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Abstract— Various sparse-representation-based methods have
been proposed to solve tracking problems, and most of
them employ least squares (LSs) criteria to learn the sparse
representation. In many tracking scenarios, traditional LS-based
methods may not perform well owing to the presence of heavy-
tailed noise. In this paper, we present a tracking approach using
an approximate least absolute deviation (LAD)-based multitask
multiview sparse learning method to enjoy robustness of LAD
and take advantage of multiple types of visual features, such as
intensity, color, and texture. The proposed method is integrated
in a particle filter framework, where learning the sparse repre-
sentation for each view of the single particle is regarded as an
individual task. The underlying relationship between tasks across
different views and different particles is jointly exploited in a
unified robust multitask formulation based on LAD. In addition,
to capture the frequently emerging outlier tasks, we decompose
the representation matrix to two collaborative components that
enable a more robust and accurate approximation. We show
that the proposed formulation can be effectively approximated
by Nesterov’s smoothing method and efficiently solved using the
accelerated proximal gradient method. The presented tracker
is implemented using four types of features and is tested on
numerous synthetic sequences and real-world video sequences,
including the CVPR2013 tracking benchmark and ALOV++
data set. Both the qualitative and quantitative results demonstrate
the superior performance of the proposed approach compared
with several state-of-the-art trackers.

Index Terms—L1 minimization, least absolute devia-
tion (LAD), multitask, multiview, sparse representation, tracking.

I. INTRODUCTION

NLINE object tracking is an important research topic

in computer vision and is related to many practical
applications, such as video surveillance and vehicle perception.
Given an annotation of the object (bounding box in our
paper) in the first frame, the task of a tracker is to estimate
the target locations using the same annotation in subsequent
video frames. Many model-free trackers [1], [2] have been
designed to handle generic object tracking, where the prior
knowledge about the target is absent. In general, designing
a universally effective tracker is extremely difficult due to the
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presence of various challenges, such as appearance variations,
occlusions (OCCs), and illumination changes.

In the community of visual tracking, the least squares (LSs)
criterion, i.e., Euclidean distance, is usually used to approx-
imate the sparse representation for tracking [3], [4]. The LS
criterion performs well when the data distribution is Gaussian.
It is popular because of its differentiability and smoothness
properties, and it can be efficiently solved by gradient-based
methods [5]. However, the noise in many real tracking
scenarios is heavy-tailed, such as in the cases of background
clutter (BC), Laplace noise, and salt-and-pepper noise, where
the LS-based methods may degrade seriously, since these
kinds of noise cannot be well estimated by the LS. According
to [6] and [7], least absolute deviation (LAD) is much more
robust than the LS, especially in the presence of heavy-tailed
noise.

On the other hand, tracking problems can involve data
that are represented by multiple views! of various types of
visual features, including intensity [10], color [11], edge [12],
wavelet [13], and texture. Relying on these multiple sources of
information can significantly improve tracking performance as
a result of their complementary characteristics [12], [14]-[16].
Given these cues from multiple views, an important problem
is how to integrate them and build an appropriate model to
explore their mutual dependence and independence.

Sparse representation has recently been introduced for track-
ing [3], in which a tracking candidate is sparsely represented as
a linear combination of target templates and trivial templates.
In particle filter (PF)-based tracking methods, particles around
the current state of the target are randomly sampled according
to a zero-mean Gaussian distribution. Each particle shares
dependence with other particles. Original multitask learning
in [17] aims to improve the performance of multiple related
tasks by exploiting the intrinsic relationship among them.
In [4], learning sparse representation of each particle is viewed
as an individual task. However, Zhang et al. [4] assume that all
tasks share a common set of features, which generally does
not hold in visual tracking applications, since outlier tasks
often exist. Outlier tasks are a set of minority tasks that do
not share a common set of features with the majority of tasks.
Furthermore, Mei and Ling [3] and Zhang et al. [4] only use
the intensity feature to model the appearance change of the
target. The intensity appearance model with L1 minimization
is very robust to partial OCC and other tracking challenges [3].
However, it is very sensitive to shape deformation (DEF) of
targets such as nonrigid objects.

lRegarding the term multiview learning [8], [9], we follow the machine
learning convention, in which views refer to different feature subsets used to
represent particular characteristics of an object.
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Fig. 1. Flowchart to illustrate the proposed tracking framework.

To overcome the above problems, we propose to take advan-
tage of LAD and employ other visual features such as color,
edge, and texture to complement intensity in the appearance
representation, and to combine a multiview representation with
a robust multitask learning [18] (Fig. 1). Within our proposed
framework, the sparse representation for each view is learned
as a linear combination of atoms from an adaptive feature
dictionary, which enables the tracker to capture different statis-
tics carried by different views. To exploit the interdependence
shared between different views and particles, we impose the
{1,2-norm group-sparsity regularization on the representation
matrix to learn the joint sparse representation for all views and
over all particles, where learning the sparse representation for
each view of a single particle is regarded as an individual
task. The LAD instead of LS reconstruction error is used
to learn the sparse representation and to improve the robust-
ness of the learned representation. We decompose the sparse
representation into two collaborative parts, thereby enabling
them to learn representative coefficients and detect outlier
tasks simultaneously. The proposed LAD formulation is effec-
tively approximated by the Nesterov’s smoothing method [19].
An efficient accelerated proximal gradient (APG) [5] scheme
is employed to obtain the optimal solution via a sequence
of closed-form updates. Although discriminative approaches
can be sometimes more effective, generative methods often
have better performance when the size of labeled data is
small [20]. Many trackers are built on discriminative
approaches [11], [21]-[24], but there are also many gen-
erative [3], [4], [25], [26] or even hybrid [27] methods
that demonstrate superior performance in various scenarios.
It should be noted that this paper aims to improve the previous
generative approaches [3], [4] by considering the multiview
setting in the sparse representation framework and exploring
the relationship between different views among different par-
ticles. Although employing the discriminative setting in the
current framework might further improve the performance, it
is beyond the scope of this paper.

An earlier version of this paper has been published in [28].
The main differences between this paper and [28] are as
follows. First, instead of using the popular LS criterion,
we propose to take an advantage of LAD, which is more robust

2875

than the LS method, especially when the data are contaminated
by outliers and noise, and use LAD reconstruction error
during the sparse representation learning. Second, due to the
nonsmoothness of Manhattan norm used in the LAD criterion,
the APG method cannot be directly used, which is different
from the case in [28]. Therefore, we approximate LAD using
the Nesterov’s smoothing method [19], and then efficiently
solve the optimization using the APG scheme. Finally, we
significantly increase the number of testing sequences for
extensively evaluating the proposed tracker. The quantitative
results demonstrate the superior performance of the new
approach in comparison with the baseline trackers including
the multitask multiview tracking LS (MTMVTLS) in [28] and
many other trackers.

II. RELATED WORK

An extensive review on tracking and multiview learning
is beyond the scope of this paper. We refer readers to
some recently published surveys [1], [29] for more details
about existing trackers, and an extensive survey on multiview
learning can be found in [30]. In this section, we review the
works of relevance to our method including popular single-
view-based trackers, multiview-based trackers and sparse
representation-based trackers, multitask learning, and LAD.

Numerous existing trackers use single feature only and solve
tracking in various ways. For instance, Comaniciu et al. [31]
introduce a spatial kernel to regularize the color histogram-
based feature representation of the target, which enables
tracking to be reformulated as a gradient-based optimization
problem solved by mean-shift. Babenko et al. [21] employ
multiple instance learning (MIL) equipped with a Haar feature
pool to overcome the label ambiguity problem. Ross ef al. [32]
present a tracking method that incrementally learns a
low-dimensional subspace representation based on intensity
features. Kalal er al. [33] propose a new tracking paradigm
that combines the classical Lucas—Kanade-based tracker with
an online learned random-forest-based detector using pixel-
wise comparison of features. The learned detector is notable
for enabling reacquisition following tracking failures.

