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Abstract—This paper mainly discusses a novel conceptual
framework: fractional Hopfield neural networks (FHNN). As is
commonly known, fractional calculus has been incorporated
into artificial neural networks, mainly because of its long-term
memory and nonlocality. Some researchers have made interesting
attempts at fractional neural networks and gained competitive
advantages over integer-order neural networks. Therefore, it is
naturally makes one ponder how to generalize the first-order
Hopfield neural networks to the fractional-order ones, and how to
implement FHNN by means of fractional calculus. We propose
to introduce a novel mathematical method: fractional calculus
to implement FHNN. First, we implement fractor in the form
of an analog circuit. Second, we implement FHNN by utilizing
fractor and the fractional steepest descent approach, construct
its Lyapunov function, and further analyze its attractors. Third,
we perform experiments to analyze the stability and convergence
of FHNN, and further discuss its applications to the defense
against chip cloning attacks for anticounterfeiting. The main
contribution of our work is to propose FHNN in the form of an
analog circuit by utilizing a fractor and the fractional steepest
descent approach, construct its Lyapunov function, prove its
Lyapunov stability, analyze its attractors, and apply FHNN to the
defense against chip cloning attacks for anticounterfeiting. A sig-
nificant advantage of FHNN is that its attractors essentially relate
to the neuron’s fractional order. FHNN possesses the fractional-
order-stability and fractional-order-sensitivity characteristics.

Index Terms—Defense against chip cloning attacks, frac-
tional calculus, fractional Hopfield neural networks (FHNNSs),
fractional-order-sensitivity, fractional-order-stability.

I. INTRODUCTION

T IS well known that the classical first-order Hopfield

neural networks (HNNs) is one of the most influential
neural networks [1]-[4]. The circuit configuration of HNN’s
first-order neuron is based on a first-order integral circuit. Each
first-order neuron of HNN consists of one operational amplifier
and its related capacitor and resistors. Each first-order neuron
has the same circuit configuration. There are many classical
applications of HNN in content addressable memory [1],
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analog-to-digital converters [5], linear programming [3], and
so on. Meanwhile, there are also many dynamic associa-
tive memories that are closely related to HNN, such as the
Li et al. neural networks [6], [7], bidirectional associa-
tive memories [8], [9], and so on. Furthermore, with the
widespread application of HNN, some model modifications
of HNN, such as the high-order HNNs [10]-[13], fuzzy
HNNs [14], [15], and stochastic HNNs [16], [17], are pro-
posed, respectively. In addition, fractional calculus has been
incorporated into artificial neural networks, mainly because
of its long-term memory and nonlocality. Some researchers
have made interesting attempts at fractional neural networks
and gained competitive advantages over the integer-order
neural networks. For instance, Ozdemir et al. [18] proposed a
new type of activation function for a complex valued neural
network. Alofi et al. [19] studied the finite-time stability
of Caputo fractional neural networks with distributed delay.
Kaslik and Sivasundaram [20] discussed the stability analysis
of the fractional-order neural networks of Hopfield type.
Zhang et al. [21] discussed a fractional-order financial system
based on a fractional-order 3-D Hopfield type neural network.
Raja et al. [22]-[25] proposed stochastic techniques as well
as evolutionary techniques for the solution of the fractional-
order systems represented by fractional differential equations,
respectively. In these approaches, feedforward artificial neural
networks are employed for accurate mathematical modeling.
The advantage of these approaches is that the solution of
fractional differential equations is available in the domain of
continuous inputs unlike the other integer-order calculation-
based numerical techniques. Therefore, it naturally makes one
to ponder how to generalize HNN to the fractional-order
ones, and how to implement the fractional HNNs (FHNNs)
by means of fractional calculus. This paper discusses a novel
conceptual framework: FHNN.

In over the past 300 years, fractional calculus has been an
important novel branch of mathematical analyses [26]-[31].
Fractional calculus is as old as the integer one, although
till date, its application has been exclusively in the field of
mathematics. It seems as if fractional calculus is a promising
mathematical method for physical scientists and engineer-
ing technicians. Scientific study has shown that a fractional
order or a fractional dimensional approach is now the best
description for many natural phenomena. Fractional calculus
is used currently in many fields such as specific physical
problems [32], [33], biomedical engineering [34], diffusion
processes [35]-[37], viscoelasticity theory [38], fractal dynam-
ics [39], and fractional control [40]. Unfortunately, its major
application still focuses on describing the transient state
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of physical change, but seldom involves systemic evolution
processes.

How to apply fractional calculus to signal analysis and
processing, especially to neural networks, is an emerging
field of study and few studies have been seldom per-
formed in this area. The properties of the fractional calculus
of a signal are quite different from those of its integer-
order calculus [41]-[43]. Therefore, the fractional differen-
tial can nonlinearly enhance the complex texture details of
an image [44]-[46] and implement texture image denoising
approaches [47]-[50]. Following the success in the synthesis
of a fractional differentiator in the form of an analog cir-
cuit, the emergence of a novel electrical circuit element has
been named fractor [26], [43], [S1]-[57]. As in our previous
studies [51], [52], an ideal fractor consists of an ordinary
resistor and an ordinary capacitor or inductor in the form of an
analog circuit on the tree-type [26], two-circuit-type [43], [53],
H-type [43], [54], net-grid-type [43], [S5]-[57], and other
infinite recursive structures, which are of extreme self-
similar fractal structure. On this basis, the first preliminary
attempt at implementation of a fractional-order neural net-
work of the Hopfield type by means of fractional calculus
was reported [57]. Another prior study [58] showed that,
in fractional adaptive signal processing and fractional adaptive
control, the fractional extreme point is quite different from
a traditional integer-order extreme one, such as the first-
order stationary point. In order to seek the fractional
extreme points of the energy norm, we have general-
ized the integer-order steepest descent approach to a frac-
tional approach [58]. Based on the prior studies mentioned
above [26], [43], [45], [51]-[58], we propose to introduce a
novel mathematical method: fractional calculus to implement
FHNN. A significant advantage of FHNN is that its attractors
essentially relate to the neuron’s fractional order. FHNN
possesses the fractional-order stability and the fractional-order-
sensitivity characteristics.

The rest of this paper is organized as follows. Section II
recalls the necessary theoretical background of fractional
calculus and fractional neural works. Section III imple-
ments FHNN and studies its stability and convergence. First,
we implement fractor in the form of an analog circuit. Second,
we implement FHNN by utilizing fractor and the fractional
steepest descent approach. Third, we construct the Lyapunov
function of FHNN. Fourth, we analyze the attractors of
FHNN. Section IV reports the experiment results and analysis.
First, we deduce numerical implementation of FHNN. Second,
we analyze the stability and convergence of FHNN. Third,
we study the applications of FHNN to the defense against
chip cloning attacks for anticounterfeiting. In Section V,
the conclusions of this paper are presented.

II. MATHEMATICAL BACKGROUND

This section presents a brief introduction to the
necessary mathematical background of fractional calculus.
The commonly used fractional calculus definitions are
those of Griinwald—Letnikov, Riemann-Liouville, and
Caputo [26]-[30].
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The Griinwald-Letnikov definition of fractional calculus,
in a convenient form, for causal signal s(x), is as follows:

(= (F)f o

where s(x) is a differintegrable function [26]-[30], [a, x] is the
duration of s(x), v is a noninteger, I' (a) = fooo e *x*ldx
is the Gamma function, and $~2DV denotes the Griinwald—
Letnikov defined fractional differential operator.

The Riemann-Liouville definition of the v-order integral,
for causal signal s(x), is as follows:
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where v > 0 and X=L]Y denotes the Riemann-Liouville
left-sided fractional integral operator. The Riemann—Liouville
definition of the v-order derivative is as follows:

1 ar * s(7)
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where n — 1 < v < n, and g_LD; denotes the
Riemann-Liouville left-handed fractional differential operator.
The Laplace transform of the v-order Riemann—Liouville
differential operator is L[ “Dls(x)] = S"L[s(x)] —

Z;(l) sk [([f*L D;’l’ks(x)]xzo, where S denotes the Laplace
operator. When s(x) is a causal signal and its fractional primi-
tives are also required to be zero, we can simplify the Laplace
transform for g_LD};s(x) as L[(If—LD};s(x)] = S"L[s(x)].

The Caputo definition of the v-order derivative for causal
signal s(x) is as follows:

R—L
4 "“Dls(x)=
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where 0 <n —1 <v <n, n € R and { D! denotes a Caputo
defined fractional differential operator. From (4), we can see
that $D? is equivalent to the successive performance of an
n-order differential and an (n—v)-order integral of signal s(x).
The Laplace transform of the v-order Caputo differential
operator is L[§ DYs(x)] = S"L[s(x)] — >¢=g S*s® (x)]x=o.
When s(x) is a causal signal, and its fractional primitives
are also required to be zero, we can simplify the Laplace
transform for gD;s(x) as L[gD;s(x)] = SYL[s(x)]. In this
case, the three cited definitions of fractional derivatives are
equivalent. In this work, we use the equivalent notations D} =
g “Lpr = F=Lpy = §DY in an arbitrary interchangeable
manner.

Nowadays, fractional calculus has been incorporated into
artificial neural networks, mainly because of its long-term
memory and nonlocality. Some remarkable progress in studies
of fractional neural networks not only validates them as frac-
tional dynamic systems, but also gives interesting and practical
suggestions for future research. For instance, first, the explo-
ration of the theoretical properties for fractional neural net-
works is needed. Fractional neural networks employed by
fractional activation functions have the modeling capability
to achieve the desired parametric learning, but structural
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Fig. 1. 1/2-order net-grid-type fractor.

mutation requires specific modification of the algorithm to
represent additional complexity. Stability and multistability,
bifurcations, and chaos of fractional neural networks should
be investigated. Second, the verification of intrinsic differences
in the behavior between the fractional-order neural networks
and the integer-order neural networks is desired. Behavioral
differences are observed in experiments, but whether or not
they could be attributed to the inherent differences of the
fractional-order networks remains to be seen. Experiments and
analyses might also be implemented on different topologies
to detect further interesting relationships between these two
types of neural networks. Third, any biologically inspired
computational intelligence algorithm could be utilized to solve
fractional differential equations virtually. With the exception
of the stochastic techniques and evolutionary computations,
the combination of an artificial neural network aided with other
biological-inspired methods, such as an artificial bee colony,
might also solve fractional differential equations efficiently.

III. FHNN AND ITS STABILITY AND CONVERGENCE

A. Implementation of Fractor in Form of an Analog Circuit

In this section, in order to implement FHNN in the form of
an analog circuit, we first need to perform fractional calculus
of the signal in an analog circuit process. Following the
success in the synthesis of a fractional differentiator in the
form of an analog circuit, the emergence of a novel electrical
circuit element was named as fractor [26], [43], [51]-[57].
As in our previous studies [51], [52], an ideal fractor consists
of an ordinary resistor and an ordinary capacitor or inductor
in the form of an analog circuit on the tree-type, two-
circuits-type, H-type, net-grid-type, and other infinite recursive
structures, which are of extreme self-similar fractal structure.
In this sense, fractance means the fractional-order impedance
of a fractor. Consequently, let us denote the identify fractor

F
with the symbol == in which F is the abbreviation for
fractor [51]-[57].

