) t = 0.
while t ≤ MaxI ter do

foreach Wol fi ∈ pack do
Update current wolf’s position according to Eq. (5).

end
- Update a, A, and C as in Eqs. (12), (4) and (3).
- Evaluate the positions of individual wolves.
- Update α, β, and δ positions as the first best three
solutions in the current population.
- t = t + 1.

end
4) Select the optimal gray wolf position.

based on experience, making neural nets adaptive to inputs
and capable of learning [10]. The primary building block of a
neural network is the neuron which has a set of weights. ANN
weights are attached to the inputs and an internal nonlinear
function maps the input of the neuron to the output given the
transfer function as follows:

Oi = f
(
wT

i · x + bi
)

(13)

where Oi is the output of neuron i , f is the activation function
attached to neuron i , wi is a vector of weights attached to
neuron i , x is the input vector of neuron i , and bi is a bias
scalar value. Each neural network possesses knowledge that
is contained in the connections weights values. Changing the
knowledge stored in the network as a function of experience
implies a learning rule for modifying the values of the weights.
Hence, the most challenging problem in using the ANN
models is to choose the appropriate weight bias adaptation
method [10]. Usually, the gradient descent method is used to
adapt neural network weights based on the following formula:

wt+1
kj = wt

kj − η
∂ E

∂wkj
(14)

where wt
kj is the weight linking neuron k to neuron j at time t ,

and E is suitable error function that computes the deviation
between the targeted and the actual output.

According to the availability of training data, neural models
can be passive or online. In passive neural models, the neural
model is trained using the whole data set at once, while in the
case of online models, the data points are not presented as a
whole, but it is given one at a time [10].

III. PROPOSED EXPERIENCED GRAY

WOLF OPTIMIZATION

Intensification and diversification are the two key com-
ponents of any metaheuristic algorithm [11]. Intensification

684 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018

or exploitation uses the available local information to gen-
erate better solutions. Diversification or exploration explores
the search space to generate diverse solutions. The bal-
ance between exploration and exploitation controls the search
behavior of a given optimizer. Excess exploration makes the
optimization process to converge quickly, but it may lead
to premature convergence. Excess exploitation increases the
probability of finding the global optimum, but often slows
down the process with a much lower convergence rate.
Therefore, resolving the tradeoff between exploration and
exploitation is a must to ensure fast global convergence of the
optimization process [12]. In almost all modern swarm intel-
ligence optimizers, the exploration rate is adapted throughout
the optimization iterations in some predetermined manner to
allow for further exploration at some iterations, commonly, at
the beginning of the optimization process, and to allow for
extra exploitation at some iterations, commonly, at the end
of the optimization process. Some optimizers use exploration
rate that is linearly inverse proportional to the iteration number.
The original GWO linearly decrements the exploration rate as
optimization progresses

ExpRate = 2 − (t) ∗ (2/T) (15)

where t is the current iteration, T is the total number of iter-
ations, and Ex pRate is the rate of exploration. Although this
formula proves efficient for solving numerous optimization
problems, it still possesses the following drawbacks.

1) Stagnation: Once the optimizer approaches the end of
the optimization process, it becomes difficult to escape
the local optima and find better solutions, because its
exploration capability becomes very limited.

2) Suboptimal Selection: At the beginning of the optimiza-
tion process, the optimizer has very high exploration
capability, but with this enhanced explorative power, it
may leave promising regions to less promising ones.

3) Uniform Behavior: It is not uncommon to have the same
value for the exploration rate for all the search agents,
which forces the whole set of wolves to search in the
same manner.

The above-mentioned remarks motivate this paper in finding
a way to adapt the exploration and to model it individually
for each search agent. We proposed to use experience as a
guide for automatically adjusting the exploration rate. The
primary goal is to find a mechanism that maps the different
states of search agents to an action set so that the long run
goal or fitness function is optimized. To reach such goal
and to confront the considerations mentioned earlier regarding
such learning, we defined the following components of the
system.

A. State-Action Map

The mapping between the states and actions is commonly
nonlinear and can be modeled using any nonlinear mapping
model, e.g., neural network model. Incremental neural net-
works rather than the batch version of the neural network are
more adequate, as every time the agent obtains new data, it
must use it to update the neural network model.

B. Action Set

For each individual wolf, in order to adapt its exploration
rate, we propose a set of actions as follows.

1) Increase the Exploration Rate: It takes place as a result
of wolf’s self-confidence and expertise. This action
commonly happens when the wolf finds itself succeeding
in some consecutive iterations. The success at a given
iteration t is defined by the capability of the search agent
to maintain a fitness at time t that is better than its fitness
at time t−1. This increases its own confidence and hence
increases its exploration rate. Another situation that may
motivate such action is that when a successive failure
occurs, the agent may need to scout in the search space
hoping to find better prey.

2) Decrease Exploration Rate: Agent’s oscillation of fitness
may motivate such action and it reflects wrong decision
taken by the agent, and hence, it should be cautious in
its movements.