The above trackers nevertheless tend to be vulnera-
ble in particular scenarios due to the limitations of the
adopted features. Various methods aim to overcome this
problem by taking advantage of multiple types of features
to enable a more robust tracker [12], [34]-[36]. In [37],
two complementary features, color histogram and intensity
gradient, are jointly considered to track a person’s head.
Moreno-Noguer et al. [34] propose a probabilistic framework
allowing the integration of multiple features for tracking by
considering cue dependencies. Kwon and Lee [12] propose
a method termed visual tracking decomposition (VTD),
which employs sparse principal component analysis to
construct multiple basic observation models (basic trackers)
based on multiple types of features. In [38], the visual tracker
sampler (VTS) is further proposed by the authors to sample the
basic trackers and probabilistically determine the acceptance
of them.

Sparse representation was recently introduced for tracking
in [3] which casts tracking as a sparse representation problem
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in a PF framework [39] which was later used in [40]-[43].
In [4], a multitask learning [44] approach is applied to tracking
by learning a joint sparse representation of all the particles in
a PF framework. Compared with the original L1 tracker [3]
that pursues the sparse representation independently, multitask
tracking (MTT) achieves more robust performance by exploit-
ing the interdependency between particles. In addition, [45]
also tries to exploit the interdependency between particles
and cast the tracking problem as a low-rank matrix learning
problem. Multitask learning has also been successfully applied
to face recognition [46] and image classification [47]. In [47],
a multitask covariate selection model is used to classify
a query image using multiple features from a set of
training images, and a class-level joint sparsity regularization
is imposed on class-level representation coefficients.

A well-known alternative of the popular LSs is the
LAD [48]. Harter [7] comprehensively discusses the method of
LS and its alternatives, and proposes that LAD is more robust
than the LS method especially when the data are contaminated
by outliers. In addition, a lot of works have been proposed
to exploit the robustness of LAD in the linear approximation
problems [6], [49]-[51]. Wang et al. [51] propose the LASSO
regularized LAD regression that takes advantage of both the
LAD and the LASSO. Guan et al. [6] also exploit the LAD
and propose a Manhattan nonnegative matrix factorization for
modeling the heavy-tailed Laplacian noise. The effectiveness
of the proposed method was tested on both synthetic and real-
world data sets, such as face images, natural scene images,
surveillance videos, and multimodel data sets.

Motivated by the above advances, in this paper, we propose
a multitask multiview tracking (MTMVT) method based on
sparse representation to exploit the related information shared
between particles and views in order to obtain improved
performance. Moreover, we propose to employ the LAD
and minimize the sum of absolute errors (SAEs) regularized
by the group sparsity for the joint spare representation
learning. In the rest of this paper, we denote the proposed
MTMVTLSs and the MTMVT method using LAD
as MTMVTLAD.

III. PARTICLE FILTER

The PF [52], also known as the sequential Monte Carlo
method, is a Bayesian sequential importance sampling tech-
nique, which provides a convenient framework for estimating
the posterior distribution of state variables and for simulating
a dynamic system, such as the tracking process. The sophisti-
cated PF has been extensively used in object tracking due to
its nonlinear and non-Gaussian model assumption, regardless
of the underlying distribution.

Let y, denote the state variable describing the location and
shape of a target at time frame t. Given all the available
observations X;; = {Xi,...,X;} until the current frame 7,
the predicting distribution of the target is inferred using the
Bayes rule as

pmmmq)z/QWMLOMLquqwmq (D
Py 1X1:) o< p(Xe1y,) p(¥;[X1:0-1) 2
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where p(y,|y,_;) is the state transition distribution and
p(x;|y,) is the observation likelihood estimated by the appear-
ance model. In practice, the posterior probability is approxi-
mated by a finite set _of n samples, i.e., particles, {_yﬁ}l’.’:1 with
importance weight w;. At each frame, the weight w} is updated
by the observation likelihood p(x|y!) following the strategy
of the bootstrap filter [52]

w} o< w]_; p(xily;). 3)

Subsequently, a set of n equally weighted particles are
resampled according to the importance weights using state
transition distribution p(y,|y,_1).

In this paper, we let y, = (ai,a2,0a3,04,1,1y) tO
describe the 2-D affine transformation of the target, where
(a1, 02,03, a4) are the affine transformation parameters and
(tx,ty) are the translation parameters, which is analogous
to the previous work [3]. The state transition distribution
p(y;ly,_1) is simulated independently by the Gaussian distrib-
ution model, while the observation likelihood p(x;|y,) reflect-
ing the similarity between a target candidate and the target
template is estimated by the reconstruction error described
in Section IV. To model the observation likelihood p(x/|y,),
a region corresponding to state y, is first cropped from the
current frame. Multiple features are then extracted from the
region and normalized to form a 1-D feature vector x;.

IV. MULTITASK MULTIVIEW SPARSE TRACKER

The L1 tracker [3] tackles tracking as finding a sparse
representation in the template subspace. The representation is
then used in a PF framework for visual tracking. However,
appearance representation based only on intensity is prone
to failure in difficult scenarios such as tracking nonrigid
objects. Employing multiple types of features has proved to
be beneficial for tracking because the ensemble of multiple
views provides a comprehensive representation of the target
appearance undergoing various changes such as illumination
and DEF. However, combining multiple views by simply
concatenating features into a high-dimensional feature vector
is not a good option, since different features have different
statistical properties [30]. Inspired by [4] and [47], the depen-
dence of these views as well as the intrinsic relationship of
sampled particles should be jointly considered. In this section,
we propose to employ other visual features such as color, edge,
and texture to complement intensity in the target appearance
representation, and to combine a multiview representation with
a robust multitask learning [18] to solve the visual tracking
problem.

A. Sparse Representation-Based Tracker

In [3], the sparse representation of intensity feature x
is formulated as the minimum error reconstruction through
an Ll-regularized minimization problem with nonnegativity
constraints

min | Mw—x |3+ 2w, stwix=0 (4)
w

where M = [D, I, —1I] is an over-complete dictionary that is
composed of target template set D and positive and negative
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trivial template sets I and —I. Each column in D is a
target template generated by reshaping pixels of a candidate
region into a column vector; and the trivial templates I is
modeled using an identity matrix. w = [a', e, e "]T is
composed of target coefficients a and positive and negative
trivial coefficients e™, e, respectively.

Finally, the observation likelihood is derived from the
reconstruction error of x as

1
p(xly) = Zexp{—a || Da—x 1%} 5)

where a is obtained by solving the L1 minimization (4), a is
a constant controlling the shape of the Gaussian kernel, and
I' is a normalization factor.

B. Robust Multitask Multiview Sparse Learning
With Least Absolute Deviation

We consider n particle samples, each of which has K
different views (e.g., color, shape, and texture). Learning the
sparse representation for each view of a single particle is
regarded as an individual task, so there are a total of nK tasks
to tackle for the joint sparse representations. For each view
index k =1,..., K, denote Xk € R%*" a5 the feature matrix
which is a stack of n columns of normalized particle image
feature vectors of dimension dj, where dj is the dimension
for the kth view. We denote D¥ € R%*N a5 the target
dictionary in which each column is a target template from the
kth view, where N is the number of target templates. The target
dictionary is combined with trivial templates Iy, € R >4k 10
construct the complete dictionary Mr = [Dk, I;1 € Rxhe
where hy = N + d.

Motivated by [18], we jointly evaluate K feature view
matrices {X', ..., XX} with n particles and learn the latent
representations {W', ..., WK}, The decomposed matrices
WF¥s enable different views of particles to have different
learned representations, and therefore exploit the indepen-
dency of each view and capture the different statistical proper-
ties. Moreover, each representation matrix W* is constructed
by two collaborative components P and QF, where P* is
regularized by row sparse constraint, which assumes that all
particles share the same basis, while Qf is regularized by
column sparse constraint, which enables the capture of outlier
tasks.