In the above-mentioned ideal fractor structures, the net-
grid-type fractor has an optimal performance [51]-[57]. The
structural representation of the 1/2-order net-grid-type fractor
is shown in Fig. 1.

In Fig. 1, F1 > denotes the driving-point impedance function
of the 1/2-order net-grid-type fractor. From Fig. 1, we can
see that the 1/2-order net-grid-type fractor is of extreme
self-similar fractal structure with the series connection of
infinitely repeated net-grid-type structure where Z, and Zj are
impedances. The number of Z, and Z; is equal to twofold
the number of layers. Then, its equivalent circuit is shown
in Fig. 2.
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Fig. 2. Equivalent circuit of 1/2-order net-grid-type fractor.

Suppose the current of Z, and Zj is equal to i, and ip. Let
the input voltage and input current of Fj /> be equal to V;(S)
and 7;(S), respectively. From Fig. 2, according to Kirchoff’s
current law and Kirchoff’s voltage law

[Zaia + Zpip = V; )

(Za + F1)2)ia — (F12 + Zp)ip = 0.

According to Cramer’s rule in linear algebra, it follows that:

L (Zp+ F12)V;
Y=
Zo+ Fip —(Fipp+ Zp)
Z, Zp
iy = (Za+ F12)Vi ©)
Zo+ Fipp —(Fi2+ Zp)
l Za Zb

Hence, F1/7 is equal to

Vi ZZaZb+F1/2(Za+Zb)
Fip=—F= . @)
Ig+ip 2Fip+ 24+ Zp
From (7), it follows that:
Fip2 = (ZaZp)'?. ®)

For the convenience of discussion, we only discuss the issue
of the capacitive fractor in the following. An inductive fractor
behaves in a similar way. Suppose the initial energy of the
electric element of a capacitive fractor is equal to zero. Let
the resistance and capacitance of capacitive fractor be equal to
r and c, respectively. Then, in the Laplace transform domain,
Z, =r and Z, = 1/(cS), where S is the Laplace operator.
From (8), it follows that:

Fip=c"2s712 9

where ¢ = r/c. From (9), we can derive the relationship
between input voltage V;(S) and input current /;(S) of the
1/2-order capacitive fractor. It follows that:

Vi(8) = 12812 1(S). (10)
The inverse Laplace transform of (10) is as follows:
12 to
Vi) = = i) (1)

T(1/2) Jo (- o) 2°"

where I' is the Gamma function. From (4) and (11), we can see
that V;(¢) is in direct ratio to the 1/2-order fractional integral
of I;(¢). On the other hand, from (10), it follows that:

1:(S) = ¢ V2812V (9). (12)
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Fig. 3. FHNN model. (a) Circuit configuration for the fractional neuron of
FHNN. (b) Circuit configuration of FHNN.

The inverse Laplace transform of (12) is as follows:

| ‘@
O =T8T Jy G-

13)

From (4) and (13), we can see that [;(¢) is in direct ratio to
the 1/2-order fractional differential of V; ().

Similarly, with regard to the v-order capacitive fractor, let us
use F), to denote its driving-point impedance function. We can
further derive that V;(r) is generally in a direct ratio to the
v-order fractional integral of I;(t), whereas I;(t) is gener-
ally in a direct ratio to the v-order fractional differential of
Vi(t) [51], [52]. Thus

. _ 1 ! o \n—v—1 (n)
Iz(f)—m/o (t—1) V7 (t)dr  (14)

where & = rd=P)/V /e v =g+pisa positive real number, ¢ is
a positive integer, 0 < p < 1, V;(¢) is input voltage, and I; ()
is input current of the v-order capacitive fractor [51], [52].

B. Implementation of FHNN

In this section, we implement FHNN. On the basis of the
aforementioned fractor, we can implement FHNN in the form
of an analog circuit by utilizing fractor and the fractional steep-
est descent approach [58]. FHNN model is shown in Fig. 3.

Looking at Fig. 3 and comparing FHNN with the HNN
model [1]-[4], it is apparent that the circuit configuration of
FHNN’s fractional neuron is strikingly dissimilar to the circuit
configuration of HNN’s first-order neuron. In Fig. 3, each
fractional neuron of FHNN consists of one operational ampli-

F
fier A and its related fractor =+ and resistors. Each fractional
neuron has the same circuit configuration. From (14), we know

that the fractor - implements the v-order fractional calcu-
lus. We set Fi = F,, F; = F,, and Fs = Fy, ie., the
fractional order of FHNN’s neuron is equal to vy, v;, and vg,
respectively. Thus, input current i, (¢) is generally in a direct
ratio to the v;-order fractional differential of the input voltage
n;i(t) of the v;-order F,,. In the Laplace transform domain, set
F,,; (S) denotes the v;-order F,,(t). Therefore, we can derive
the operation rule of FHNN from Kirchhoff’s current law.
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It follows that:

Ni(S)
" F(5)

N; (S)

Fi (5) 15)

Z Tpj - Aj(S) -
where If, (S), N; (S), Fv,» (S), A;(S), and I;(S) are the Laplace
transforms of i, (¢), n; (t), F,,; (t), a;(t), and i; (¢), respectively.
The function n;(¢) is the input voltage of the ith fractional
neuron’s A amplifier, a; () is the output voltage of the ith frac-
tional neuron, and i;(¢) is the input electric current of the ith
fractional neuron. R; ; is the feedback resistor being connected
to the output of the jth fractional neuron and the input of the
ith one. Thus, the conductance is T; ; = 1/R; ;. It is assumed
that the circuit of FHNN is symmetric, so that T; ; = T} ;.
We set 1/Z; = 1/R+35_; (1/R; j).

Furthermore, using (14) the inverse Laplace transform
of (15) is as follows:

. d"ni(r)
LF; (t) = A drvi
K; ! i1 ()
= 1"(’,17_1)1/ (t —_ ‘L')n v nin (T)d‘[
= Zn, aj(t () (1) (16)
where K; = fifv" is a positive constant. With respect to

the capacitive fractor, & = r(l_pi)/v"/c, Vi = ¢gi + pi is a
positive real number, g; is a positive integer, and 0 < p; < 1.
Multiplying both sides of (16) by Z;, it follows that:

d’in;(t)

Ziki dtvi

S
= ZiTij-aj() —ni(0) + Zii(1). (17
j=1

Define y; = Z;K; as a positive constant, and set w; ; = Z;T; ;,
b; = Z;i;. Thus, it follows that:

d"in; (1) 5
i = —ni(t)—l—zlwijjaj(t)—i—bi(t). (18)

j:

Thus, it follows that in vector form:
dvn(t)

—n(t) + Wa(t) +b 19
= —n() + Wa() + (19)
where x = [ x1 -+ xi -+ xs1l,v=1[vi- v vsll,

W = [w; jlsxs is the weighting matrix of FHNN, and
b =[b; by---bs]T. Both (18) and (19) are the state equations
of FHNN.

As we know, the state equation of HNN [1]-[4] is given
as g;(dn;(t)/dt) = —n; (1) + Zf-:l wi jaj(t) + bi(t), where
€; = R;c and c is capacitance. Comparing the state equation
of FHNN with that of HNN, we can see that d"in;(t)/dt"
appears in the former, while dn;(t)/dt exists in the latter.
The former is explicitly fractional partial differential equation
(FPDE), but the latter is the first-order one. Furthermore,
from (1)—(4), it can be seen that since the fractional differential
is nonlocal and has a weakly singular kernel, it provides an
excellent method for the description of the long-term memory
and the nonlocality of nonlinear dynamic processes. Therefore,
an FPDE is used to describe nonlinear dynamic systems, such
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as FHNN, which can be characterized by power-law non-
locality, power-law long-term memory, fractal property, and
chaotic behavior, because the arbitrary order of the fractional
differential represents an additional degree of freedom to fit the
specific behavior. Another important characteristic is that the
fractional differential depends not only on the local conditions
of the evaluated time, but also on the history of the signal.
This factor is often useful as FHNN has a long-term memory
and any evaluation point depends on the past values of the
signal. d"in;(t)/dt"i is a nonlocal expression with respect
to the nonlocality of the fractional differential. Some of the
derived nonlocal voltage yields stationary charges that in turn
can be converted into nonlocal conserved charges. Just as in
the aforementioned discussion, A is an operational amplifier.
In terms of electrical circuits, f represents the transfer function
of the nonlinear amplifier A with a negligible response time.
Set f(0) = 0. It is also convenient to define the inverse output—
input relation f~!. Thus it has

a;i(t) = flni(@®)]. (20)
Thus, it follows that in vector form:
a(t) = fln(1)]. (21

It is assumed that the analytic increasing function f has the
inverse function f~!. Thus, f~! is also an analytic increasing
function. Then, it follows that:

ni(t) = f~'ai (0)]. (22)
Thus, it follows that in vector form:
n(t) = ' a()]. (23)

C. Construction of Lyapunov Function of FHNN

In this section, we construct the Lyapunov function of
FHNN making use of the variable gradient method. Practical
applications of FHNN heavily depend on its dynamical behav-
iors, such as Lyapunov stability and asymptotic stability. For
the existence and uniqueness of the solution of the state
equation of FHNN, it should be proved before studying its
asymptotical stability; we prove the existence and uniqueness
of the fractional-order equilibrium point of (18) before con-
structing the Lyapunov function of FHNN, respectively.

First, we prove the existence of the fractional-order equilib-
rium point of (18). Let us assume that the transfer function f
of FHNN satisfies

[If(n)l <M,

neR
24
me R @4)

|f(m) — f()| < K|m — nl,

where M and K are two nonnegative constants and R denotes
the field of real numbers. Equation (24) shows that the
transfer function f of FHNN satisfies the boundedness and
Lipschitz continuity. Assume further that n* = [n}n} - - -n§]T
is a fractional-order equilibrium point of (18), so that from

(18) and (20), it follows that:

S
(@) =D wii f[n5 O]+ bi0).

j=1

(25)
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Thus, it follows that in vector form:
n* = WF@n*)+b

where F(n*) = [f(n]) f(n3)---
a mapping G satisfies

G(n)=WF((n)+b 27)
where n = [n] n2 ---ns]?. From (24), we can see that F(n)
is a uniform continuous mapping from R” to R". Thus, G(n)

is also a uniform continuous mapping from R" to R". From
(24) and (27), it follows that:

(26)

f(n§)]T. Let us assume that

- 2
S
1G@)> = D" | D wijfn))+bi
i=1 [ j=I1
S S 2
< DD wi 1M+ b
i=1 | j=1
=p (28)
where ||| denotes the Euclid norm. From (28), we can see
that ® = {n|||n|| < p} is a bounded convex set and G(n)

is a uniform continuous mapping from @ to ®. Thus, from
Brouwer’s fixed-point theorem, we can derive that 3n* € @
to enable G(n*) = n* to be set up. Thus, (25) and (26) are
set up. n* is a fractional-order equilibrium point of (18).