3) Keep Exploration Rate: The current exploration rate is
kept static as there is no motivation for neither increase
nor decrease it.

The above-mentioned three action will directly affect the
exploration rate at the next iteration as follows:

ExpRatt+1
i =

⎧
⎪⎨

⎪⎩

ExpRatti ∗ (1 + �)(Increase action)

ExpRatti ∗ (1 − �)(Decrease action)

ExpRatti (Keep action)

(16)

where ExpRatti is the exploration rate for agent i at time t and
� is the change factor.

C. Agent State

The actions performed change the state of a search agent
and the agent is repositioned in the search space and hence
acquire a new fitness value. A history of fitnesses of a given
agent is used to control its next action so that the agent can
accumulate and make use of its past decisions. Formally, the
state increases, decreases, or keeps constant the fitness value
for a search agent over a time span of T past successive rounds

Statei
t = [

. . . , sign
(

f i
t−3 − f i

t−4

)
, sign

(
f i
t−2 − f i

t−3

)
,

sign
(

f i
t−1 − f i

t−2

)
, sign

(
f i
t − f i

t−1

)]
(17)

where Statei
t is the state vector attached to a given agent i at

time t , f (t)i is the fitness function value for agent i at time t ,
and sign(x) is defined as

sign(x) =

⎧
⎪⎨

⎪⎩

1 if x < 0

−1 if x > 0

0 otherwise.

(18)

D. Feedback

When an agent leaves a region with good fitness to a region
with worse fitness, it receives a negative feedback. On the
contrary, when the search agent leaves a bad region to a better
one, it receives positive feedback. The agent’s own fitness is
an indicator of the search region around and decides whether

EMARY et al.: EXPERIENCED GWO THROUGH REINFORCEMENT LEARNING AND NEURAL NETWORKS 685

the agent should receive positive or negative feedback. Such
feedback can be formulated as

Feedbackt
i =

{
+1 if f

(
agentt+1

i

)
< f

(
agentti

)

−1 if f
(
agentt+1

i

) ≥ f
(
agentti

) (19)

where Feedbackt
i is the feedback for agent i at time t , and

f (agentti) is the fitness of agent i at time t .
Models that map situations to actions to maximize some

reward functions are commonly called reinforcement learning
models [13]. In such models, the learner is not told which
actions to take but instead discovers which actions yield to
higher reward by trying them [2]. Two distinguishing features
are commonly used to identify such models: 1) trial-and-
error search and 2) delayed reward. According to our problem
formulation, we consider a set of actions, state, feedback,
and the state-action mapping model. The state action mapping
model is a neural network with a single hidden layer. ANNs
are commonly used to map an unknown (generally nonlinear)
function and have well-established training methods [10]. The
set of previously mentioned actions increase, decrease, and
keep exploration rate are encoded into neural network nodes
in the output layer. Therefore, the network has three nodes in
the output layer corresponding to the three applicable actions,
with 1 on the node indicating the action that will be applied
and a 0 value on the other two nodes. The state vector
described in (17) with length T is used as input to the neural
model. So, the number of nodes in the input layer is exactly
T nodes. The hidden layer has a 2 ∗ T + 1 nodes [10].

Common to reinforcement learning, the feedback signal,
computed as in (19), is used to adapt the experience of
the model through training. The neural weights are adapted
according to the action taken and the feedback received at
time t . The weights of the neural model are adapted by
rewarding or punishing the winning node. The winning node,
representing the applied action, is rewarded by moving its
current output to be closer to 1 in the case of receiving positive
feedback through adapting its attached weights [14]. In the
case of receiving negative feedback, the node attached to the
applied action is punished by moving its output to be closer
to 0 through updating its assigned weights. Equation (20)
employs the gradient descent method to adapt the weights of
the output layer attached to the winning node given a target
value of 1 or 0 in the case of positive or negative feedback

wt+1
i = wt

i + ηx(di − yi)yi (1 − yi) (20)

where wt
i is the weight for output node i at time t , x is the

input state, yi is the actual output on node i , and di is the
desired output on node i which is set either to 1 when receiving
positive feedback or 0 when receiving negative feedback. The
update is propagated to the hidden weights as follows:

wt+1
i = wt

i + ηxy j (1 − y j)

o∑

i

wi j ((di − yi)yi (1 − yi)) (21)

where η is the learning rate, o is the number of actions, y j is
the output of the hidden node j , yi is the output of node i ,
and x is the input state. The wining node/action selection can

Fig. 2. Number of punishments and rewards received by all the agents during
the optimization.