The same columns from each view in the dictionary should
be activated to represent the particle in a joint sparse manner,
since the corresponding columns represent the same sample of
the object. Therefore, the corresponding decomposed weight
matrices P¥s and QFs from all the views can be stacked
horizontally to form two bigger matrices P and Q, respectively.
Each of them consists of the coefficients across all the views.
Group LASSO penalty ¢ is applied to row groups of the first
component P for capturing the shared features among all tasks
over all views, where we define ||P||12 = Zj O Pii)l/z, and
P;; denotes the entry in the jth row and ith column in the
matrix P. The same group LASSO penalty is imposed on col-
umn groups of the second component Q to identify the outlier
tasks simultaneously. The multiview sparse representations for
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Fig. 2. TIllustration for the structure of the learned coefficient matrices
P and Q, where entries of different color represent different learned values,
and the white entries in P and Q indicate the zero rows and columns. Note that
this figure demonstrates a case that includes four particles and three views,
where the second particle is an outlier whose coefficients in Q comprise
nonzero values.

all particles can be obtained by solving the following problem:

min

K
W,P,Q; FLMEWE — XY 1 211Pl 2 + 2201Q T2 (6)

where f7(X) is a cost function measuring the reconstruction
errors during the representation learning, W* = P + QF,
P=[P,....,PX],Q=[Q',...,QX], and 4, and A, are the
parameters controlling the sparsity of P and Q, respectively.
Fig. 2 shows the structure of the learned matrices P and Q.

Note that the stacking of P*s and Qs requires that M¥s have
the same number of columns. However, we can pad the matri-
ces M¥s with zero columns to make them the same number
of columns in order to apply (6). The coefficients associated
with the zero columns will be zeros based on the sparsity
constraints from L1 regularization and do not impact the
minimization function in terms of the solution. Without loss
of generality, we assume MFs are sorted in descending order
of the number of columns Ay, that is, hy > hy >---> hg.
The new Mk is defined as the zero padded matrix of MF, that
is, Mk = [Mk, Ok], where 0F € Ré>x(hi—hi) apd every element
in 0% is zero. We can replace MF in (6) with Mk and solve
the same minimization problem.

For the cost function f; (MW — X), a conventional selec-
tion is based on the Frobenius norm f; (MW — X) =
1/2|MW — X|%, which employs the Euclidean distance to
measure the reconstruction error, i.e., minimizing the problem
based on LS criterion. Then, the problem in (6) can be
explicitly written as

K
1
'E—M"W"—X"Z 1P Q2. (7
V{{l}l{le_lzll IE+ APli2 + 220Q l1,2. (7

The LS is popular due to its useful properties, namely,
smoothness and differentiability, which enables application
of efficient gradient-based methods, such as APG [44], as
presented in our previous work [28]. However, as discussed
in [6] and [7], LAD is much more robust than the ordinary
LS in many applications, especially in the presence of heavy-
tailed noise. The LAD estimate also arises as the maximum
likelihood estimate if the errors have a Laplace distribu-
tion. To use LAD, we replace the Frobenius norm with the
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Schematic example of the learned coefficients. We visualize the learned coefficient matrices P and Q for all particles across all views, which are

color histograms, intensity, HOG, and LBP, respectively. Each matrix consists of four column parts corresponding to four different views, where the brighter
color represents larger value in the correqpondmg matrix element. The seventh template in the dictionary is the most representative (which is circled in green
in the shown intensity templates D?) and results in brighter values in the seventh row of P across all views (they are associated by the line with two arrows),
while some columns in Q have brighter values which indicate the presence of outliers.

Manhattan norm, (6) becomes

min

i QZIIM"W" Xl + 41 IPl2 + 21Q 2. (®)

In particular, the problem in (8) minimizes the SAEs
regularized by the group sparsity prior. Although (8) is
still convex, each term in (8) is typically nonsmooth. The
APG method can no longer be used. Fortunately, we will show
the Nesterov’s smoothing method [19] can be used to smooth
the Manhattan norm in Section IV-D, and thus (8) can still be
solved efficiently.

For a more intuitive view of the proposed formulation, we
visualize a schematic example of the learned sparse coeffi-
cients in Fig. 3. The W can be decomposed in both horizontal
and vertical directions. Vertically, W = [AT,ET]T consists
of target coefficients A and trivial coefficients E, respectively,
while horizontally, W = P 4 Q consists of information sharing
matrix P and outlier identification matrix Q.

C. General Form and Special Cases

Before presenting the optimization method of (8), we would
like to have a brief discussion about the proposed problem (6)
in this section. The proposed optimization problem (6) can be
generalized as

min ZfL(M"Wk X+ 21lPllp.g + 2211Q pg (9)

where [P, , = (zj((zi(Pj,,-)q)l/q)p)l/p is the £, , norm
of P and P;; represents the element in the jth row and
ith column of P. To restrict a small number of dictionary tem-
plates to be selected by all particles across all views, let p = 1,
then we get |P]l14 = Zj (Zi(Pj,,-)q)l/q, which encourages P
to be row sparse. For the options of ¢, we select three widely
studied mixed norms g € {1, 2, oo} as discussed in MTT [4].
Now, we discuss (9) with different combinations of 1,, ¢, K,
and fr, which yields different trackers. If we restrict our
tracker to the case of 1 = 400 and K = 1 for a single-
view multitask problem, then we get Q = 0. Therefore, (9) is

degenerated to

mgnfL(MP—X)JrMIIPIIl,q (10)
where both the LS and LAD can be used. We note that if
the LS is employed, where f; (MP —X) = 1/2|MP — X[,
(10) is exactly the same as the objective function used in
MTT [4]. Furthermore, if we let ¢ = 1, the obtained
formulation is intrinsically the same as (4), which is used
in the L1 tracker [3]. In this way, both the MTT tracker
and the L1 tracker can be regarded as special cases of the
proposed MTMVT in the single-view setting. Meanwhile,
the LAD versions of MTT and L1 trackers can be naturally
obtained within the proposed formulation in (10).

Here, we discuss another single-view version (K = 1) of
MTMVT by appropriately setting 4, > 0, in which some
nonzero columns of Q will be obtained if outliers exist.
In particular, if we set ¢ = 2, the MTT tracker with outlier
handling can be obtained as follows:

(1D
where W = P + Q, and the component P exploits the under-
lying relationships of majority particles, while the component
Q is able to capture the outlier tasks simultaneously, which
yields more robust representations.

D. Optimization With Approximated Least Absolute Deviation

In this section, we show how to solve (8) efficiently. First,
the Manhattan norm is approximated by a smooth function
using the method presented in [6] and [19], and then gradient-
based method is applied to obtain the solution using a small
number of closed-form updates.

Due to the separability property of Manhattan norm, we
consider the following loss function of a single task:

g(M, w,x) = [Mw —x||; (12)

where x € RY is the single-view observation for a particle,
M e R?*" is the dictionary, and w € R” is the sparse
representation. As shown in [6], the Nesterov’s smoothing
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method [19] can be used to approximate (12) and obtain
a closed-form smoothed function as

go(M, W, x) = IE: M nlu«;( X(”') (13)
v

where M; . is the ]th row of M, x(;) is the jth entry of
vector x, and € > 0 is a parameter controls the smoothness.
The larger the parameter 6 the smoother the approximate
function gg(M, w, x), but the worse the approximate accuracy.
The function wy is a piecewise function defined as

J
=, 0<o0<@
wmaz[g_g 520 (14)
2° :

According to [19], gg(M, w, x) is well defined and contin-
ually differentiable at any w € R”. Moreover, gg(M, w, X) is
convex and its gradient with respect to w can be obtained as

Vugo =M p (15)
where s € R? is the Lagrange multiplier vector and
M. w—X()
L :med(— L+, ———= (16)
) oIM;. I

where med(-) is the median operator.
By applying (13), (8) can be approximated as

K
i Go(M*, WK X5y + 4, |IP QT 17
&%%2; o( Y+ 21Plh2+420Q 12 (17)

where Gg(MF, WK, XK) = > g0 (MF, Wf,x;‘) is the cost
function for the kth view of the n particles.
Let us denote by

K

= > GoM*, Wh. X5
k=1

r(P,Q) = A1 |Pll12+ 2201Q" [l1.2.