Second, we construct the Lyapunov function of FHNN
making use of the variable gradient method. From (18)—(21),
we can see that FHNN is a fractional nonlinear system.
The Lyapunov function of FHNN is to solve a kind of
fractional asymptotic stability. From (18), define an analytic
function p; (¢)

d"i nl(t)
d Vi

pi(t) = xi —ni (1) + Zw, jai() +bi(t). (29)
j=1
pi(t) is a differintegrable function [26]-[30]. According to the

characteristics of fractional calculus

D'y (1)
Dry(@ = Zr(1+n—v)

n—vy

(30)

where Dy is the v-order fractional differential, y(¢) is analytic
function, and D} is the n-order differential operator. Then,
from (30) and Faa di Bruno formula [31], it follows that:

" e )

Dlylep ()] = Ta

MVl n

\Y n: m

20 rar S
Dp(t)\"™
<5 (%)

where v = wl[p ()] is the composite function,
() = ((=D)™"T (n —v)/T (=T (1 +n)), D and Df are
the integer-order differential operators, and Py satisfies

€19

n
> kPr=n
k! (32)
> Py =m.
k=1
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The third summation notation >, in (31) denotes
the summation of  the corresponding {ITiz
(1/PeHI (D @ (t)/k)1%}|m=1_n of all of the combinations
of Pilm=1-, that satisfy the requirement of (32).
From (3) and (31), we can see that the fractional differential of
the composite function is equal to an infinite sum. Therefore,
we suggest constructing the Lyapunov function of FHNN as
follows:

S
Ela®)] = - > D" {(DL 1) [P} (i )/ 20]}

_ —" 1,\2 < —Vi
r (1+v1)§(D’al) E,,Z—;( n )
t"+Vin! m 1 2
“T+n+v) mZZ: Dt (Pra)

1
Dk+1

AN | a; P
< l15(%)

where D!a;j(t) = (D}, /)ID/ " (pi(t)/x)], D;" is the
v;-order fractional integral operator. From (29) and (33),
we can see that to enable (33) to be set up, D;'n;(t) must be
an inverse operation of D, vini(t). Therefore, from the com-
bination rules of fractional calculus [26]—[30], the additional
condition to guarantee the existence of Lyapunov function is
wij = wj;. FHNN’s weighting matrix W is a symmetric
Dla (D,la,-)2 =2D]a, Dé}ai (D,la,-)2 =2, and

(33)

matrix. For D!

>3
D’gla}(D}ai)zmé 0. Thus, (33) can be simplified as follows:

Ela(1)]
Vi S 2t1+vi

_ 1,2 [ Vi
- F(l‘f‘vi);(Dtal) ( 1 )F(2+v,-)

1

5 5. X —v; 2t ip)
D D _—
XZ al al ZZ( n )r(l+n+vi)

i=1 i=1 n=2

n k+1,,
Dy
X D,lai H ( )
k=1
1 Dk+1
: ,Hp—kz( g

From (33) or (34), implement the v;-order fractional differ-

ential of E[a;(¢)] on both sides of (33) or (34), thus it follows
that:

(34)

m=2

T (35)

s
d"E
DIE=""=-> [Dla(]’ <0
Hence, we can see that (d"E/dt*) is a negative semidefinite
function and E(¢) is a valid Lyapunov function of FHNN.
When D}'E = (d" E /dt") = 0, the system energy of FHNN
is unchanging and its system has reached steady state.
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From (35), we can obtain an equivalent form of
D;'E = (d" E/dt"') = 0 as follows:
da; (1)

D!a;j(r) = ———= =0. 36

zaz( ) dr (36)
Thus, it follows that in vector form:

da(t
Dla(t) = % —0. (37)

From (35)—(37), we can determine the equilibrium points of
FHNN’s Lyapunov function according to LaSalle’s invariance
theorem and the fractional steepest descent approach [58],
as the fractional steepest descent approach is different from
the first-order steepest descent approach. Its every optimal
searching adjustment step is on the negative direction of
the Lyapunov function’s fractional gradient but not of its
first-order one. The equilibrium points of FHNN’s Lyapunov
function are the potential attractors of FHNN.

D. Analysis of Attractors of FHNN

In this section, we analyze the attractors of FHNN.

As in the aforementioned discussion, we can see that the
equilibrium points of FHNN’s Lyapunov function are the
potential attractors of FHNN. From (30) and (33)

d""E VDV D e ()] ]
D;fE—— —z a "D M PiaOf |
i I'(l4+n—v)
Therefore, it follows that in vector form:
_dE [ DY D ai ()] ]
D'E =— ! d 39
a7 dav ZZ I'd+n-—v) (39)
i=1n=0L m
where v. = [v;--- v --- vs]T. From (36) and (38),

we have DJ/E = (d"E/da;") = 0, only when D]a;(t) =
(da;(t)/dt) = 0. In vector form, we have (d"E/da") = 0,
when Dla(t) = (da(t)/dt) = 0. Thus, when a(t) satis-
fies (37), the equilibrium points of FHNN’s Lyapunov function
are the attractors of FHNN. Note that a significant advantage
of FHNN is that its attractors essentially relate to the neuron’s
fractional order. FHNN possesses the fractional-order stability
and the fractional-order-sensitivity characteristics.

E. Implementation of Training Algorithm for FHNN

In this section, we implement a training algorithm based on
the supervised Hebb rule for FHNN.

We can implement a training algorithm based on the Hebb
rule for FHNN. As we know, the Hebb rule and Storkey rule
are two efficient training algorithms for HNN [59]-[61]. It is
desirable for a learning rule to be both local and incremen-
tal [62]. Similar to HNN, in fact, a design procedure based
on FHNN’s Lyapunov function is used to determine FHNN’s
weighting matrix. Suppose we want to store a set of prototype
patterns in an FHNN. When an input pattern is presented to an
FHNN, its output should then converge to the prototype pattern
closest to the input pattern. Let us assume that the prototype
patterns of FHNN are {py,p,,...,p,,...,po}, where the
elements of the vectors p, = [pg, -+ Pg; - Pq; - -pqS]T are
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restricted to £1. Assume further that Q <« S, so that the
state space is large enough and the prototype patterns are well
distributed in this space. In order for an FHNN to be able to
recall the prototype patterns, the prototype patterns must be
the minima of FHNN’s Lyapunov function. We propose an
appropriate quadratic performance index as follows:

SN (27 ol Ry A 2
—Vi nj —Vi
J@)y == D" =5 D DD papgsa
i=1 Li J=1g=1
(40)
where the elements of the vectors @ = [a1---aj-- ag]?

are restricted to 1 and (D,lll_ )2/ )(iz is a positive constant.
From (40), we evaluate the performance index at a random
input pattern a, which is presumably not close to any prototype
pattern. Z,S'=1 Zqul PgiPg;aj in (40) is an inner product
between a prototype pattern and the input pattern. The inner
product will increase as the input pattern moves closer to a
prototype pattern. However, if the input pattern is not close to
any prototype pattern, all the terms of zjs-zl 21?:1 Pqi Pq;aj
in (40) will be small. Thus, J (a) will be largest (least negative)
when a is not close to any prototype pattern, and will be
smallest (most negative) when a is equal to any one of the
prototype patterns. Assume that the prototype patterns are
orthogonal. We further evaluate the performance index at one
of the prototype patterns as follows:

J (pi)
S r(Dl f)2 s 0 2
== > D7 {5 | DT D0 paipa i
i=1 Li j=lg=1
S B Dl, 2
N @
i=1 4

From the properties of the fractional calculus and (41), we can
derive that J (@) is minimized at the prototype patterns. We use
the supervised Hebb rule to compute FHNN’s weighting
matrix (with target patterns being the same as input patterns)
as follows:

Y
W= qu(Pq)T

g=1

(42)

where W is the weighting matrix of FHNN, and w;; =
ZqQ:] Pgi Pq;- From (20), we can see that if f is a high-
gain arc-tangent function, D; " (n;) = D, V[ f~(a;)] = 0.
From (29), (33), and (42), and setting the bias b;(¢) to zero,
FHNN’s high-gain Lyapunov function is as follows:

S
E@ =—-> D;"(Dla;)’
i=1
s (D} f)? 5.2 i
= = > D | D D0 D paipasa
i—1 Ai i—1g=1
= J(a). (43)
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Thus, FHNN’s high-gain Lyapunov function is indeed equal
to the quadratic performance index for the content-addressable
memory problem. FHNN output will tend to converge to the
stored prototype patterns. In particular, from Fig. 3, (18),
and (19), we can see that the diagonal elements of FHNN’s
weighting matrix are set to zero. From (42), since the elements
of each py are restricted to %1, all of the diagonal elements
of W will be equal to Q, that is, the number of prototype
patterns. Thus, we can zero the diagonal by subtracting Q
times the identity matrix as follows:

0
W=>p,p) —0I (44)
qg=1

where I is the identity matrix. Note that there will be at
least two minima of the performance index for each prototype
pattern. If p,, is a prototype pattern, then —p, will be also in
the space spanned by the prototype patterns. Therefore, each
prototype pattern will be one of the corners of the hypercube
{a: —1 < a; < 1}. These corners will include the prototype
patterns, but they will also include some linear combinations
of the prototype patterns. There will also be a number of other
minima (spurious patterns) of the FHNN’s Lyapunov function
that do not correspond to the prototype patterns. We can use
an improved design method [6] that is guaranteed to minimize
the number of spurious patterns.

IV. EXPERIMENT AND ANALYSIS
A. Numerical Implementation of FHNN

In this section, we achieve the numerical implementation of
FHNN before analyzing its stability and convergence.