Fig. 3. Flow chart describing the state change of ANN actions.

be formulated as follows:
Winner = 3

min
i=1

|1 − oi | (22)

where oi is the value of the output node i .
The main assumption to propose such a training model is

that the state-action mapping applies a static unknown function
to be estimated in a trial and error manner, but if such mapping
is not static or changes slightly, the system tends to take
random actions and no experience is acquired. Such a training
manner is very natural when the trainability is lost in case
of fast changing environment [15]. Fig. 2 shows the total
number of punishments and rewards acquired by all search
agents during the optimization process. We can remark from
Fig. 2 that as optimization progresses, the experience of the
search agents is enhanced, and hence, the number of correct
actions (rewards) increases, while the number of wrong actions
(punishments) decreases. This proves the capability of the
proposed strategy to converge to optimal state-action map and,
hence, to optimally timed parameters. The proposed algorithm
is called EGWO, and is formally given in Algorithm 2. Fig. 3
outlines the flow of state change as a response to actions
produced by the neural network.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section summarizes the results from applying the
proposed experienced GWO on two main applications, namely,
feature selection and neural network weight adaptation. The
next two subsections (IV-A and IV-B) contain the results and
the analysis for each application. We use a set of qualitative

686 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018

Algorithm 2 EGWO
Input: Number of gray wolves (n), maximum iterations
(MaxI ter), state vector (T), exploration change factor �.
Result: The optimal wolf position and its fitness.

1) Randomly initialize a population of n wolves.
2) Initialize a set of n values ai representing the

exploration rate attached to each wolf.
3) Find α, β, and δ solutions based on fitness values.
4) Initialize the state-action neural network to random

values.
5) t = 0.

while t ≤ MaxI ter do
foreach Wol fi ∈ pack do

- Update wolf’s current position according to Eq.
(5).
- Calculate the Feedbackt

i according to Eq. 19.
- Update the state-action neural network given
Actiont−1, statet−1 and Feedbackt according to
Eqs. (20) and (21).
- Update Wol fi state vector according to Eq. (17).
- Update the exploration parameter ai attached to
Wol fi as in Eq. (16).

end
- Update A and C as in Eqs. (3) and (4).
- Evaluate the positions of individual wolves.
- Update α, β, and δ positions as the first best three
solutions in the current population.
- t = t + 1.

end
6) Select the optimal gray wolf position.

measures in order to analyze the results obtained by the
methods we apply. The first three metrics give a measure
of the mean, best, and worst expected performance of the
algorithms. The fourth measure is adopted to show the ability
of the optimizer to converge to the same optimal solution. The
fifth and sixth metrics show the accuracy of the classification.
The seventh and eighth metrics are a measure of the size of the
selected features set (we expect a low number of features and
a high accuracy). The last three metrics are used for directly
comparing two algorithms and show whether the difference
between them is significant or not.

1) Mean Fitness: It is an average value of all the solutions
in the final sets obtained by an optimizer in a number
of individual runs [16].

2) Best Fitness: It is the best solution found by an optimizer
in all the final sets resulted from a number of individual
runs [16].

3) Worst Fitness: It is the worst solution found by an
optimizer in all the final sets resulted from a number
of individual runs [16].

4) Standard Deviation: It is used to ensure that the opti-
mizer convergences to the same optimal and ensures
repeatability of the results. It is computed over all the
sets of final solutions obtained by an optimizer in a
number of individual runs [17].

5) Classifier Mean Square Error (CMSE): It is a measure
of classifier’s average performance on the test data.
It is averaged over all final sets in all the independent
runs [18].

6) Root-Mean-Square Error (RMSE): It measures the root
average squared error of the difference between actual
output and the predicted one. It is averaged over all final
sets in all the independent runs [18].

7) Average Selected Feature: It represents the average size
of the selected features subset. The average is computed
for each final set of solutions in multiple individual runs.

8) Average Fisher Score: It evaluates a feature subset such
that in the data space spanned by the selected features,
the distances between data points in different classes are
as large as possible, while the distances between data
points in the same class are as small as possible [19].
Fisher score in this paper is calculated for individual
features given the class labels; as follows:

Fj =
∑c

k=1 nk
(
μ

j
k − μ j

)2

(σ j)2 (23)

where Fj is the Fisher index for feature j , μ j and (σ j)2

are the mean and standard deviation (std) of the whole
data set, nk is the size of class k, and μ

j
k is the mean

of class k. The Fisher for a set of features is defined as

Ftot = 1

S

S∑

i=1

Fi (24)

where S is the number of selected features. The average
Fisher score over a set of N runs is defined as

Fishr-score = 1

N

N∑

i=1

Fi
tot (25)

where Fi
tot is the Fisher score computed for selected

feature set on run i .
9) Wilcoxon Rank Sum Test: It is a nonparametric test for

significance assessment. The test assigns rank to all the
scores considered as one group and, then, sums the ranks
of each group [20]. The test statistic relays on calculating
W as follows:

W =
N∑

i=1

sgn(x2,i − x1,i).Ri) (26)

where x2,i and x1,i are the best fitness obtained from
the first and second optimizers on run i , Ri is the rank
of difference between x2,i and x1,i , and sgn(x) is the
standard sign function.

10) T-Test: It measures the statistical significance and
decides whether or not the difference between the aver-
age values of two sample groups reflects the real dif-
ference in the population (set) the groups were sampled
from [21], as follows:

t = x̄ − μ0
S√
n

(27)

EMARY et al.: EXPERIENCED GWO THROUGH REINFORCEMENT LEARNING AND NEURAL NETWORKS 687

where μ0 is the mean of the t-distribution and (S/
√

n)
is its std.