Note that now the objective function in (17) is a composite
function of two parts, a differential empirical loss func-
tion ¢(P, Q) and a convex nonsmooth regularization r (P, Q),
which has been extensively studied [5], [18], [44]. The
APG method [44] is employed because of its well-known
efficiency. In contrast to traditional subgradient-based methods
that converge at sublinear rate, APG can obtain the globally
optimal solution at quadratic convergence rate, which means
APG achieves O(1/m?) residual from the optimal solution
after m iterations.

We can apply the composite gradient mapping [5] to (17)
and construct the following function:

®(P,Q; R, S) = ((R,S) + (VR((R, S),P — R)
+(Vs{(R,S),Q - 8) + gIIP ~R|}

+§@—&ﬁ+ﬂhQ»

In ®(P, Q; R, S) comprises the regularization term r (P, Q)
and the approximation of ¢(P, Q) by the first order Taylor
expansion at point (R, S) regularized as the squared Euclidean
distance between (P, Q) and (R, S), where 5 is a parameter

(P, Q) (18)

19)

(20)
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controlling the step penalty and VR{(R,S) and Vs{(R,S)
denote the partial derivatives of ¢(R,S) with respect to
R and S. Recall that VRZ(R, S) = Vsl(R,S) = Vw{(R, S),
so the partial derivatives VR£(R,S) and Vgf(R,S) can be
computed in closed-form by (15).

In the mth APG iteration, (R"*! §"*1) is computed as
a linear combination of (P™,Q™) and (P"~! Q" 1), so
(R™+1, 8”1y stores the historical aggregation of (P, Q) in the
previous iterations, which is conventionally called aggregation
step. As suggested in [44], we set

Rm+1 — Pm + am(l - am—l
Am—1

)(Pm o Pm—l)

Om—1

Sm+1 — Qm +am(1 )(Qm Qm—l) (21)

where a,, can be setto ag =1 form =0 and o, =2/m + 3
for m > 1, and PO, QO, R! and S! are all set to zero matrix
for the initialization. Once given the aggregation (R™,S™),
the solution for the mth iteration is obtained by computing
the following proximal operator:

P", Q" = al‘gIII)liél o(P,Q; R",S™).

m—1

(22)

With simple manipulations, the optimization problem (22)
can be decomposed into two subproblems for P and Q,
respectively, as

1 oy
P" = in =[P — U"||% + —|P 23
argmlgnzll Iz + . IP[l1,2 (23)
m : 1 m 2 12 T
Q =argmén§||Q—V ||F+7||Q I (24

where U" = R”™ — 1/#VR¢R™,S") and V" = S§™ —
1/7Vst(R™, S™).

Following the decomposition, an efficient closed-form solu-
tion can be attained, respectively, for each row of P” and
each column of Q™ in the above subproblems (23) and (24)
according to [53]

A )
P — 0,1 - ——~ _Jum
e O

A
Q" = max (o, 1— W)Vf@ (25)

where P;” denotes the jth row of P” and Qm denotes the
ith column of Q™. Finally, the solution of (17) can be obtained
by iteratively computing (25) and updating (U™, V") until
the convergence of (P, Q). The procedure of the presented
algorithm is summarized in the Algorithm 1.

E. Outlier Rejection

Although a majority of particles will share the same
dictionary basis, some outlier tasks may exist. The proposed
MTMVT in (6) is capable of capturing the outliers by intro-
ducing the coefficient matrix Q. In particular, if the sum of the
L1 norm of the coefficients for the corresponding ith particle
is larger than an adaptive threshold vy, as

K
> lQf >y
k=1

(26)
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Algorithm 1 Optimization Algorithm

Input: Features of K views for n candidate samples X,
dictionary M, P° and QO, n, A1, A2

Output: P, Q

1: Initial m = 1, P° =0,Q° =0, R' =0, 8! =0

2: while not converged do

3:  Compute VRC{(R™,S™)

Equation (15)

4  Compute U" = R" — LVR{(R",S™)

5. Compute V" = §" — %VSZ(R’", S™)

6: Computg P and Q™ using Equation (25)

7

8

9

and Vgf(R™,S™) using

Um = 033 |
Rm+1 L am( ;:T;l)(Pm _ Pm—l)
. Sm+1 — Qm + am(I;Z'f]_] )(Qm _ Qm—l)
10 m=m+1
11: end while

Fig. 4. Examples of detected outliers. The green bounding boxes denote the
outliers and the red bounding box denotes the tracked target. The outliers are
detected out of 400 sampled particles. There are two outliers in the left frame
and six outliers in the right frame.

where Q;‘ is the ith column of QF, then it will be identified
as an outlier and its observation likelihood will be set to
zero. Therefore, the outliers will be ignored in the particle
resampling process and the samples will be more efficiently
used to focus on locating the target position. By denoting the
number of detected outliers as n,, the threshold y is updated
as follows:

Ynew = Yoldk, Mo > Np

Ynew = Yold/%X, no =0
Ynew = Yold, 0 <no < N,

27)

where x is a scaling factor and N, is a predefined threshold
for the number of outliers. We select y = 1, k = 1.2 and
N, = 20 based on experiments. Fig. 4 shows examples with
detected outliers.

F. Tracking Using Robust Multitask Multiview
Sparse Representation

In reference to the tracking result, the observation likelihood
of the tracking candidate i is defined as

1 K
pi=sexpi—ay [DAF - Xf I’ (28)

k=1
where Af e RY is the coefficients of the ith candidate
corresponding to the target templates of the kth view. The

tracking result is the particle that has the maximum obser-
vation likelihood. It should be noted that both MTMVTLS

Algorithm 2 Tracking via Robust Multitask Multiview
Sparse Representation

Input: Particle set ;| = {y;;]}l’.’:1 , current complete dictio-

nary M;_| = {Mtlfl, . ,M{il} for K views

Output: Estimated target y;, particle set ), = {yi}?: 1
updated complete dictionary M; = {Mtl, e ,M,K } for K
views

(HVARZIE N
2: for k =1 ton do
Draw particle y! from yﬁ_l using the state transition
distribution
: end for
:for k=1to K do
Extract the features X¥ according to )V,
: end for
: Estimate the robust joint sparse representation W, P, Q
using (6)
9: Detect outliers using (26) and set p; = 0 for all outliers
10: For the remaining particles, compute p; using (28))
11: Find the best candidate y; using arg max p;
1

(95}

12: M; < Update templates
13: /*Resampling*/
14: Jy < Resample {y;}?_, with respect to {p;}i_,

and MTMVTLAD employ (28) to estimate the observation
likelihood although different criterion are used to learn the
sparse representation.

G. Template Update

In the course of tracking, object appearance remains the
same only episodically, but eventually the template is no
longer an accurate model of the object appearance. To handle
appearance variations, the target dictionary D is progressively
updated using an approach similar to [3] and [4]. In particular,
each target template in D is assigned a weight which represents
its importance. At each frame, the norm of the learned coeffi-
cients Af.‘s for the target particle is used to update the recorded
weight of each template in D. Once the angle between
the tracked target and the most representative template (the
template with the largest coefficient norm) is larger than a
predefined threshold f, the template with the smallest recorded
weight is replaced by the tracked target. We summarize the
proposed tracking algorithm in Algorithm 2.