First, suppose there are only two fractional neurons of
FHNN. Thus, S = 2. From Fig. 3, we can see that the output
of either FHNN’s fractional neuron feeds back to the input
of the other through a feedback resistor. Thus, we set Ry > =
Ry 1 =1Q (ohm), Rj;1 = Ryp =00, andalsoset R =1 Q
and i; = ip = 0 on FHNN’s fractional neuron (Fig. 3). Thus,
it follows that 71, = T»,1 = 1 S (siemens), 71,1 = 1> =0 S,

Z1 = Zy = 1/2, and by = by = 0. Furthermore, we set
r =1 Q, ¢ = 1 nF (nanofarad) of fractor, F; = F,, in
(14) and (16). Thus, it follows that K; = ¢& 7 =
(Fl=Plijeyi = 1, y1 = o = Z1K1 = ZaKa = 1/2,

wi2 =wp 1 = 1/2, and wy,;; = wp 2 = 0. Therefore, we have
the weighting matrix in (19) as follows:

0 1/2
W= |:1 /2 0 } ’
Suppose the transfer function of operational amplifier A is

f(r) = 2/m tan~!(y 7 /2). Thus, from (20) and (22), it fol-
lows, respectively that:

(45)

a1(t) = Etanf1 [7ynn1(t):| (46)
T 2

ax(t) = Etan_1 [7))7”12(1)} 47)
T 2

m() = - tan 40 (48)
YT 2

na(t) = = tan 20 (49)
YT 2
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where y is the gain coefficient of the transfer function of the
operational amplifier A.
From (1), when At — 0, we have

R Ik —v)
brs) = k; AT (=T (k + 1)

st — kAr)

(=DXT(1 +v)

- k% ArT(k+ DI(v—k + 1)

st —kAr) (50)

where n is a large positive integer. Equation (50) is the
approximate calculation of the v-order fractional calculus
when At — 0 [45], i.e., fractional backward difference.
Therefore, from (50), when v = n, it follows that:

R I'(k —n)
Dist) = g AT (—m)T(k + 1)

s(t — kAr). (G20

Equation (51) is the approximate calculation of the n-order
integer-order calculus when At — 0. Thus, from (51), when
v = 1, it becomes
Dls(t) = Ait[s(t) —s(t — AD)). (52)
Equation (52) is the approximate calculation of the first-
order differential when At — 0, i.e., the first-order backward
difference. From (50) and (52), we can see that the fractional
difference has nonlocal characteristics. D/s(¢) is not only
correlated to s(¢) and s(t — At), but also to s(t — kAr). It is
quite different from the first-order calculus.
Then, from (18), (19), and (45)

a”
T o)+t (53)
av
120 o)+ aro) (54)

Thus, from (50), (53) and (54), using the fractional forward
difference, when At — 0, we have, respectively
ni(t + At) = 2n1(0) At + ax (1) A"
L Ttk—vi+1)

na(t + At) = —2n2(t) Ar™ + ay (1) Ar*?
— Tk—wm+1

k=0

Then (55) and (56) are taken into (46) and (47), resulting
in the numerical computation of a;(t + Ar) and ax(t + At),
respectively.

Furthermore, from (33) and (50) we have the numerical
computation of FHNN’s Lyapunov function as follows:

2
-> 0 [Dla®]
i=1
2 n .
(=DXT(1 —vi) At
_Eg Tk + HI(1 —v; — k)
x[D}ai(t —kAn].

Ela(r)]

12

(57)
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Thus, taking (46), (47), (52), (55), and (56) into (57),
we can numerically compute the Lyapunov function of FHNN.
In order to keep the stability and convenience of its numerical
computation, we set n = 60 and Ar = 0.0001 in the
following examples. Because it is impossible to obtain the
first 60 system initial values before running FHNN, we set
1: (0 + kA7) =5 1, (0). Hence, there are 59 arbitrary initial
values for the system initial states of FHNN. In order to display
its actual operation law, we start showing the experimental
results of FHNN’s Lyapunov function from the 61st calcula-
tion in the following examples.

Second, we assume there are three fractional neurons of
FHNN, thus, § = 3. In order to avoid any of the eight corners
of the hypercube being the saddle point of FHNN, we set the
weighting matrix W of FHNN to be an asymmetric matrix.
To keep the circuit of FHNN symmetric, we set Ry > = Ry1 =
1Q, Ri3=R31 =2Q R3=R2=3Q,and R, =
Ryp»=R33=00Q. Wealsoset R=1Q and i; =i =i3=0
on FHNN’s fractional neuron in Fig. 3. Thus, it results that
Tip=T1=18STizg=T31=1/25, Th3=T32=1/3 S,
'y = Thp = T33 = 0S8, and by = b = b3 = 0.
Furthermore, we also set r = 1 Q, ¢ = 1 nF of fractor,
F; = F,;, in (14) and (16). Thus, it has Z1 =2/5, Z, = 3/7,
Z3=6/11, K; =& " = (r'7Plije)yi = 1, y1 = Z1K) =
2/5, yo = Z2Ky = 3/7, x3 = Z3K3 = 6/11, wio = 2/5,
wiz = 1/5, wo1 = 3/7, wa3z = 1/7, w31 = 3/11,
w32 = 2.11, and wy,; = wp 2 = w33 = 0. Therefore, we have
the weighting matrix in (19) as follows:

0 2/5 1/5
W=| 3/7 0 177 (58)
3/11 2/11 0
Thus, from (18), (19), and (58)
dan 5 1
T~ 20+ a0 + 360 (59)
d"ny(t) 7 1
P = —gnz(t) +a(t) + §a3(t) (60)
d"n(7) 11 1 1
e _FnS(t) + 5611(t) + §az(l). (61)

Then, from (20), (33), and (50), we have the numerical
computation of ai(t + At), ax(t + At), a3(t + At), and
E(t + At), respectively. Similarly, we can achieve the numer-
ical implementation of FHNN when S is equal to any positive
integer.

B. Analysis of Stability and Convergence of FHNN

In this section, we analyze the stability and convergence of
FHNN. We evaluate the convergence trajectory performance of
FHNN’s output and its Lyapunov function, and further study
its equilibrium points and attractors.

Example 1: suppose there are only two fractional neurons
of FHNN, and each neuron has the same fractional order.
Thus, S = 2 and vi = v, = v. We set y = 1.40.
From (57), the Lyapunov function of FHNN can be shown as
in Fig. 4 when v = 1.50, v = 3.50, v = 5.50, and v = 7.50.

From (46) and (47), it can be seen that the output voltage of
FHNN is limited to {@ : —1 < a; < 1} by the transfer function
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Fig. 4. Lyapunov function of FHNN (y = 1.40). (a) v = 1.50. (b) v = 3.50.
(¢c) v=15.50. (d) v ="7.50.

004 006 008 01 a,

(d (e) ®

Fig. 5. Contour line of FHNN’s Lyapunov function (v = 7.50, y = 1.40).
(a) Convergence trajectory of FHNN’s output (saddle point: n7(0) = 0.00,
n(0) = 0.00). (b) Contour line of FHNN’s Lyapunov function (1 (0) = 0.00,
ny(0) = 0.00). (c) Convergence trajectory of FHNN’s output (n1(0) =
—0.0001, n(0) = —0.0001). (d) Contour line of FHNN’s Lyapunov func-
tion (n1(0) = —0.0001, ny(0) = —0.0001). (e) Convergence trajectory of
FHNN’s output (n1(0) = —0.10, n(0) = 0.00). (f) Contour line of FHNN’s
Lyapunov function (n1(0) = —0.10, n(0) = 0.00).

TABLE I

CORRESPONDING RELATIONSHIP BETWEEN FHNN’s
FRACTIONAL ORDER AND ITS CONVERGENCE

Fractional Order Convergent Fractional Order Convergent
v yes | no v yes | no
0<v<l yes 4<v<5 no
v=1 yes v=5 no
l<v<2 yes 5<v<6 yes
v=2 10 V=6 70
2<v<3 710 2k-2<v<2k-1 70
¥=3 no v=2k-1 no
3<v<4 yes 2k—-1<v<2k yes
v=4 no v=2k 7o

of the operational amplifier A. Thus, from Fig. 4, we can see
that the Lyapunov function of FHNN is limited to a minimum
at any of the four corners of a hypercube. Therefore, we have
the minimum of FHNN’s Lyapunov function when (ay, a2) is
equal to (—1,—1), (=1, 1), (1,—1), and (1, 1), respectively.
From Fig. 4, we can also see that (0, 0) is the saddle point of
FHNN’s Lyapunov function, and a; = 0 or a; = 0 is the ridge
of its Lyapunov function. The ridge of FHNN’s Lyapunov
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Fig. 6. Effect of fractional-order v of neuron on stability and convergence
of FHNN (y = 1.40, n1(0) = 0.50, n2(0) = —1.00). (a) n1(¢t) and ny(r)
(v = 0.50). (b) ay(¢) and ap(¢) (v = 0.50). (c) First-order differential of
ay(t) and ap(t) (v = 0.50). (d) Lyapunov function of FHNN (v = 0.50).
(e) n1(¢) and ny(r) (v = 1.50). (f) ay(¢) and az(r) (v = 1.50). (g) First-order
differential of a(7) and ay(¢r) (v = 1.50). (h) Lyapunov function of FHNN
(v = 1.50). (1) n1(¢) and ny(t) (v = 2.50). (j) a1 (¢) and ap(¢) (v = 2.50).
(k) First-order differential of a (¢) and a3 (¢) (v = 2.50). (1) Lyapunov function
of FHNN (v = 2.50).

function is more pronounced when the fractional-order v of
FHNN’s neuron is greater.

In the above example, we select v = 7.50 and y = 1.40.
The contour line of FHNN’s Lyapunov function can be shown
as in Fig. 5.