11) Average Run Time: It is the time (in seconds) required
by an optimization algorithm for a number of different
runs.

A. EGWO Applied for Feature Selection

Finding a feature combination that maximizes a given clas-
sifier performance is a challenging problem. A data set with k
features has 2k different possible choices. The wrapper-based
method for feature selection is a very common and reasonably
efficient approach, but it comes with a huge processing cost
as the classifier must be evaluated at each selected feature
combination [22]. The main characteristic of the wrapper-
based method is the use of the classifier as a guide to feature
selection procedure [23]. The classifier adopted in this paper
is the K -nearest neighbor (KNN) [24]. KNN is a supervised
learning algorithm that classifies an unknown sample instance
based on the majority of the KNN category. According to
the direct formulation of wrapper-based approach for feature
selection, the evaluation criteria (the fitness to optimize) is
formulated as

Fitness(D) = αEM (D) + β
|M|
|N | (28)

where EM (D) is the error rate for the classifier of condition
feature set D, M is the size of selected feature subset, and
N is the total number of features. α∈[0, 1] and β = 1 − α
are constants which control the importance of classification
accuracy and feature reduction. Any possible combination
of features D can be evaluated, and hence, this function is
continuously defined on the whole feature space with each
component of the vector D in the range [0, 1] and such fitness
function is generally nondifferentiable.

The search methods employed in this paper are the pro-
posed EGWO, GWO, particle swarm optimization (PSO) [25],
and genetic algorithms (GAs) [26].

1) Initialization: Four initialization methods are adopted
in this paper differing from one another with respect to the
following aspects.

1) Population Diversity: The ability of an optimizer to
produce variants of the given initial population is a
valuable property.

2) Closeness to Expected Optimal Solution: The capability
to efficiently search the space for the optimal solution is
must for a successful optimizer. Hence, it is intended to
force the initial search agents to be apart from or close
to the expected optimal solution.

3) Resemblance to Forward and Backward Selection: Each
of these has its own strengths and weaknesses, and
hence, we would like to assess the initialization impact
on the feature selection process.

Fig. 4 shows the initial wolves positions using the four
initialization methods and the details about these techniques
are as follows.

a) Small initialization: Search agents are initialized with
a small number of randomly selected features. Therefore, if

Fig. 4. Sample initial wolves positions using different initializations with
nine search agents and six dimensions.

the number of agents is less than the number of features, we
will see that each search agent will have a single dimension
with value 1. Of course, the optimizer will search for feature(s)
to be set to 1 to enhance the fitness function value as in the
standard forward selection of features. This method is expected
to test the global search ability of an optimizer as the initial
search agents’ positions are commonly away from the expected
optimum. Therefore, the optimizer has to use global search
operators to derive better solutions.

b) Mixed initialization: Half of the search agents are
initialized using the small initialization and the other half
are initialized using the large initialization method with more
random features. Some search agents are close to the expected
optimal solution and the other search agents are away from it.
Hence, it provides much more diversity of the population as
the search agents are expected to be far from each other. This
method takes both the merits of small and large initializa-
tion [23].

c) Uniform initialization: Each feature has the same
probability of being selected. This method is the most common
initialization where the agents are randomly placed in the
search space.

d) MRMR initialization: The minimum redundancy max-
imum relevance (MRMR) combines two criteria for feature
selection [27], namely, relevance with the target class and
redundancy to other features. In order to define MRMR, we
will use the mutual dependence between two random variables
X and Y given as

I (X; Y) =
∑

x∈X

∑

y∈Y

p(x; y)log
p(x; y)

p(x)p(y)
(29)

where p(x; y) is joint probability distribution of x and Y ,
and p(x) and p(y) are the marginal probability distribution
functions of X and Y .

For our feature selection problem, let Fi and Fj be two
features from the set F of N features and c the class label.

688 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018

The maximum relevance method selects the top M best fea-
tures based on their mutual dependence with class c

max
F

1

N

∑

Fi∈F

I (Fi ; c). (30)

These top M features may not be the best M features as
there might be correlations among them. Thus, the redundancy
is removed using the minimum redundancy criterion

min
F

1

N2

∑

Fi ,Fj ∈F

I (Fi ; Fj). (31)

The MRMR initialization combines both these objectives.
Iteratively, if M − 1 features are selected in the set SM−1,
the Mth feature is selected by maximizing the single variable
relevance minus redundancy

max
Fi∈F−SM−1

⎛

⎝I (Fi ; c) − 1

M − 1

∑

Fj ∈SM−1

I (Fi ; Fj)

⎞

⎠. (32)

Using the concept of mutual information, the MRMR
method selects variables that have the highest relevance with
the target class and minimally redundant as well, i.e., dissimi-
lar to each other. MRMR is normalized along the feature set as

Pd
i = MRMRi

maxd
j=1 MRMR j

(33)

where Pi is the search agent position in dimension d , MRMRi

is the MRMR value for feature i , and d is the problem
dimension.