V. EXPERIMENTS

In this section, we introduce the implementation details
of the proposed trackers and report the experimental results
by extensively evaluating the proposed tracking methods
on numerous video sequences’ including a comprehen-
sive tracking benchmark [2], which is recently published

2Some of the sequences are publicly available in the following websites:
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml;
http://www.cs.toronto.edu/~dross/ivt/; http://cv.snu.ac.kr/research/~vtd/;
http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm [54];
http://www.eng.tau.ac.il/~oron/LOT/LOT.html [55];
http://Irs.icg.tugraz.at/research/houghtrack/ [56]
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TABLE I
AVERAGE OVERLAP AND SUCCESS RATES (PERCENTAGES)

Sequence |  Struck | LIT | MTT | VT | VID | MIL | MTMVTLS | MTMVTLAD
Shaking 0.31 (0.15) | 0.58 (0.59) | 0.30(0.12) | 0.02(0.01) | 0.72 (0.96) | 0.57 (0.58) 0.76 (0.99)
Kitesurf 0.17 (023) | 049 (0.61) | 0.31(032) | 020(0.26) | 0.03 (0.05) | 0.74 (0.89) 0.71 (0.95)
Girl 0.73 (0.96) | 0.60 (0.76) | 0.71 (0.98) | 0.34(0.28) | 0.34 (0.30) | 0.37 (0.24) 0.70 (0.95)
Davidl 0.64 (0.83) | 0.36(0.36) | 051 (0.53) | 0.57 (055 | 027(0.22) | 029 (0.05) | 0.72 (0.97) 0.72 (0.97)
Faceocc? 0.68 (0.74) | 0.80 (1.00) | 0.68 (0.76) | 0.60 (0.65) | 0.72 (0.99) | 0.77 (0.98) 0.77 (0.98)
Jumping 0.64 (0.83) | 0.10 (0.07) | 023 (0.15) | 036(047) | 0.10 (0.10) | 0.52 (0.45) | 0.70 (0.95)

Gym 0.62 (0.75) | 0.03(0.03) | 020 (0.16) | 0.20 (0.19) | 0.66 (0.90) | 043 (0.43) | 0.58 (0.78)

Bolt 0.49 (0.46) | 0.01 (0.01) | 0.01(0.01) | 0.01(0.01) | 0.14 (0.09) | 0.62 (0.82) 0.62 (0.86)
Skating1 0.46 (0.57) | 029 (0.33) | 0.17 (0.15) | 0.06(0.06) | 0.67 (0.92) | 0.19 (0.19) | 0.67 (0.89)

Singerl 0.31(0.22) | 0.65 (0.92) 044 (0.37) | 0.79 (1.00) | 031 (021) | 055 (0.50) 0.68 (0.94)
Basketball | 0.38 (0.45) | 0.12 (0.02) | 0.17 (020) | 0.16 (0.08) | 0.72 (0.94) | 0.6 (0.24) | 0.62 (0.78)

David2 0.68 (0.91) | 039 (0.52) | 042 (056) | 0.26(0.35) | 037 (0.51) | 037 (046) |  0.69 (0.94)

DH 0.45 (0.54) | 0.14 (0.09) | 0.47(0.62) | 0.07(0.08) | 053 (0.49) | 0.53(0.46) | 0.59 (0.83)

Shop 0.45 (0.36) | 0.76 (0.99) 0.57 (0.41) | 032 (0.36) | 0.25(034) | 0.76 (1.00) 0.76 (0.99)
Animal 0.56 (0.73) | 0.05(0.06) | 0.60 (0.80) | 0.03 (0.04) | 0.70 (0.97) | 037 (027) | 0.58 (0.87)

Bird2 0.59 (0.55) | 0.53(0.57) | 0.09(0.09) | 039(048) | 0.10 (0.13) | 0.35(0.19) 0.71 (0.95)
Tigerl 0.38 (047) | 0.8 (0.15) | 0.32(033) | 0.11(0.13) | 0.13 (0.12) | 0.59 (0.70) |  0.71 (0.94)

Lemming 052 (0.62) | 0.11(0.15) | 027 (035 | 0.6 (0.36) | 0.45(0.56) | 0.35 (0.37) 0.67 (0.89)
Syly 0.66 (0.91) | 0.76 (1.00) | 0.55(0.76) | 0.66 (0.78) | 0.76 (0.96) | 0.72 (0.94) 0.75 (0.96)
Cliffbar 0.34 (041) | 042 (048) | 0.59(0.62) | 034(044) | 048 (0.67) | 0.53 (0.52) | 0.70 (0.88)

Card 049 (0.38) | 0.54(0.46) | 0.74 (1.00) | 0.85(1.00) | 0.53(0.56) | 0.28 (0.27) | 0.86 (1.00) 0.86 (1.00)
Average | 051 (0.59) | 037 (042) | 044 (0.52) | 031(0.34) | 044 (054) | 045 (0.46) | | 0.69 0.92)

The quantitative comparison on the 21 sequences. The figures outside the brackets and the figures inside the brackets are the average overlap and the success

rates, respectively. The RED number indicates the best performance, while the

indicates the second best. The ranking is primarily based on the

success rates. If the success rates scores are equal, then we compare the average overlap.

in CVPR2013.3 We also evaluated MTMVTLAD on the
ALOV++ [57], which is recommended by an anonymous
reviewer.

A. Implementation Details

To evaluate the effectiveness of the MTMVTLS and
MTMVTLAD, they were implemented using four comple-
mentary features as four different views. We employed four
popular features: 1) color histograms; 2) intensity; 3) his-
tograms of oriented gradients (HOGs) [58]; and 4) local binary
patterns (LBPs) [59]. The HOG is a gradient-based feature that
captures edge distribution of an object. LBP is powerful for
representing object texture. Moreover, to ensure the quality
of extracted features, a simple but effective illumination nor-
malization method used in [60] is applied before the intensity
feature extraction. The unit-norm normalization is applied to
the extracted feature vector of each particle view, respectively.

For all reported experiments, we set 4y = Ay = 0.5
for MTMVTLS, 4, = 125, A, = 1, and 8 = 0.1 for
MTMVTLAD, respectively. For both MTMVTLS and
MTMVTLAD, we set the number of particles n = 400 [the
same for L1 tracker (L1T) and MTT], the number of template
samples N = 10. The template of intensity is set to one third
of the size of the initial target (half size for those whose
shorter side is <20). The color histogram, HOG, and LBP
are extracted in a larger template that doubles the size of the
intensity template. The threshold for template update f is set
to 60.

Currently, the proposed tracker MTMVTLAD is imple-
mented using MATLAB without special code optimization.
The computational time of the proposed tracker mainly

326th IEEE Conference on Computer Vision and Pattern Recognition, 2013.

consists of two parts: 1) feature extraction and 2) the
optimization solved by Algorithm 1. The feature extraction
can be significantly accelerated using parallel program-
ming based on GPU. However, we did not explore
GPU programming, leaving this step for the future work.
In Algorithm 1, the computational complexity of each iteration
is dominated by the gradient computation in Step 3 of com-
plexity O(nKdh). Therefore, the runtime of tracker depends
on the dimensionality of features, the number of particles,
and the number of views. Practically, in the experiment on
EXTsequences reported in Table IV, it runs at 1.8 s/frame
on average on this multicore system: 2.9-GHz Intel Xeon
E5-2690, 32-GB RAM.

B. Evaluation on Publicly Available Sequences

In this section, we validate the effectiveness of the
proposed trackers by extensively performing the experiments
on 21 publicly available sequences. All original sized images
are used in contrast with resizing to the same size implemented
in [28]. The titles of used sequences are listed in Table I.
First, we qualitatively compare MTMVTLS and MTMVTLAD
with six other popular trackers: 1) Struck [22]; 2) LIT [3];
3) MTT [4]; 4) tracking with MIL [21]; 5) incremental
learning for visual tracking (IVT) [32]; and 6) VTD [12].
It should be noted that VID is a multiview tracker that
employs hue, saturation, intensity, and edge templates for the
features. We conducted the experiments by running source
codes provided by the original authors. The recommended
parameters are set for initialization.