From Fig. 5(a) and (b), we can see that the output of
FHNN (ay, ap) is identically equal to (0,0) when the input
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TABLE 11
CORRESPONDING RELATIONSHIP BETWEEN FHNN’s INPUT AND ITS OUTPUT. (a) 0.00 < v < 1.00, y = 1.40.
)1 <v<2,y=140.(c)3<v<4dy=140.(d)2k—-1<v <2k,y =140
(a) (®) © (CY)
Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output
n,m a,a, sy a.a, ny,n, a,a, n.n, a,,a, n,n, a,,a, ny,n, a,.a, n,n, a,a, L, a,a,
—1.0,-1.0 0.0,0.0 0.5,0.0 0.0,0.0 ~1.0,-10 -1.0,-1.0 05,00 10,10 ~1.0,-10 ~1.0.-1.0 05,00 10,10 ~1.0,-1.0 ~1.0,-1.0 0.5,0.0 10,10
~05,-1.0 0.0,0.0 1.0,0.0 0.0,0.0 =05,-1.0 “1.0,-1.0 10,0.0 10,10 ~05,-1.0 “10,-1.0 10,00 10,10 ~05,-1.0 1.0,-1.0 10,00 10,10
0.0,-1.0 00,0.0 ~1.0,05 0.0,0.0 00,-1.0 ~1.0,-1.0 ~1.0,0.5 ~1.0,1.0 00,-1.0 Z10,-1.0 ~1.0,05 Z1.0,1.0 0.0,-1.0 —1.0,-1.0 ~1.0,0.5 ~1.0,1.0
0.5.-1.0 0.0,0.0 -0.5,0.5 0.0,0.0 0.5,-1.0 1.0,-1.0 0.5,0.5 -1.0,1.0 0.5.-1.0 1.0,-1.0 -0.5,0.5 -1.0,1.0 05,-1.0 10,10 —-05,0.5 -1.0,1.0
1.0,-1.0 0.0,0.0 0.0,0.5 0.0,0.0 1.0.-1.0 1.0,-1.0 0.0,0.5 1.0.1.0 1.0,-1.0 1.0,-1.0 0.0,0.5 1.0,1.0 1.0,-1.0 18,-10 0.0,0.5 1.0,1.0
-1.0,-0.5 0.0,0.0 0.5,0.5 0.0,0.0 -1.0,-05 -1.0,-1.0 0.5,05 1.0,1.0 ~1.0.-05 | -10,-1.0 0.5,0.5 1.0,1.0 -1.0,-0.5 -1.0,-1.0 0.5,0.5 1.0,1.0
~0.5,-05 00,0.0 10,05 0.0,0.0 ~05,-05 ~1.0,-1.0 10,05 10,10 ~05,-05 ~1.0,-1.0 10,05 10,10 ~05,-05 ~1.0,-1.0 10,05 10,10
0.0,-05 0.0,0.0 ~1.0,1.0 0.0,0.0 00,-05 ~1.0,-1.0 ~10,1.0 ~1.0,1.0 00,-05 | -1.0,-1.0 ~1.0,1.0 ~1.0,1.0 0.0,-0.5 ~1.0,-1.0 -1.0.1.0 ~1.0,1.0
05,-05 00,0.0 ~05,1.0 0.0,0.0 05,-05 10,-10 —05.1.0 ~1.0,1.0 05,05 1.0,-10 ~05,1.0 1.0,1.0 05,-05 10,-1.0 =05,10 ~1.0,1.0
10,-05 00,0.0 0.0.1.0 0.0,0.0 1.0,-0.5 10,-10 00,1.0 10,10 10,-05 1.0,-10 00.1.0 10,10 10,-05 1.0,-1.0 00,1.0 10,10
~1.0,00 0.0,0.0 05.1.0 0.0,0.0 =1.0,0.0 ~1.0,-1.0 05.1.0 10,10 ~1.0,0.0 ~1.0,-1.0 05,10 10,10 -1.0,0.0 —1.0,-1.0 05,10 10,10
05,00 00,0.0 10,10 0.0,0.0 ~05,0.0 ~1.0,-1.0 10,10 1.0,1.0 ~05,00 1.0,-1.0 10,10 10,10 ~05,00 ~1.0,-1.0 10,10 10,10

of FHNN (n1,ny) is equal to (0,0). Hence, (0,0) is the
saddle point of the Lyapunov function of FHNN. In addition,
from Fig. 5(c) and (d), we can also see that when (ny, n2) is
equal to (—0.0001, —0.0001), which is very close to the saddle
point (0,0), (ai,az) converges to one of the equilibrium
points (—1, —1) of FHNN. From the discussion in (35)-(37)
mentioned above, we determine the equilibrium points of
FHNN’s Lyapunov function according to LaSalle’s invariance
theorem and the fractional steepest descent approach [58].
Each of its optimal searching adjustment step is in the negative
direction of Lyapunov function’s fractional gradient but not
of its first-order one. Thus, its convergence trajectory easily
passes through the first-order local minimum and the maxi-
mum points of FHNN’s Lyapunov function. Furthermore, from
Fig. 5(e) and (f), we can further see that when (n1, ny) is equal
to (—0.10, 0.00), which is on the ridge of FHNN’s Lyapunov
function, the convergence trajectory of (aj, az) passes along
the ridge of FHNN’s Lyapunov function a, = 0 first, and
then passes along the boundary of the hypercube a; = 0.
It finally converges to one of the equilibrium points of FHNN,
ie., (—1,—=1).

In order to analyze the effect of FHNN’s fractional-order v
on its stability and convergence, we set the fractional order
of the neuron to v = 0.50, v = 1.50, and v = 2.50,
respectively. Its convergence trajectory performance can be as
shown in Fig. 6.

From Fig. 6(a)—(d), it can be seen that when v = 0.50,
ni(t) and np(t) converge to zero gradually. Meanwhile,
ay(t), az(t) and their first-order differential converge to zero
correspondingly. From Fig. 6(e)—(h), it can also be seen
that when v = 1.50, n1(¢) and n2(¢) nonlinearly amplify
step-by-step. Consequently, a;(t) and ay(f) are limited to
{a : —1 < a; < 1} by the transfer function of the operational
amplifier A. Therefore, (aj, ap) converges to (1, —1), and their
first-order differential converges to zero accordingly. From
Fig. 6(i)—(1), it can be further seen that when v = 2.50,
ni(t) and n>(¢t) nonlinearly amplify gradually, while at the
same time, alternating between positive and negative. Affected
by the crossfade alternation of nj(¢t) and ny(t), a1(¢f) and
a>(t) periodically alternate between 1 and —1, respectively.
Similarly, we can summarize the corresponding relationship
between FHNN’s fractional order and its convergence using
mathematical induction. It can be shown as in Table 1.

From Table I, we can see that FHNN is convergent when
0.00 <v <1.00,v=1.00, and 2k —1 < v < 2k, where k is a

Fig. 7. Convergence trajectory of FHNN in 2-D space. (a) 0.00 < v < 1.00,
y = 1.40. (b) 1.00 < v < 2.00, y = 1.40. (c) 3.00 < v < 4.00, y = 1.40.
(d) 2k -1 <v <2k y =140

positive integer. Particularly, FHNN is the classical first-order
HNN when v = 1.00. HNN is a special case of FHNN.

Based on the aforementioned discussion, the output of
FHNN is limited to {@ : —1 < a; < 1} by the transfer function
of the operational amplifier A. Hence, we focus on discussing
the case in which the input voltage of FHNN is limited to
{n:—1<n; <1}. For the case of {n : —1 < n; < —1} or
{n : 1 < n;} the convergence trajectory performance of FHNN
is similar. Then, from (46), (47), and (55)-(57), we have the
convergence trajectory performance of FHNN. Then, we have
the corresponding relationship between FHNN’s input and its
output. It can be shown as in Table II.

From Table II, we can see that corresponding to various
inputs (np,n2), output (ar,az) converges to (0,0) when
0.00 < v < 1.00. Furthermore, output (a;, az) converges to
(-1,-1), (-1,1), (1,—-1) or, (1, 1) when 1.00 < v < 2.00,
300 < v < 400 and 2k — 1 < v < 2k, where k is
a positive integer. Hence, (—1,—1), (—1,1), (1,—1), and
(1, 1) are four attractors of FHNN when 1.00 < v < 2.00,
3.00 < v <4.00 and 2k — 1 < v < 2k. Furthermore, it should
be noted that FHNN is the classical first-order HNN when
v = 1.00. HNN is a special case of FHNN. As we all know,
the convergence rule of HNN is related to the operational
amplifier’s gain coefficient y and weighting matrix W of
HNN [1]-[4]. To avoid repetition, its convergence rule is not
described in this paper. Then, the convergence trajectory of
FHNN in 2-D space can be as shown in Fig. 7.
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TABLE III

CORRESPONDING RELATIONSHIP BETWEEN FHNN’s INPUT AND
ITS OUTPUT (S =3,2k — 1 <v <2k, y = 1.40)

Input Output Input Output
LECEIC) a,,a,,44 oMy 51y 1,85,d3
-1.0,-1.0,-1.0 |[-1.0,-1.0,-1.0 1.0, 0.0, 0.0 1.0, 1.0, 1.0
0.0,-1.0,-1.0 {-1.0,-1.0,-1.0 | —=1.0, 1.0, 0.0 |-1.0, 1.0,-1.0
1.0,-1.0,-1.0 1.0,-1.0,-1.0 0.0, 1.0, 0.0 1.0, 1.0, 1.0
-1.0, 0.0,-1.0 (-1.0,-1.0,-1.0 1.0, 1.0, 0.0 1.0,1.0, 1.0

0.0, 0.0,-1.0 |~1.0,-1.0,-1.0 |-1.0,-1.0, 1.0 |-1.0,~-1.0, 1.0

10, 0.0-1.0 | 1.0, 1.0,-1.0 | 0.0,-1.0, 1.0 |-1.0,-1.0, 1.0
~1.0, 1.0,-1.0 | -1.0, 1.0,-1.0 | 1.0,-1.0, 1.0 | 1.0,-1.0, 1.0
0.0, 1.0,-1.0 | 1.0, 1.0,-1.0 | -1.0, 0.0, 1.0 |-1.0,-1.0, 1.0
10, 1.0-1.0 | 1.0, 1.0-1.0 | 00, 0.0, 1.0 | 1.0, 1.0, 1.0
~1.0,-1.0, 0.0 |[-1.0,-1.0,-1.0 | 1.0, 0.0, 1.0

Fig. 8. Convergence trajectory of FHNN in 3-D space (S =3, 2k — 1 <
v <2k, y = 1.40).

From Fig. 7, we can see that, on the one hand, (0, 0) is
the single attractor of FHNN when 0.00 < v < 1.00. On the
other hand, (—1,—1), (—1,1), (1,—1), and (1, 1) are four
different equilibrium points or attractors, and (0,0) is the
saddle point of FHNN’s Lyapunov function when 1.00 <
v < 2.00, 3.00 < v <4.00, and 2k — 1 < v < 2k. Mean-
while, FHNN’s fractional-order v can also affect the rate of
FHNN'’s convergence. Furthermore, the convergence trajectory
of FHNN easily passes through the first-order local minimum
and maximum points of FHNN’s Lyapunov function. When
the input is on the ridge of FHNN’s Lyapunov function,
the convergence trajectory of the output passes along the ridge
of FHNN’s Lyapunov function first, and then passes along
the boundary of the hypercube. It finally converges to one
of FHNN’s equilibrium points or attractors. Compared with
the classical first-order HNN, it is known that, in general,
a double-neuron HNN usually associatively memorizes two
characteristics [1]-[4]. Hence, we can further see that FHNN
has a stronger associative memory than HNN. As mentioned
earlier, the double-neuron FHNN can associatively memorize
four characteristics at most.

Example 2: suppose there are three fractional neurons of
FHNN, and each of its neuron has the same fractional order.
Thus, § = 3 and vi = vy = v3 = v. We also set y = 1.40.
First, suppose that the weighting matrix W of FHNN is a
symmetric matrix. From (58)—(61), the corresponding relation-
ship between FHNN'’s input and its output can be as shown
in Table III.