MRMR is used to initialize one search agent and the rest of
search agents are set at random positions in the search space.

2) Data Sets: The 21 data sets in Table II from the UCI
machine learning repository [28] are used for tests and com-
parisons. The data sets are selected to ensure a large variety
regarding the number of features and the number of instances.
Each data set is divided randomly into three different equal
parts for validation, training, and testing using cross valida-
tion. Each experiment with each algorithm repeated 30 times
to ensure the stability and the statistical significance of the
results.

3) Parameter Settings: The global and optimizer-specific
parameter settings are outlined in Table III. All the parameters
are set either according to domain-specific knowledge as the
α and β parameters of the fitness function, or based on a trial
and error methodology on small simulations or from previous
experiments reported in the literature in the case of the rest
parameters.

4) Results and Discussion: Fig. 5(a) shows the statistical
indicators computed for GWO, EGWO, PSO, and GA using
the uniform initialization method. We can observe that the
performance of EGWO is superior to that of GWO in the
average performance. We can also see that the std of EGWO
is comparable to that of GWO, which ensures repeatability of
results and convergence to the same optimum. The enhanced
performance of EGWO is due to the fact that the search
agents learn the ill-promising regions of the search space
and jump out of these regions to more promising regions.

TABLE II

DATA SETS DESCRIPTION

TABLE III

PARAMETER SETTINGS FOR EXPERIMENTS

That is possible at all stages, not only at the beginning of
search process due to the way in which the exploration rate
parameter ai is controlled. Since every search agent has its own
exploration parameter, the diversity of behavior is assured and
hence tolerates for stagnation particularly in the end stages of
optimization. Individual agents in the EGWO swarm can still
increase the exploration rate even in the latter stages of the
optimization process, allowing for escaping local minima and
premature convergence. In the standard GWO, the exploration
rate is linearly decreased during the search process, allowing
for a large exploration at the beginning and more local search
toward the end. The same conclusion can be derived from the
results obtained using the small, mix, and MRMR initialization
methods in Fig. 5(b)–(d), respectively, when EGWO performs
better in average than the other methods. Small initialization
forces the search agents to be initialized away from the
expected optimal solution and the agents are forced to keep
diversity. Hence, it adds difficulty to the optimizer to escape
from such situation. EGWO has an advantage again here as it
adapts its exploration rate based on (what has learned from)
experience rather than using a formula that does it iteratively
and ignoring previous performance and can quickly adapt its

EMARY et al.: EXPERIENCED GWO THROUGH REINFORCEMENT LEARNING AND NEURAL NETWORKS 689

TABLE IV

AVERAGE CMSE, SELECTED FEATURE, AND FISHER SCORE USING UNIFORM INITIALIZATION

Fig. 5. Box-plot of fitness values for the different initializations.
(a) Uniform initialization. (b) Small initialization. (c) Mix initialization.
(d) MRMR initialization.

exploration rate to approach the global optima while leaving
the nonpromising regions. Fig. 6 outlines the snapshot of
the exploration rates for five agents where we can see the
difference in such rate between the different agents which
motivates the global fitness function to reach the optimum.

When using a mixed initialization, all optimizers perform
better than using small initialization and uniform initialization
which can be interpreted by the variability of the initial posi-
tion in the search space, some search agents being initialized
close to the expected optimal solution. We can remark that
the EGWO still performs better. Fig. 7 shows the behavior of
a single search agent where we can see that the search agent
adapts its own exploration in response to its own fitness and
such behavior allows the search agent to keep its exploration
capability even at the end stages of the optimization, trying to
find better promising regions.

Fig. 6. Five agents with their exploration rates and the global fitness value.

Fig. 7. Single agent with its exploration rate, its fitness, and the global
fitness.

We can observe very good results using the MRMR ini-
tialization for all the algorithms. The good performance can
be explained by the fact that the initial population already
contains a nearly optimal solution and the optimizer is required
only to enhance such solution. All these methods include a
mechanism by which the solutions in the swarm tend to follow
the best solution found so far. But, there are still situations
in which the nearly optimal solution can be far away from
the global optimum, requiring again very good explorations

690 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018

TABLE V

AVERAGE CMSE, SELECTED FEATURE, AND FISHER SCORE USING SMALL INITIALIZATION

TABLE VI

AVERAGE CMSE, SELECTED FEATURE, AND FISHER SCORE USING MIXED INITIALIZATION

of the search space. This is why the exploration ability of
EGWO brings it again in advantage compared with the other
methods, not only regarding the accuracy of the convergence
but also the size of the selected features, EGWO being able
to detect the smallest number of relevant features for most of
the test cases.

Tables IV–VII show the performance on the test data in
terms of classification accuracy, the average size of the selected
features set, and the average Fisher score. For the uniform
initialization where the initial population is very random,
EGWO still obtains the smallest features set for about 77% of
the data sets, with the best classification accuracy for 72% of
the data sets and the best Fisher score for over 66% of the data
while for the remaining data sets still obtains very good results.