The Shaking, Kitesurf, Girl, Faceocc2, Davidl, and Jumping
sequences track human faces under different circumstances
and challenges. The experimental results show that both
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Fig. 5. Tracking results of different algorithms. Frame indexes are shown in the top left of each figure. (a) Shaking. (b) Kitesurf. (c) Girl. (d) Davidl.

(e) Faceocc2. (f) Jumping. (g) Gym. (h) Bolt. (i) Skatingl. (j) Singerl. (k) Basketball. (1) David2. (m) DH. (n) Shop.

MTMVTLS and MTMVTLAD are able to handle the scale
changes, pose changes, fast motion (FM), OCC, appearance
variation, illumination change, and angle variation problems
encountered in face tracking tasks. For example, the Shaking
sequence captures a person performing on stage. The task is
to track his face under significant illumination changes and
appearance variations. The IVT drifts from the target quickly
due to the severe appearance variation. Struck and MTT are
prone to drift during the illumination change. In contrast, our
trackers are more robust to the illumination changes as a
result of the employment of rich feature types. In the Davidl
sequence, a moving face is tracked, which presents many
challenges such as pose and scale changes. Compared with
L1T and MTT, MTMVTLS and MTMVTLAD successfully
track the target under different challenges due to the robustness
of the additional features. From the experiments, we find that
IVT is vulnerable to the appearance variations, while VTD is
prone to drift in OCC scenarios. Some representative frames
can be found in Fig. 5(a)—(f).

In Fig. 5(g)-(n), we show some example frames for a
group of eight sequences, where the tasks are to track the
human bodies in different settings. In particular, the DH, Gym,
Bolt, Skatingl, and Basketball sequences track fast moving
human bodies in sport scenarios. In the DH sequence, Struck,
LIT, MTT, and IVT lose the target because of the distracting
background and FM. The VTD is prone to drift and only
track part of the target. In the Gym, Bolt, Skatingl, and
Basketball sequences, the poses of targets changes rapidly
and the appearance deforms frequently, which make them
more challenging for existing trackers. Both L1T and IVT fail
on all the sequences. Struck fails on the Skatingl sequences
due to the severe pose and illumination changes. MTT loses
the targets soon on the Bolt and Gym sequences due to
the DEF of the targets. The VID succeeds in the Skatingl
and Basketball sequences because of the benefit of multiple
types of features but drifts apart from the target in the Bolt
sequence. In addition, VTD fails in the David2 and
Shop sequences with the presence of OCC. In contrast,
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Struck LIT MTT VT VTD e— MIL‘

‘ — MTMVTLS MTMVTLAD ‘

Fig. 6. Tracking results of different algorithms. Frame indexes are shown in
the top left of each figure. (a) Animal. (b) Bird2. (c) Tigerl. (d) Lemming.
(e) Sylv. (f) Cliffbar. (g) Car4.

MTMVTLS and MTMVTLAD successfully track all these
targets in our experiments, which indicates the proposed
tracker is not as sensitive to shape DEF as previous single-
view trackers, due to the effective use of the complementary
features and the capability of detecting outliers. Moreover,
MTMVTLAD appears to be more robust than MTMVTLS
in the Singerl and Basketball sequences, where MTMVTLS
tends to include some background into the bounding box.

In the last group of seven sequences, the tasks are varying
from tracking animal in wild or car in road, to tracking moving
dolls or object indoor. Some representative frames of these
sequences are shown in Fig. 6(a)—(g). The Animal sequence
shown in Fig. 6(a) tracks the head of a fast running deer. The
main challenges are the FM and BC. In the Animal sequence,
MTT, VID, MTMVTLS, and MTMVTLAD succeed in track-
ing the target over the whole sequence, while MIL and Struck
are only able to track a part of the target though does not
lose it. The IVT gradually drifts from the target after the
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third frame and totally loses the target in the sixth frame.
LI1T fails in the presence of FM and motion blur (MB). The
multitask manner appears to make MTT, MTMVTLS, and
MTMVTLAD more robust than L1T. In the Tigerl, Lemming,
and Sylv sequences, the tasks are to track moving dolls in
indoor scenes. Almost all the trackers compared can track
the doll in the earlier part of the Sylv sequence. However,
IVT loses the target when it undergoes pose changes. The
Tigerl and Lemming sequences are much harder due to the sig-
nificant appearance changes, OCC, in-plane rotations (IPRs),
and distractive background, so all trackers continuously lock
in the background except MTMVTLS and MTMVTLAD.
Our trackers faithfully tracks the dolls, and obtain the best
performances. Some example shots of these three sequences
are shown in Fig. 6(c)—(e). In the Car4 sequence, MTT, IVT,
MTMVTLS, and MTMVTLAD perfectly track the moving car
despite the dramatic illumination and scale changes, which are
shown in Fig. 6(g). In contrast, VID and MIL lose the target
and L1T tends to include much of the background area into
the bounding box when the car is moving under the bridge,
which leads to significant illumination changes.

To quantitatively evaluate the performance of each tracker,
we compute the bounding box overlap S, of 7, and r; in each
frame, where r; is the bounding box outputted by a tracker and
r¢ is the ground truth bounding box. The bounding box overlap
isdefined as S, = |r; Nrg|/|r; Urgl, where N and U denote the
intersection and union of two regions, respectively. For more
comprehensive comparison, we also compute the success rate
R, by counting the percentage of frames whose overlap S, is
bigger than a threshold 7, = 0.5. The average overlap as well
as the success rate R, of the eight comparative trackers on
the 21 sequences are summarized in Table L. It can be clearly
seen that the proposed MTMVTLS and MTMVTLAD achieve
the best average performances over all the tested sequences
compared with the other five popular trackers. Moreover,
MTMVTLAD appears to be more robust than MTMVTLS and
achieves a slightly better performance in this data set.

C. Evaluation on Noisy Sequences

In the previous section, we compare the proposed trackers
with five other trackers on 21 challenging sequences. Most
of these sequences are captured under restricted environment
without the contamination of noise. However, in the real-world
setting, the video images may be contaminated by various
of noise, which makes the tracking task even harder. In this
section, we tested the proposed trackers on the sequences
contaminated by different types of synthetic noise and real-
world noise, e.g., snow and rain. The composition of the tested
sequences and the qualitative comparison are detailed below.

1) Evaluation on Noisy Video Sequences: In reality, the
targets and the scene can be contaminated by many kinds of
noise. To evaluate robustness to noise, we contaminated the
above 21 sequences with different types of synthetic noise
including Gaussian, Laplace, and salt and pepper noise to
simulate the noise in real world and evaluate our proposed
tracker on them. By synthesizing noisy images, we can choose
different additive noise and control the noise level at the same
time so we can better understand robustness of our method



2884

TABLE II
PARAMETERS OF SYNTHETIC DATA SET

Dataset | Mean | Variance | Noise density
Gaussian 1 0.02 0.01 -
Gaussian 2 0.02 0.05 -
Gaussian 3 0.02 0.1 -
Gaussian 4 0.02 0.5 -
Laplace 1 0.02 0.01 -
Laplace 2 0.02 0.05 -
Laplace 3 0.02 0.1 -
Laplace 4 0.02 0.5 -
salt & pepper 1 - - 0.01
salt & pepper 2 - - 0.05
salt & pepper 3 - - 0.1
salt & pepper 4 - - 0.5

(b)

[—vLiT —m1T VT

VTD === MIL ====MTMVTLS ====MTMVTLAD ‘

Fig. 7. Some examples of the contaminated sequences. (a) Singerl
(Gaussian 4). (b) Shaking (Laplace 4). (c) Animal (salt and pepper 4).