From Table III, we can see that corresponding to
various inputs (ny,n2,n3), the output (aj,az,a3) con-
verges to (—1,—1,—1), (1, -1, -1), (—1,1,-1), (1,1, —1),
(-1,-1,1),(1,-1,1),(=1,1,1),0or (1,1,1) when 2k — 1 <
v < 2k, where k is a positive integer. Then, the convergence
trajectory of FHNN in 3-D space can be as shown in Fig. 8.
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TABLE IV
CORRESPONDING RELATIONSHIP BETWEEN FHNN’s INPUT
AND ITS OUTPUT (y = 1.40). (a) vi = 0.50, v = 1.50.
(b) vi = 1.50, vo = 0.50
(a) (b)

Input Output Input Output Input Output Input Output

n,m a,,a, ny,my a;,a, 1y a,,a, 1y a,,a,
-1.0,-1.0 -0.0685,-1.0 05,00 0.0685 ,1.0 -10.-1.0 -1.0,-0.0685 0.5,0.0 1.0,0.0685
=081 —0.0685 ,-1.0 1.0,0.0 0.0685 ,1.0 =05.-1.0 —1.0,-0.0685 1.0,0.0 1.0.0.0685

0.0,-1.0 —0.0685,-1.0 -1.0,0.5 0.0685,1.0 0.0,-1.0 —1.0,-0.0685 -1.0,0.5 —-1.0,-0.0685

0.5,-1.0 -0.0685 ,-1.0 -05,0.5 0.0685 ,1.0 05,-1.0 1.0,0.0685 0305 -1.0,-0.0685

1.0.-1.0 —0.0685 ,—1.0 0.0.0.5 0.0685 ,1.0 1.0.-1.0 1.0,0.0685 0.0.0.5 1.0,0.0685
-1.0,-0.5 —0.0685,-1.0 0.5,0.5 0.0685,1.0 -10,-0.5 -1.0,-0.0685 0.5,0.5 1.0,0.0685
-0.5,-0.5 —0.0685 ,-1.0 1.0,0.5 0.0685 ,1.0 -0.5,-0.5 —1.0,-0.0685 1.0,0.5 1.0.0.0685

0.0,-0.5 —0.0685,-1.0 -1.0.1.0 0.0685 ,1.0 0.0,-0.5 -1.0,-0.0685 -1.0,1.0 -1.0,-0.0685

0.5,-0.5 —-0.0685 ,-1.0 -05,1.0 0.0685,1.0 0.5,-0.5 1.0,0.0685 -0.5,1.0 —1.0,-0.0685

1.0,-0.5 —0.0685 ,—1.0 0.0,1.0 0.0685 ,1.0 19,03 1.0,0.0685 0.0.1.0 1.0.0.0685
~1.0,00 ~0.0685 ,-1.0 05,10 0.0685 ,1.0 ~1.0,0.0 —1.0,-0.0685 0.5,1.0 1.0,0.0685
~0.5,0.0 —0.0685,-1.0 1.0,1.0 0.0685,1.0 ~0.5,0.0 ~1.0,-0.0685 1.0,1.0 1.0,0.0685

From Fig. 8, we can see that (—1,—1,—1), (1, —1,—1),
(-1, 1,-1), (1,1,=-1), (-1,-1,1), (1,-1,1), (—1,1,1),
and (1, 1, 1) are eight different equilibrium points or attractors,
and (0, 0, 0) is the saddle point of FHNN’s Lyapunov function
when 2k — 1 < v < 2k, where k is positive integer. In Fig. §,
we use different colored (red, blue, green, and purple) conver-
gence trajectories to demonstrate eight domains of attraction
corresponding to the aforementioned eight attractors of FHNN,
respectively. Compared with the classical first-order HNN, it is
known that in general, the trio-neuron HNN usually associa-
tively memorizes two characteristics [1]-[4]. Hence, we can
further see that FHNN has a stronger associative memory
than HNN. Based on the aforementioned discussion, the trio-
neuron FHNN can associatively memorize eight characteristics
at most.

Example 3: suppose there are two fractional neurons of
FHNN, but each neuron has a different fractional order. Thus,
S = 2 and vi # v. We set vi = 0.50, v» = 1.50 and
vi = 150, v» = 0.50, respectively. We also set
A = 1.40. Then, from (46), (47), and (55)—(57), the corre-
sponding relationship between the input and output of FHNN
can be as shown in Table IV.

From Table IV, we can see that on the one hand,
corresponding to various inputs (71, n3), the output (ai, a2)
converges to (—0.0685,—1.0) or (0.0685,1.0) when
v = 0.50 and v = 1.50. On the other hand, corresponding
to various inputs (n,n3), the output (aj,az) converges
to (—1.0, —0.0685) or (1.0,0.0685), when v; = 1.50 and
vy = 0.50, respectively. Thus, it can be seen that the
coordinates of FHNN’s equilibrium points or attractors have
a m /2 counterclockwise rotation while the values of v and v,
have been exchanged. Then, FHNN’s Lyapunov function
and convergence trajectory of FHNN’s output are as shown
in Fig. 9.

From Fig. 9, it can be seen that, on the one hand,
(—0.0685, —1.0) and (0.0685, 1.0) are two different equi-
librium points of FHNN’s Lyapunov function or attractors
of FHNN when v; = 0.50 and v» = 1.50. We have the
global maximum of FHNN’s Lyapunov function at the points
of (—0.0685,—1.0) and (0.0685,1.0). On the other hand,
(—=1.0, —0.0685) and (1.0, 0.0685)are two different attractors
of FHNN when vi = 1.50 and v» = 0.50. We have the
global maximum of FHNN’s Lyapunov function at the points
of (—1.0, —0.0685) and (1.0, 0.0685). In either case, (0, 0) is
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Fig. 9. FHNN'’s Lyapunov function and convergence trajectory of FHNN’s
output (y = 1.40). (a) Lyapunov function (vi = 0.50, v = 1.50).
(b) Convergence trajectory (vi = 0.50, v = 1.50). (c) Lyapunov func-
tion (vi = 1.50, v = 0.50). (d) Convergence trajectory (vi = 1.50,
vy = 0.50).

TABLE V

CORRESPONDING RELATIONSHIP BETWEEN INPUT AND OUTPUT OF
FHNN (y = 1.40). (a) v = 0.25, v3 = 1.50. (b) v = 0.75, vp = 1.50

@ ()
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TABLE VI

CORRESPONDING RELATIONSHIP BETWEEN INPUT AND OUTPUT OF
FHNN (S =3,y = 1.40). (a) vi = 0.25, v =0.75, v3 = 1.50.
(b) vy =0.25, v, =1.50, v3 = 0.75. (c) vi = 0.75,
vy = 0.25, vz = 1.50. (d) vi = 0.75, v = 1.50,
vz = 0.25. (e) vi = 1.50, vp = 0.25, v3 = 0.75.

(f) vi = 1.50, v =0.75, v3 = 0.25

Input Output Input Output Input Output Input Output
51,0 a,,a,,a; 51,1 a,,a,,d5 Ny, 1y a,,0,,d5 51,0 a,,0,,45
-1.0,-1.0.-1.0 |00805-00132-10| 1.0, 0.0, 0.0 | 0.0805,00132,10 | |-1.0,-1.0-1.0 |-0.1556-1.0-00133 1.0, 0.0, 0.0 | 0.1556 10, 0.0133
0.0,-1.0,-1.0 |00805-0013210] —1.0, 1.0, 0.0 | 00805, 00132,10 0.0,-1.0,-1.0 |-0.1556-1.0,00133 1.0, 1.0, 0.0 | 01556, 10, 00133
1.0,-1.0,-1.0 |-0.0805-00132-10, 0.0, 1.0, 0.0 | 0.0805,00132,10 1.0,-1.0,-1.0 [-0.1556-1.0-00133 0.0, 1.0, 0.0 | 01556 10, 0.0133
~1.0, 0.0,-1.0 |-00805-00132-10] 1.0, 1.0, 0.0 | 00805,00132,10 | |-1.0, 0.0,-1.0 |-01556-10,00133 1.0, 1.0, 0.0 | 0556 10, 00133
0.0, 0.0,-1.0 |-0.0805-00132-1.0| ~1.0.-1.0 1.0 | 0.0805,00132,10 0.0, 0.0,-1.0 |-0.1556-1.0.-00133 ~1.0,-1.0, 1.0 |-0.1556-1.0.-00133
1.0, 0.0-1.0 |00805-00132-1.0 0.0,-1.0, 1.0 | 0.0805,00132,10 1.0, 0.0.-1.0 |-0.1556-1.0,-00133 0.0.-1.0, 1.0 | 0.1556-1.0,-00133
—1.0, 1.0,-1.0 |o0s05-0013210] 1.0,-1.0, 1.0 | 00805,00132,10 | |-1.0, 1010 | 01556 10, 00133 1.0,-1.0, L0 |-01556-10-00133
0.0, 1.0,-1.0 |0,0805-00132-10/ ~1.0, 0.0, 1.0 | 0.0805,00132,1.0 0.0, 1.0,-1.0 | 01556 1.0, 00133 -1.0, 0.0, 1.0 | 0.1556 10, 0.0133]
1.0, 1.0,-1.0 |-0.0805-00132-1.0/ 0.0, 0.0, 1.0 | 0.0805,00132,1.0 1.0, 1.0.-1.0 | 01556 10, 00133| 0.0, 0.0, 1.0 | 01556 10, 00133
—1.0,-1.0, 0.0 |-00805-0013210 1.0, 0.0, 1.0 | 0.0805,00132,10 | |-1.0,-1.0, 0.0 |-01556-10,00133 1.0, 0.0, 1.0 | 01556 10, 00133}
0.0.-1.0, 0.0 |-0.0805-00132-10 ~1.0, 1.0, 1.0 | 0.0805,00132,10 0.0,-1.0, 0.0 |-0.1556-1.0,00133 ~1.0, 1.0, 1.0 | 01556 10, 00133}
1.0,-1.0, 0.0 |-00805-00132-1.0) 0.0, 1.0, 1.0 [ 0.0805,00132,10 1.0,-1.0, 0.0 |-0.1556-1.0,00133 0.0, 1.0, 1.0 | 01556 10, 00133
~1.0, 0.0, 0.0 |-00805-00132-10] 1.0, 1.0, 1.0 | 00805,00132,10 | |-1.0, 0.0, 0.0 |-0.1556-10,00133 1.0, 1.0, 1.0 | 0.1556 10, 00133