For the small initialization, EGWO still dominates the other
methods in over 50% of the data sets. Results are better in the
case of mixed initialization and MRMR initialization. EGWO
obtains the smallest number of features for over 76% of the
data sets, the best accuracy for over 57% of the data sets, and
the best Fisher score for over 50% of the tests.

Regarding the running time (results in Table VIII), EGWO
and GWO perform slower than PSO and GA for the majority
of the data sets, but the difference is not really high in all the
cases. The extra time is consumed in the continual training of
the neural network model and the retrieval of action decision.
Such increase in time consumption in comparison to enhanced
optimization seems to be tolerable in many applications. This
could be possibly improved by applying only reinforcement

EMARY et al.: EXPERIENCED GWO THROUGH REINFORCEMENT LEARNING AND NEURAL NETWORKS 691

TABLE VII

AVERAGE CMSE, SELECTED FEATURE, SIZE AND FISHER SCORE USING MRMR INITIALIZATION

TABLE VIII

AVERAGE RUNNING TIME IN SECONDS FOR

ALL INITIALIZATION METHODS

learning at quantized optimization steps. Regarding the added
storage cost for the proposed algorithm, the ANN weights
could be stored and the short history per wolf could also be
kept. The neural model in the current implementation is stored
as two matrices with sizes T × (2T + 1) and (2T + 1) × 3.
The wolf’s short history is a vector of length T .

Significance tests have the role of comparing two optimizers
in order to find a statistically significant difference between
them. Table IX shows the results of T-test and Wilcoxon’s
test calculated on the different initialization methods for all
the four optimizers. We are interested in the performance of
EGWO against the other algorithms; thus, we report all the
comparisons with EGWO only. EGWO performs better than
GWO, PSO, and GA as per T-test results at a significance

TABLE IX

WILCOXON AND T-TEST FOR ALL INITIALIZATION METHODS

TABLE X

DATA SET USED FOR REGRESSION

level of 5% when using the uniform and MRMR methods,
while less importance value is observed when using the small
and mixed initializations. This confirms that the learning of the
adaptation rate in EGWO really helps the optimization process,
regardless of the initial position of the agents, whether close
to an optimum or random over the search space. We can also
observe that the proposed EGWO has significant advance over
PSO and GA using Wilcoxon and T-test at a significance level
of 5% regardless of the used initialization method.

692 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018

TABLE XI

MEAN, BEST, AND WORST OBTAINED FITNESS COMPUTED FOR ANN WEIGHTS ADAPTATION ON REGRESSION PROBLEMS

TABLE XII

AVERAGE STD, RMSE, AND RUN TIME COMPUTED FOR THE DATA REGRESSION DATA SETS

B. Multilayer ANNs Weight Adaptation

Feed-forward multilayer ANNs have been widely used as
nonlinear function approximator that maps a given input to
a given output. Commonly, the mapping function is either
classification function, when the output is in discrete form, or
regression when the output is in continuous form. The primary
challenge is to estimate the weight set for such a network
in order to achieve a proper mapping. Back propagation is
commonly used to train the weights but, since it is gradient-
based, it suffers from convergence to local optima [29].
Recently, other algorithms were employed for such tasks, such
as GA [30] or PSO [31]. A generic representation of such
models selects a weight set that minimizes the total error over
all training data

min E(W) = 1

q ∗ O

q∑

k=1

O∑

i=1

(
yk

i − Ck
i

)2 (34)

where q is the number of training samples, O is the number
of nodes in the output layer, yk

i and Ck
i are the actual and the

desired output of the training point k on the output node i ,
and W is the vector of all neural network weights and biases.
The weight range is usually set to [0, 1] or [−1, 1] [29]. The
error function is used as a fitness function in the optimization
problem of selecting appropriate weights that minimize the
error between the predicted and the actual output. The network
structure was assumed to be static and the challenge is to select
the weight set in the range [−1, 1].

GWO has been successfully applied to train the multilayer
ANNs for classification and regression problems [32]. In the
tests performed in [32], GWO dominates all the other methods
used for comparison (GA, PSO, ant colony optimization, evo-
lution strategies, and population-based incremental learning)

for the regression tests and is only dominated by the GA
for three of the classification tests. This motivates this paper
to try to get even better results with our improved EGWO.
In this paper, a two-layered feed-forward ANN is used for
regression problems. Ten data sets given in Table X are used
for experiments. Each individual data set is divided following a
k-fold cross validation manner, with k=10 and the experiments
repeated 30 times. In the k-fold cross validation, kth fold is
used as testing data and the remaining data are employed for
training.