TABLE III
AVERAGE SUCCESS RATES IN THE CONTAMINATED DATA SETS

Sequence | LIT | MTT | IVT | VID | MIL | MTMVTLS | MTMVTLAD
Gaussian] 036 0.50 0.36 053 041 073 0.83
Gaussian2 042 035 038 049 037 0.69 070
Gaussian3 034 029 037 047 042 0.65 0.66
Gaussiand 0.15 0.03 029 029 041 0.42 045
Laplacel 045 045 034 054 040 0.83 0.80
Laplace2 036 037 03s 053 042 0.73 073
Laplace3 034 031 037 049 041 0.59 0.63
Laplace4 029 0.1 029 039 043 0.51 0.49
Sault & Pepprl 038 0.58 042 054 044 0.87 0.88
Sault & Peppr2 036 043 039 045 044 0.82 0.82
Sault & Peppr3 033 036 039 051 042 0.68 078
Sault & Pepprd 021 0.04 025 026 043 0.38 037
Average | 033 | 032 | 035 | o046 | 042 | 0.66 | 0.68

The RED number indicates the best performance, while the Green indicates the second best.

to noise. Similar approach that adds synthetic noise to the
video sequences to test robustness of the tracking method
has been adopted in [61]. Each type of noise is generated by
four sets of different parameters indicating four light-to-heavy
levels, and 12 additional groups of sequences are created, i.e.,
252 (21 x 12) sequences in total. The parameters to generate
the synthetic noise are summarized in Table II. Some examples
of the contaminated sequences as well as the qualitative results
are shown in Fig. 7. To quantitatively compare the tracking
performance on the 12 data sets, we summarized the average
success rates in Table III. From Table III, we can see all
trackers to some extent degraded in terms of performance on
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these noisy data sets. In particular, LIT and MTT appear to
be more sensitive to the noise due to the use of single type of
feature and the heuristic strategy used for template update.
Interestingly, IVT may have slightly better performance in
some of the contaminated video data sets comparing with the
performance on the original data set. This phenomenon, in
which addition of some noise to the input data during training
may sometimes improve the generalization and therefore boost
the performance, has been noted in [62]. VITD, MTMVTLS,
and MTMVTLAD achieve better performances on average
compared with L1T, MTT, and IVT because of the adoption
of multiple types of features. MIL is comparable with VTD
in terms of average performance since MIL appears to be
insensitive to the noise levels. This suggests that the Haar
feature associated with MIL is just robust to our synthetic
noise. On average, MTMVTLAD achieves better performance
than MTMVTLS and obtain the best average performance over
all comparative trackers and 12 tested data sets.

2) Evaluation on EXTsequences: To further evaluate the
robustness of the proposed tracker to noise in real world, we
collect nine more video sequences, which are taken in extreme
weather. We call this set of sequences as EXTsequences.
The first group of six sequences deals with tracking moving
vehicles in bad weather (e.g., storm, snow) and associated
challenges, e.g., OCC by the windshield wiper, illumination
changes, and scale changes. Some example frames as well
as the tracking results can be found in Fig. 8(a)—(f). The
second group of three sequences deals with tracking human
faces undergoing appearance variation due to IPR. For some
example frames [Fig. 8(g) and (h)]. In these sequences, the
visibility of faces is severely affected by snowstorm and spray.
However, MTMVTLS and MTMVTLAD are able to track the
targets faithfully. To quantitatively evaluate the performance,
we again summarize the average overlap and the success
rates in Table IV. The quantitative results demonstrate that
MTMVTLAD is robust to noise and it obtains the best average
performance comparing with other state-of-the-art trackers.

D. Evaluation on CVPR2013 Tracking Benchmark

To evaluate the overall performance of the proposed tracker
under different scenarios and demonstrate the improvement
with respect to previous methods, in this section, we conduct
the experiments on the CVPR tracking benchmark [2] and
compare the proposed tracker with numerous state-of-the-art
trackers and its own baseline methods. The CVPR tracking
benchmark is a comprehensive tracking benchmark, which
is designed for tracking performance evaluation. It consists
of 50 fully annotated sequences. Each sequence is tagged
with the attributes indicating to the presence of different chal-
lenges: 1) illuminative variation; 2) scale variation; 3) OCC;
4) DEF; 5) MB; 6) FM; 7) IPR; 8) out-of-plane-
rotation (OPR); 9) out-of-view; 10) BCs; and 11) low
resolution. To evaluate the strength and weakness of dif-
ferent methods, the sequences are categorized according to
the attributes, and 11 challenge subsets are created. In [2],
the evaluation is based on two kinds of metrics, i.e., the
precision plot and success plot. To obtain the precision plot,
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Fig. 8. Tracking results of different algorithms on EXTsequences. Frame indexes are shown in the top left of each figure. (a) Storm. (b) Winterl. (c) Winter2.
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TABLE IV
AVERAGE OVERLAP AND SUCCESS RATES (PERCENTAGES)

Sequence  Frames | LIT | MTT | VT | VID | MIL | MTMVTLS | MTMVTLAD
Storm 455 044 (0.33) | 0.63(054) | 045(048) | 083 (0.98) | 056 (0.46) |  0.86 (1.00) 0.85 (1.00)
Winterl 998 0.81 (1.00) | 0.84 (1.00) | 081 (1.00) | 0.67 (0.76) | 0.60 (0.62) |  0.81 (1.00) 0.83 (1.00)
Winter2 533 0.86 (1.00) | 0.85(1.00) | 073 (1.00) | 0.68 (1.00) | 0.63 (0.88) |  0.88 (1.00) 0.88 (1.00)
Snowl 290 0.05(0.06) | 035(046) | 0.20(023) | 024 (0.08) | 047 (048) | 072 (0.98) 0.80 (0.96)
Snow?2 4435 0.86 (1.00) | 0.72(1.00) | 074 (0.85) | 0.86 (1.00) | 024 (029) |  0.88 (1.00) 0.89 (1.00)
DarkCar 147 0.76 (1.00) | 053 (0.39) | 0.55(0.50) | 0.62 (0.56) | 045 (032) |  0.62 (0.89) 0.61 (0.83)
Antarctica 580 050 (0.58) | 024 (0.25) | 0.01 (0.01) | 061 (0.75) | 0.17 (0.10) |  0.60 (0.92) 0.62 (0.93)
Skiing1 486 074 (0.99) | 077 (0.98) | 046 (0.67) | 073 (0.95 | 031(036) | 0.78 (0.99) 0.82 (1.00)
Skiing2 846 051 (038) | 072(0.89) | 0.02(0.02) | 0.17(0.21) | 0.04(0.04) | 076 (0.89) 0.74 (0.90)
Average - ] 061(070) | 063(0.72) | 044(0.53) | 060 (0.70) | 039 (039 | 077 (0.96) |  0.78 (0.96)

The quantitative comparison on EXTsequences. The figures outside the brackets and the figures inside the brackets are the average overlap and the success
rates, respectively. The RED number indicates the best performance, while the GREEN indicates the second best. The ranking is primarily based on the
success rates. If the success rates scores are equal, then we compare the average overlap.

we calculate the center location error (CLE), which is the
distance between the centers of the tracking result and the
manually labeled ground truth for each frame. The precision
plot shows the percentage of frames whose CLE is within
a given threshold and uses a representative precision score
for ranking by choosing an appropriate threshold (r = 20).
Another metric is to compute the bounding box overlap S,
which has been defined in Section V-B. The number of frames
whose overlap S, is larger than the given threshold ¢, is
counted. The success plot shows the ratios of successful frames
at the thresholds varied from O to 1. In success plot, the
ranking is based on the area under curve (AUC) instead of
a specific threshold. For the comparative trackers, it currently
includes 29 popular tracking algorithms, including the Struck,
MTT, IVT, VTD, and MIL, which have been tested in previous
sections, and the L1APG [25] (a newer version of L1T). For
more details about the benchmark, we refer readers to the
original paper [2].

1) Comparison With Trackers on CVPR2013 Tracking
Benchmark: We run the one-pass evaluation on the benchmark

using the proposed trackers MTMVTLS and MTMVTLAD
and compare them with the 29 popular tracking methods
previously evaluated in [2]. We also compare the proposed
trackers with the latest version of LRT [63], which has similar
motivation as our methods. In [63], the consensus between
particles is enforced through low-rank minimization.