© [C))
Input Output Input Output Input Output Input Output
a,,a,,8 0,0y a,,a,,dy ny, 0,0y a,,a,,48 51, Ny 4,,d;,45
-1.0,-1.0-1.0 |-00177-00567-10| 1.0, 0.0, 0.0 | 00177, 00567, 1.0| [-1.0,-1.0,-10 |-0.0327-1.000614] 1.0, 0.0, 0.0 | 0.0327, 10, 00614,
0.0,-1.0,-1.0 |-0.0177,-00567-1.0 1.0, 1.0, 0.0 |-0.0177,-0.0567.-1.0 0.0,-1.0,-1.0 |-0.0327.-1.0,-00614| —1.0, 1.0, 0.0 | 0.0327, 1.0, 0.0614
1.0,-1.0,-1.0 |-0.0177-00567-1.0] 0.0. 1.0, 0.0 | 0.0177, 00567, 1.0 1.0,-1.0,-1.0 |-00327,-10-00614) 0.0, 1.0, 0.0 | 00327, 1.0, 0.0614]
-1.0, 0.0,-1.0 |-0.0177,-00567-1.0] 1.0, 1.0, 0.0 | 0.0177, 00567, 1.0| |-1.0, 0.0,~1.0 |-00327.-10.-0.0614| 1.0, 1.0, 0.0 | 0.0327, 10, 00614,
0.0, 0.0,-1.0 |-0.0177.-0.0567-1.0| = 1.0,~1.0, 1.0 | 0.0177, 00567, 1.0 0.0, 0.0,-1.0 | 0.0327.-1.0,-00614| —1.0,-1.0, 1.0 |-0.0327,-10.-0.0614
1.0, 0.0-1.0 |-00177-00567-1.0] 0.0.-1.0, 1.0 | 00177, 00567, 1.0 10, 0.0.-1.0 | 00327, 10, 00614] 0.0,-1.0. 1.0 [-00327,-1.0.-0.0614]
~1.0, 1.0,-1.0 |-0.0177-00567-10] 1.0,-1.0, 1.0 | 0.0177, 00567, 10| [-1.0, 1.0,-1.0 | 00327, 10, 0.0614] 1.0,-1.0, 1.0 [-0.0327,-1.0.-0.0614|
0.0, 1.0.-1.0 |-0.0177,-00567-1.0] =1.0, 0.0, 1.0 | 0.0177, 00567, 1.0 0.0, 1.0,-1.0 | 0.0327. 10, 00614 —1.0, 0.0, 1.0 |-0.0327,-1.0.-0.0614
1.0, 1.0,-1.0 |-00177.-00567-10| 0.0, 0.0, 1.0 | 0.0177, 00567, 1.0 1.0, 1.0,-1.0 | 00327, 10, 00614] 0.0, 0.0, 1.0 | 0.0327, 1.0, 0.0614]
~1.0,-1.0, 0.0 [-00177-00567-1.0| 10, 0.0, 1.0 | 00177, 00567, 10| [~1.0,-1.0, 0.0 [-00327,-10,-00614] 1.0, 0.0, 1.0 | 00327, 1.0, 00614
0.0,-1.0, 0.0 [-0.0177.-00567.-1.0| —1.0, 1.0, 1.0 | 00177, 0.0567, 1.0 0.0,-1.0, 0.0 [-0.0327.-1.0,-00614] —1.0, 1.0, 1.0 | 0.0327, 10, 0.0614
1.0,-1.0, 0.0 | 00177, 00567, 10| 0.0, 1.0, 1.0 | 00177, 00567, 10| | 1.0,-1.0, 0.0 |-0.0327-10,-00614] 0.0, 1.0, 1.0 | 00327, 10, 00614
—1.0, 0.0, 0.0 |0017.-00567-1.0] 10, 1.0, 1.0 | 0.0177, 00567, 10| |—1.0, 0.0, 0.0 |-0.0327.-10,00614] 1.0, 1.0, 1.0 | 00327, 10, 00614

(e ®

the saddle point of FHNN. Comparing Figs. 7 and 9, we can
further see that there are only two, but not four, attractors
of FHNN whenever its two neurons satisfy 0 < v; < 1 and
2k —1 < vj < 2k, where k is the positive integer, and i # j.
Therefore, we can change the number of the attractors of
FHNN by means of altering the fractional order of the neuron.

Furthermore, we set vi = 0.25, v = 1.50 and v; = 0.75,
vy = 1.50. Then, the corresponding relationship between the
input and the output of FHNN can be shown as in Table V.

From Table V, it can be seen that, on the one hand,
(—=0.1672, —1.0) and (0.1672, 1.0) are two different equilib-
rium points of FHNN’s Lyapunov function or attractors of
FHNN when v; = 0.25 and v = 1.50. On the other hand,
(—0.0322, —1.0) and (0.0322, 1.0) are two different attractors
of FHNN when v; = 0.75 and v, = 1.50. Therefore, we can
change the value of FHNN’s attractors by means of altering
the fractional order of the neuron.

Example 4: suppose there are three fractional neurons of
FHNN, but each neuron has a different fractional order. Thus,
S =3 and vi # vy # v3. We also set y = 1.40. Then,
from (58)-(61), the corresponding relationship between the
input and the output of FHNN according to various permuta-
tions of v, vp, and v3 can be shown as in Table VI.

From Table VI, we can see that, on the one hand, with regard
to the multineuron FHNN, the equilibrium points of FHNN’s
Lyapunov function or attractors of FHNN varies with the
fractional-order of the neuron. On the other hand, comparing

Input Output Input Output Input Output Input Output
ny,n, a,a, ny,n, a,,a, 0, a,a, ny,n, a,,a, Input Output Input Output Input Output Input Output
~10,-1.0 |-0.1672,-1.0 05,00 0.1672,1.0 ~10,-1.0 | -0.0322,-1.0 0.5,0.0 0.0322,1.0 CRCRIC) 4,32,05 Moy M 4150,,9 BT 4,8,,8 LOCTIC) G159,
Z05,-10 | -0.1672.-10 10,00 0.1672,1.0 Z05,-1.0 | -0032 -1.0 10.0.0 0.0322.1.0 -1.0,-1.0-1.0 |-10,-01595-00179] 1.0. 0.0, 0.0 | 10, 01595 00179 |-1.0,-1.0,-1.0 |-10,-0.0328-00805| 1.0, 0.0, 0.0 | 10, 0.0328 00895
00,-10 | -0.16712,-1.0 | -1.0,05 01672,1.0 00,-10 | -00322,-10 | -10,05 00322,1.0 0.0,71.0,-1.0 |-10,-0.1595-00179 ~1.0, 1.0, 0.0 |-10,-01565-00179| | 0.0,-1.0,~1.0 |-10,-00328-00895| ~1.0, 1.0, 0.0 |-10,-00528-00895
1.0,-1.0,-1.0 | 10, 0.1595 00179 0.0, 1.0, 0.0 | 10, 01595, 00179 | 1.0,-1.0,-1.0 | 10, 00328 00895 0.0, 1.0, 0.0 | 10, 00328 00895
05710 | S0a67., 10 | ~0.3.0.5 D672 1.0 05,700 | S0i0322,710 | ©03.0.3 032010 ~1.0, 0.0,-1.0 |-10,-01595-00179] 1.0, 1.0, 0.0 [ 10, 01595, 00179 -0 |-10,-00328-0080s| 1.0, 1.0, 0.0 | 10, 00328 00895
—OiL6T2 5 10 0.0,0.5 0.1672,10 10 | -063,-10 0-0,0.5 0.032,1.0 0.0, 0.0,-1.0 |-10,-0.1595-00179| ~1.0,-1.0, 1.0 [-10,-0.1595-00179) -0 [-10,-0.0328-00895| ~1.0,-1.0, 1.0 [-10,-0.0328-0.0895
=0.1672,, 210 0.5,0:5 0.1672,10 =L0R05 =0.0322,-10 0:3,0:5 0.0322,1.0. 1.0, 0.0.-1.0 | 10, 01595 00179 0.0.-1.0, 1.0 | 10, 01595, 0.0179| 10, 00328 00895 0.0,-1.0, 1.0 |-10,-00328-0.0895
-0.1672 .- 1.0 1.0,0.5 0.1672 ,1.0 -0.5,-0.5 -0.0322 ,-1.0 1.0,0.5 0.0322 ,1.0 —1.0, 1.0,-1.0 |-10,-01595-00179| 1.0,-1.0, 1.0 | 10, 0.1595, 0.0179) 0 |-10,-00328-00805] 1.0,-1.0, 1.0 | 10, 0.0328 0.0895
-0.1672,-1.0 -1.0,1.0 0.1672,1.0 0.0,-0.5 -0.0322,-1.0 -1.0,1.0 0.0322,1.0 -10,-0.1595-0.0179| —1.0, 0.0, 1.0 |-10,-0.1595-00179) 10, 0.0328 00895 —1.0, 0.0, 1.0 |-10,-0.0328-0.0895
-0.1672 ,-1.0 -0.5,1.0 0.1672,1.0 05,05 -0.0322 ,-1.0 -05,1.0 0.0322,1.0 10, 0.1505, 00179 0. 1.0 | 10, 0.1595, 0.0179| 10, 00328 00895 0.0, 0.0, 1.0 | 10, 0.0328 0.0895
-0.1672 ,-1.0 0.0,1.0 0.1672,1.0 19,05 -0.0322 ,-1.0 0.0,1.0 0.0322 ,1.0 -0 |-1.0,-0.1595-0.0179| 10, 0.1595, 0.0179) .0 |-10,-0.0328-0.0895| 1.0, 0.0, 1.0 | 10, 0.0328 0.0895
01672 ,-10 05.1.0 0.1672 .10 ~1.0,00 00322 ,-1.0 05,10 0.0322 .10 -10.-0.1595-0.0179| 2 1.0 [10,-01595-00179 .0 |-10,-0.0328-00895) —1.0, 1.0, 1.0 |-10,-00328-0.0895
~0.1672,-1.0 1,0;1.0 0_1572:1_0 205,00 ~0.0322,-1.0 10,10 0_0322;1_0 10, 01595, 00179 0.0, 1.0, 1.0 | 10, 0.1595 0.0179] 10, 00328 00895 0.0, 1.0, 1.0 | 10, 00328 00895

1.0, 1.0, 1.0 | 10, 01595 00179 1.0, 1.0, 1.0 | 10, 00328 00895

-10,-0.1505-00179 —1.0, 0.0, 0.0 |-1.0,-0.0328-00895|

Table III, Fig. 8 and Table VI, we can further see that there
are only two, but not eight, attractors of FHNN whenever any
two neurons of the trio-neuron FHNN satisfy 0 < v; < 1 and
2k —1 < v; < 2k, where k is a positive integer, and i # j.
Therefore, we can simultaneously change both the value and
the number of the attractors of FHNN by means of altering the
fractional order of the neuron. Furthermore, in all the above-
mentioned cases, (0, 0, 0) is the saddle point of FHNN.

C. Application of FHNN to Defense Against Chip
Cloning Attacks for Anticounterfeiting

In this section, we analyze the application of FHNN to
the defense against chip cloning attacks for anticounterfeiting.
From the aforementioned discussion, it can be seen that
FHNN has a stronger associative memory than HNN. We can
obviously apply FHNN to pattern recognition, similar to HNN.
To avoid repetition, the application of FHNN to pattern recog-
nition is not described in this paper. Therefore, we propose a
novel promising application case of FHNN in brief.