1) Results and Discussion: Table XI presents the results of
the statistical measures for all the data sets. We can observe
that the EGWO has better fitness function value, which proves
the capability of the model to converge to better optima.
The enhanced performance can be interpreted by the fact
that the EGWO can exploit agents’ own experience to adapt
the exploration rate per search agent. The exploration rate
control helps the optimizer to quickly jump to more promising
regions especially in complex search space. The results in
Table XII show that both GWO and EGWO have comparable
std, which ensures the repeatability of results regardless of the
random factors used. From the performance on the test data,
we can observe that EGWO has a better performance than
GWO. The small difference in the running time is because
EGWO employs a more complex methodology, but even so,
the difference is not really sensitive.

V. CONCLUSION AND FUTURE WORK

In this paper, a variant of GWO that learns the exploration
rate in an individual manner for each agent (wolf) is proposed.
The experienced GWO (EGWO) uses reinforcement learning
principles to learn the actions that should be taken at different
states of the optimization and in various regions of the search

EMARY et al.: EXPERIENCED GWO THROUGH REINFORCEMENT LEARNING AND NEURAL NETWORKS 693

space. A neural network model was used to hold the expe-
rience information. The proposed EGWO is compared with
the original GWO, PSO, and GA on two main optimization
applications: feature selection and ANN weight adaptation.
Results were assessed in both applications using a set of
performance indicators. We observe a significant improvement
in the performance of EGWO while compared with the other
methods. EGWO can adapt quickly to different search space
terrains and can avoid premature convergence. Besides, the
initialization of the search agents positions at the beginning
of the optimization process plays a role in the performance
of EGWO, with uniform and MRMR initialization providing
more variability in the search agents, helping the experienced
model to be easily trained. Our methodology is more of a proof
of concept that an automatic rather than manual (via trial and
error) setting of the parameters of learning algorithms is more
efficient, and can be generalized to other similar algorithms,
thus helping with the tedious task of always finding the right
parameter configuration for a particular application.

REFERENCES

[1] G. Neumann, “The reinforcement learning toolbox, reinforcement learn-
ing for optimal control tasks,” M.S. thesis, Inst. Theor. Comput. Sci.,
Univ. Technol., Graz, Austria, 2005.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[3] X. Xu, Z. Huang, L. Zuo, and H. He, “Manifold-based reinforcement
learning via locally linear reconstruction,” IEEE Trans. Neural Netw.
Learn. Syst., vol. PP, no. 99, pp. 1–14, Jan. 2016.

[4] D. Lee, H. Seo, and M. W. Jung, “Neural basis of reinforcement learning
and decision making,” Annu. Rev. Neurosci., vol. 35, pp. 287–308,
Mar. 2012.

[5] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct rein-
forcement learning for financial signal representation and trading,” IEEE
Trans. Neural Netw. Learn. Systems, vol. PP, no. 99, pp. 1–12, Feb. 2016.

[6] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[7] N. Mittal, U. Singh, and B. Sohi, “Modified grey wolf optimizer for
global engineering optimization,” Appl. Comput. Intell. Soft Comput.,
vol. 2016, Apr. 2016, Art. no. 7950348.

[8] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. D. S. Coelho,
“Multi-objective grey wolf optimizer: A novel algorithm for multi-
criterion optimization,” Expert Syst. Appl., vol. 47, pp. 106–119,
Apr. 2016.

[9] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary grey wolf opti-
mization approaches for feature selection,” Neurocomputing, vol. 172,
pp. 371–381, Jan. 2016.

[10] C. Bishop, Pattern Recognition. Oxford, U.K.: Clarendon, 1995.
[11] X. S. Yang, Z. Cui, R. Xiao, A. H. Gandomi, and M. Karamanoglu,

“Swarm intelligence and bio-inspired computation,” Theory and Appli-
cations, 1st ed. Amsterdam, The Netherlands: Elsevier, 2013.

[12] X.-S. Yang, S. Deb, M. Loomes, and M. Karamanoglu, “A framework
for self-tuning optimization algorithm,” Neural Comput. Appl., vol. 23,
no. 7, pp. 2051–2057, 2013.

[13] H. Zhang, H. Jiang, Y. Luo, and G. Xiao, “Data-driven optimal consen-
sus control for discrete-time multi-agent systems with unknown dynam-
ics using reinforcement learning method,” IEEE Trans. Ind. Electron.,
vol. PP, no. 99, p. 1, Mar. 2016.

[14] L. Liu, Z. Wang, and H. Zhang, “Adaptive fault-tolerant tracking control
for mimo discrete-time systems via reinforcement learning algorithm
with less learning parameters,” IEEE Trans. Autom. Sci. Eng., vol. PP,
no. 99, pp. 1–15, Jan. 2016.

[15] C. Wei, Z. Zhang, W. Qiao, and L. Qu, “An adaptive network-based
reinforcement learning method for MPPT control of PMSG wind energy
conversion systems,” IEEE Trans. Power Electron., vol. 31, no. 11,
pp. 7837–7848, Nov. 2016.

[16] S. L. Tilahun and H. C. Ong, “Prey-predator algorithm: A new
metaheuristic algorithm for optimization problems,” Int. J. Inf.
Technol. Decision Making, vol. 14, no. 6, pp. 1331–1352,
Nov. 2015.

[17] L. Jia, W. Gong, and H. Wu, “An improved self-adaptive control
parameter of differential evolution for global optimization,” Comput.
Intell. Intell. Syst., vol. 51, pp. 215–224, Oct. 2009.

[18] E. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed.
New York, NY, USA: Springer, 1998.

[19] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. Hoboken,
NJ, USA: Wiley, 2000.

[20] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[21] J. Rice, Mathematical Statistics and Data Analysis, 3rd ed. Boston, MA,
USA: Cengage Learn., 2006.

[22] L. Y. Chuang, S. W. Tsai, and C. H. Yang, “Improved binary
particle swarm optimization using catfish effect for feature selec-
tion,” Expert Syst. Appl., vol. 38, no. 10, pp. 12699–12707,
2011.

[23] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisa-
tion for feature selection in classification: Novel initialisation and
updating mechanisms,” Appl. Soft Comput., vol. 18, pp. 261–276,
May 2014.

[24] L. Y. Chuang, H. W. Chang, C. J. Tu, and C. H. Yang, “Improved
binary PSO for feature selection using gene expression data,” Comput.
Biol. Chem., vol. 32, pp. 29–38, Feb. 2008.

[25] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE ICNN, vol. 4. Nov./Dec. 1995, pp. 1942–1948.

[26] A. E. Eiben, P. E. Raué, and Z. S. Ruttkay, “Genetic algorithms with
multi-parent recombination,” in Proc. Int. Conf. Evol. Comput., vol. 866.
1994, pp. 78–87.

[27] A. E. Akadi, A. Amine, A. E. Ouardighi, and D. Aboutajdine, “A two-
stage gene selection scheme utilizing MRMR filter and GA wrapper,”
Knowl. Inf. Syst., vol. 26, no. 3, pp. 487–500, 2011.

[28] A. Frank and A. Asuncion, “UCI Machine Learning Repository,” School
Inf. Comput. Sci., Univ. California, Irvine, CA, USA, 2010.

[29] J. R. Zhang, J. Zhang, T. M. Lok, and M. R. Lyu, “A hybrid particle
swarm optimization–back-propagation algorithm for feedforward neural
network training,” Appl. Math. Comput., vol. 185, no. 2, pp. 1026–1037,
2007.

[30] X. Yao, “A review of evolutionary artificial neural networks,” Intell.
Syst., vol. 8, no. 4, pp. 539–567, 1993.

[31] C. Zhang, H. Shao, and Y. Li, “Particle swarm optimisation for evolving
artificial neural network,” in Proc. Syst., Man, vol. 4. Oct. 2000,
pp. 2487–2490.

[32] S. Mirjalili, “How effective is the Grey Wolf optimizer in training
multi-layer perceptrons,” Appl. Intell., vol. 43, no. 1, pp. 150–161,
2015.

E. Emary was born in Sharkia, Egypt, in 1979.
He received the B.Sc., M.Sc., and Ph.D. degrees
from Information Technology Department, Faculty
of Computers and Information, Cairo University,
Giza, Egypt, in 2001, 2003, and 2010, respectively.

He is currently an Associate Professor with Infor-
mation Technology Department, Faculty of Com-
puters and Information, Cairo University. He has
authored or co-authored over 40 research pub-
lications in peer-reviewed reputed journals, book
chapters, and conference proceedings. His current

research interests include computer vision, pattern recognition, video and
image processing, machine learning, data mining, and biometrics.

Dr. Emary has served as the Technical Program Committee Member of
various international conferences and a reviewer for various international
journals.

694 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 3, MARCH 2018

Hossam M. Zawbaa was born in Cairo, Egypt,
in 1987. He received the B.Sc. and M.Sc. degrees
from the Faculty of Computers and Informa-
tion, Cairo University, Giza, Egypt, in 2008 and
2012, respectively, and the Ph.D. degree from
Babeş-Bolyai University, Cluj-Napoca, Romania,
in 2016.

He is currently a Lecturer with Information Tech-
nology Department, Faculty of Computers and Infor-
mation, Beni-Suef University, Beni Suef, Egypt.
He has authored or co-authored over 50 research

publications in peer-reviewed reputed journals and international confer-
ence proceedings. His research interests include computational intelligence,
machine learning, image processing, and data mining.

Dr. Zawbaa has served as the Technical Program Committee Member of
various international conferences and a reviewer for a number of international
journals.

Crina Grosan received the B.Sc. degree in math-
ematics and computer science, the M.Sc. degree in
complex analysis and optimisation, and the Ph.D.
degree in artificial intelligence from Babeş-Bolyai
University, Cluj-Napoca, Romania.

He is currently a Lecturer with the Department of
Computer Science, College of Engineering, Design
and Physical Sciences, Brunel University, London,
U.K. Her current research interests include the devel-
opment of artificial intelligence/machine learning
methods and algorithms for large scale optimisation,

systems of equations, data analysis, graphs, and decision making, with
applications in medicine, biology, pharmacy, economics, and engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