We apply FHNN to defense against chip cloning attacks
for anticounterfeiting. Copyright is in crisis nowadays.
Levies or legal penalties only patch the holes in an already
leaky system. The flaw lies not only in the attitude toward
copyright in our society, but also in the anticounterfeiting
technology. In many cases, identification and qualification
are important methods for anticounterfeiting. Encryption and
digital watermarking technology have become mature, but



PU et al.: FHNNs: FRACTIONAL DYNAMIC ASSOCIATIVE RECURRENT NEURAL NETWORKS

2331

TABLE VII

CORRESPONDING RELATIONSHIP BETWEEN INPUT AND OUTPUT OF FHNN ACCORDING TO WEAK VARIATION OF FRACTIONAL ORDER
OF THE NEURON (y = 1.40). (a) vi = 0.498, v = 1.50. (b) vi = 0.499, vp = 1.50. (c) vi = 0.501, v = 1.50. (d) vi = 0.502, v = 1.50

(a) (b) (c) (d)
Input Output Input Output Input Output Input Output Output Input Output Input Output Input Output
n,n a,,a, ny,n, a,,a, n,n a,,a, ny,m a,,a, a,,a, ny,n, a,,a, mn,n a,,a, n,mn a,,a,
-1.0,—-10 —0.0690 ,-1.0 0.5,0.0 0.0690 ,1.0 ~1.0,—-1.0 —0.0688,-1.0 05,00 0.0688 ,1.0 —0.0683,-1.0 0.5,0.0 0.0683 ,1.0 -1.0,-1.0 —0.0680,-1.0 0.5,0.0 0.0680 ,1.0
=0.8.=1.0 —0.0690 .~ 1.0 1.0,0.0 0.0690 ,1.0 =05.-1.0 —0.0688 ,—1.0 1.0,0.0 0.0688 ,1.0 —-0.0683 ,—-1.0 1.0,0.0 0.0683 ,1.0 -0.5,-1.0 —0.0680 ,—1.0 1.0,0.0 0.0680 ,1.0
00,-1.0 | —0.0690,-1.0 ~1.0,05 0.0690,1.0 00,-1.0 |-0.0688,-1.0 | -10,0.5 0.0688,1.0 Z0.0683,-1.0 ~1.0,05 0.0683,1.0 00,-1.0 |-0.0680,-1.0 | —-10,0.5 0.0680,1.0
4348 —0.0690 ,—1.0 -0.5,0.5 0.0690 ,1.0 05,18 —0.0688 .—1.0 -0.5,0.5 0.0688 ,1.0 —0.0683 ,—1.0 -0.5,0.5 0.0683 ,1.0 —0.0680 ,—1.0 =555 0.0680 ,1.0
1.0,-1.0 ~0.0690 ,—1.0 0.0,0.5 0.0690 ,1.0 1.0,-1.0 —-0.0688 ,—1.0 0.0,0.5 0.0688 ,1.0 —-0.0683 ,—-1.0 0.0,0.5 0.0683 ,1.0 s—1. —0.0680 .~ 1.0 0.0,0.5 0.0680 ,1.0
-1.0,-05 —0.0690 ,—1.0 A505 0.0690.1.0 -1.0,-05 —0.0688.-1.0 0.5,0.5 0.0688,1.0 —0.0683,-1.0 1.5.05 0.0683,1.0 -1.0,-0.5 —0.0680,— 1.0 0.5,0.5 0.0680,1.0
—0.5,—0.5 —0.0690 .- 1.0 1808 0.0690 ,1.0 -0.5,-0.5 —0.0688 ,—1.0 1.0,0.5 0.0688 ,1.0 —0:5,—0.5 —0.0683 ,—1.0 1.0,0.5 0.0683 ,1.0 —0:5,—0.5 —0.0680 ,—1.0 1.0,0.5 0.0680 ,1.0
0.0,-0.5 —0.0690 ,-1.0 -1.0,1.0 0.0690 .1.0 0.0,-0.5 —0.0688,-1.0 -1.0.1.0 0.0688 ,1.0 0.0,-0.5 —0.0683,-1.0 -1.0.1.0 0.0683 ,1.0 0.0,-0.5 -0.0680,-1.0 -1.0,1.0 0.0680 ,1.0
0.5,-0.5 -0.0690 ,- 1.0 -0.5,1.0 0.0690.1.0 0.5,-0.5 ~0.0688 .-1.0 -0.5,1.0 0.0688,1.0 0.5,-0.5 -0.0683 ,-1.0 -0.5,1.0 0.0683,1.0 0.5,-0.5 —0.0680 .- 1.0 -0.5,1.0 0.0680,1.0
1.0,-0.5 —0.0690 ,— 1.0 0.0,1.0 0.0690 ,1.0 1.0,-0.5 —0.0688 ,—1.0 0.0,1.0 0.0688 ,1.0 1.8,—-03 —0.0683 ,—1.0 0.0,1.0 0.0683 ,1.0 50,03 —0.0680 ,—1.0 0.0,1.0 0.0680 ,1.0
-1.0,0.0 ~0.0690 ,—1.0 0.5,1.0 0.0690 ,1.0 -1.0,0.0 —0.0688 .,—1.0 0.5,1.0 0.0688 ,1.0 -1.0,0.0 —-0.0683 ,—-1.0 0.5,1.0 0.0683 ,1.0 -1.0,0.0 —0.0680 .~ 1.0 05,1.0 0.0680 ,1.0
-0.5,0.0 —0.0690,-1.0 1.0,1.0 0.0690.1.0 —-0.5,0.0 —0.0688.-1.0 1.0,1.0 0.0688,1.0 —-0.5,0.0 —0.0683,-1.0 1.0,1.0 0.0683,1.0 —0.5,0.0 —0.0680,-1.0 1.0.1.0 0.0680,1.0
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Fig. 11. FHNN’s stability and convergence in neighborhood of v = 1.00 (y =
. )
1.40, n1(0) = 0.50, ny(0) = —1.00). (a) Time response curve of FHNN’s
Fig. 10. FHNN’s stability and convergence in neighborhood of v = 6.00 : g ;
output whenv = 0.99. (b) Time response curve of FHNN’s Lyapunov function

(y = 140, n1(0) = 0.50, np(0) = —1.00). (a) Time response curve of
FHNN’s output whenv = 5.999999. (b) Time response curve of FHNN’s
Lyapunov function when v = 5.999999. (c) Time response curve of FHNN’s
output when v = 6.000000. (d) Time response curve of FHNN’s Lyapunov
function when v = 6.000000.

there is no effective method to identify the piracy of electronic
copies. Defense against chip cloning attacks technology for
anticounterfeiting is an emerging discipline that has not been
studied yet indepth. Based on the aforementioned features
of FHNN, we can analyze the defense against chip cloning
attacks properties of FHNN.

In the first case, suppose there are only two fractional
neurons of FHNN, and each neuron has the same fractional
order. Thus, vi = v = v. From (45)-(47) and (55)-(57),
FHNN’s stability and convergence in the neighborhood of
even-order v = 2k can be as shown in Fig. 10.

From Fig. 10, we can see that in the neighborhood of even-
order v = 2k, FHNN is convergent when v is only less than
2k part per million, but it is not convergent when v = 2k,
where k is a positive integer. Furthermore, FHNN’s stability
and convergence in the neighborhood of v = 1.00 can be as
shown in Fig. 11.

In Fig. 11, in order to get distinguish further, we set
the weighting matrix in (19) as W = [(1)(1)] From
Fig. 11, we can see that the attractors of FHNN are (0, 0),
(—0.1823, —0.1823) and (1.00,—1.00) when v = 0.99,
v =1.00 and v = 1.01, respectively.

In the second case, suppose there are also two fractional
neurons of FHNN, but each of its neurons has a different
fractional order. Thus, v| # v;. The corresponding relationship

when v = 0.99. (c) Time response curve of FHNN’s output when v = 1.00.
(d) Time response curve of FHNN’s Lyapunov function when v = 1.00.
(e) Time response curve of FHNN’s output when v = 1.01. (f) Time response
curve of FHNN’s Lyapunov function when v = 1.01.

between FHNN'’s input and its output according to the weak
variation in the fractional order of the neuron can be shown
as in Table VIIL.

From Tables IV and VII, we can further see that the value of
the attractors of FHNN change very little while the fractional
order of the neuron v varies weakly.

From the aforementioned two cases, it can be seen that
the value of the attractors of FHNN essentially relate to the
fractional order of the neuron v;. Furthermore, from (18), it can
be also seen that the fractional order of the neuron v; relates
to its v;-order fractor in essence. With regard to the neuron’s
v;-order fractor, from (14), its driving-point impedance func-
tion F,, is generally in a direct ratio to & = r(l_pi)/""/c,
where v; = g; + p; is a positive real number, g; is a positive
integer, and 0 < p; < 1. In other words, the values of
the attractors of FHNN are changing while the values of the
resistors or capacitors of the fractor vary.

Actually, according to the latest electronic manufacturing
technology, we have not been able to manufacture two resis-
tors or capacitors with an identical value. It is luck in the midst
of sadness. To date, no one has been able to manufacture
two FHNNs with identical values of attractors. Therefore,
we can apply FHNN for defense against chip cloning attacks
for anticounterfeiting, and this will be discussed in our future
work.
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V. CONCLUSION

How to apply fractional calculus to signal analysis and
processing, especially to neural networks, is an emerging field
of study and few studies have beenperformed in this area.
Fractional calculus has been incorporated into artificial neural
networks, mainly because of its long-term memory and nonlo-
cality. Therefore, it is natural to think about how to generalize
the first-order HNNs to the fractional-order ones, and how to
implement FHNN by means of fractional calculus. This paper
is mainly to discuss a novel conceptual framework: FHNNS .
Therefore, it naturally makes one to ponder how to generalize
HNN to the fractional-order ones, and how to implement
FHNN by means of fractional calculus. This paper presents a
novel conceptual framework: FHNN. We propose to introduce
a novel mathematical method: fractional calculus to implement
FHNN. We implement FHNN by utilizing fractor and the
fractional steepest descent approach, construct its Lyapunov
function, and further analyze its attractors. We apply fractional
calculus to implement FHNN, mainly because of its long-term
memory and nonlocality. The main contribution of our work is
to propose FHNN in the form of an analog circuit by utilizing
fractor and the fractional steepest descent approach, construct
its Lyapunov function, prove its Lyapunov stability, analyze its
attractors, and apply FHNN to the defense against chip cloning
attacks for anticounterfeiting. The arbitrary order of FHNN
represents an additional degree-of-freedom to fit a specific
behavior such as power-law long-term memory or power-law
nonlocality. A significant advantage of FHNN is that its attrac-
tors essentially relate to the neuron’s fractional order. FHNN
possesses the fractional-order stability and the fractional-order
sensitivity characteristics. We can apply FHNN to the defense
against chip cloning attacks for anticounterfeiting.

From the aforementioned discussion, we can also see that
there are many other problems that need to be further studied.
For example, how to construct an FHNN that is convergent
when 2k—2 < v < 2k—1, how to construct the arbitrary-order
fractor, how to construct fractional chaotic neural networks,
how to implement the analog circuit realization of defense
against chip cloning attacks based on FHNN, and so on. These
will be discussed in our future work.
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