It should be noted that we strictly follow the protocol
proposed by the authors and use the same parameters for all
the sequences. For comparison, we use the online available*
tracking results and the unified tool provided by [2] to compute
the evaluation plots. For the results of [63], we downloaded the
code from the authors’ website.? In the CVPR tracking bench-
mark, the proposed MTMVTLAD and MTMVTLS achieve
overall the best and the second best performance using the pre-
cision plot as the metric, which is shown Fig. 9. MTMVTLS
and MTMVTLAD also rank in the top ten from all 32 trackers

“http://visual-tracking.net/

5http://nlpr—web.iaAac.cn/mmc/hornepage/tzzhang/Project_Tianzhu/zhang
_IICV14/RobustVisual TrackingViaConsistentLow-RankSparse.html and ran
it on all sequences using the default parameters.
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Fig. 9. Precision plots and success plots on the CVPR2013 tracking
benchmark. The values appearing in the legend of the precision plot are the
precision scores in the threshold of 20, while the ones in success plots are the
AUC scores. Only the top 10 trackers are presented, while the other trackers
can be found in [2]. The trackers appearing in the legend are Struck [22],
SCM [27], TLD [33], LRT [63], VTD [12], VTS [64], CXT [65], CSK [66],
and ASLA [26].
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Fig. 10.  Success plots for BC and DEF subsets of CVPR2013 tracking
benchmark. The value appearing in the title is the number of sequences in the
specific subset. The values appearing in the legend are the AUC scores. Only
the top 10 trackers are presented, while the other trackers can be found in [2].
The trackers appearing in the legend are DFT [67], LSK [42], and CPF [68].

over all challenge subsets using either the measurement of
precision plots or success plots. According to the results,
MTMVTLS and MTMVTLAD are more robust to BC, DEF,
IPR and OPR challenges comparing with other 30 trackers
because the proposed methods can effectively take advantage
of complementary features. Moreover, MTMVTLAD takes the
first places in 6 out of 11 challenge subsets when using the
success plot as the metric because LAD is advantageous to
learn more appropriate representations. We show the success
plots of the BC and DEF subsets in Fig. 10, but omit other
figures due to the space limits.

2) Comparison With Baseline Methods: In previous
sections, we have demonstrated the superior performance
of MTMVTLAD comparing with MTMVTLS and other
state-of-art trackers. However, it is also important to com-
pare MTMVTLAD with its baseline variants to demonstrate
the component-wise contributions to the performance of the
proposed tracker.

First, we validate the improvement brought by the robust
multitask multiview representation by testing it in both single-
view and multiview settings and comparing it with their
corresponding baseline variants. To this end, we implement
two multitask single-view (K = 1) trackers based on (7) and
denote them, respectively, as MTSVTLS and MTSVTLS(-),
where MTSVTLS(—) is constructed by removing the func-
tional component Q (no outlier handling). It should be
noted that the formulation of MTSVTLS(—) is the same

0.8 1

04 0.6 0.4 06
Overlap threshold Overlap threshold

(a) b)

Fig. 11. Success plots of MTMVTLAD and its baseline variants on
the CVPR2013 tracking benchmark. The values appearing in the legend
are the AUC scores. (a) Comparisons with the variants of MTMVTLAD.
(b) Comparisons with trackers based on concatenated features and different
regularization.

as MTT [4] since MTT is a special case of the proposed
general form (9) discussed in Section IV-C. Both MTSVTLS
and MTSVTLS(—) are using intensity feature only, similar
to MTT [4]. We also implement a multitask multiview tracker
MTMVTLS(—) similar to MTMVTLS but removing the func-
tional component Q. To test the improvement brought by the
LAD formulation, we construct the corresponding LAD-based
version and denote them by MTSVTLAD, MTSVTLAD(—),
and MTMVTLAD(—), respectively. We ran these variants on
the CVPR benchmark 2013 and compared MTMVTLAD with
them using the success plot. As shown in Fig. 11(a), the
multiview-based trackers significantly outperform the single-
view-based trackers, which demonstrates the advantage of
using complementary information. In addition, comparing
with the trackers without the outlier handling, the trackers
which explicitly consider outliers generally achieve better
AUC scores, which suggests that outliers should be specifically
considered during the multitask representation learning. Last
but not least, the LAD-based trackers outperform the corre-
sponding LS-based trackers, which validates the robustness of
the learned representation based on LAD criterion.

As discussed previously, directly concatenating multiple
features into a long feature vector is not a good way to handle
multiple features. To validate this point, we concatenate
multiple features and implement a baseline tracker based
on the formulation (8), where we let K = 1. We call it as
MTMVConTLAD. Using the concatenated features, we also
implement several variants, including MTMVConTLAD(—),
which is the same as MTMVConTLAD but removes the
functional component Q (no outlier handling), and three
trackers MVConLADL1, MVConLADL2, MVConLADEN,
which use L1, L2, and Elastic Net regularizers [69], respec-
tively. It should be noted that all these variants can be easily
implemented based on the method presented in Section IV-D,
along with the soft thresholding [70] for L1 regularizer.
We also ran these variants on the CVPR benchmark 2013
and compare MTMVTLAD with them using the success plot,
which is shown in Fig. 11(b). It shows MTMVConTLAD
and MTMVConTLAD(—) outperform MVConLADLI,
MVConLADL2, MVConLADEN, which validates expected
improvements brought by considering all particles in a
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Fig. 12.  Survival curves for top 10 trackers in ALOV++ data set. The
average F-scores over all sequences are specified in the legend. The trackers
appearing in the legend are Struck [22], FBT [71], VTS [64], TLD [33],
L10 [43], NCC [72], MIL [21], L1T [3], and IVT [32].

multitask setting. In addition, MTMVConTLAD does not
perform as good as the proposed MTMVTLAD, which
suggests that the multiple features should not be concatenated
directly.

E. Evaluation on ALOV++ Data Set

Recently, Smeulders et al. [57] have developed the
Amsterdam Library of Ordinary Videos data set, named
ALOV++, which consists of 14 challenge subsets,
315 sequences of which focuses on systematically and
experimentally evaluating trackers’ robustnesses in a large
variety of situations including light changes, low contrast,
OCC, and so on. In [57], survival curves based on F-score
were proposed to evaluate trackers’ robustnesses. To obtain
the survival curve of a tracker, a F-score for each video is
computed as F = 2(precision - recall)/(precision + recall),
where precision = ng,/(ny + np), recall = ng,/(ny + nm),
and ny, nfp, nf denote the number of true positives
(overlap S, >= 0.5), false positives, and false negatives
in a video. A survival curve shows the performance of
a trackers on all videos in the data set. The videos are
sorted according to the F-score. By sorting the videos, the
graph gives a comparative view in cumulative rendition of
the quality of the tracker on the whole data set. We refer
the reader to the original paper [57] and the author’s
website® for details about the data set and the evaluation
tools.

To evaluate the proposed MTMVTLAD tracker on
ALOV++ data set, we downloaded the videos and ground
truth data from the website,® and ran MTMVTLAD on all of
the 315 sequences using the ground truth of the first frame
as initialization. We compare our tracker with 19 popular
trackers’ evaluated in [57]. We show the survival curves of the
top ten trackers and the average F-scores over all sequences
in Fig. 12. As shown in the figure, the average F-score of
MTMVTLAD in ALOV++ data set is 0.67, which is better
than Struck [22] with 0.66 and is also much better than 0.62 of
VTS [64], another multiview-based tracker. In ALOV++ data
set, MTMVTLAD achieves the best overall performance over
20 compared trackers using the evaluation metric of average
F-score. For better understanding of the overall performance

6http://imagelab.ing.unimore.it/dsm/

TPlease refer to [57] and the references within for the details about the
compared trackers. The evaluation results of these trackers were obtained
from the authors of [57].
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Fig. 13. Respective average F-scores of the proposed MTMVTLAD tracker

in 14 ALOV++ challenge subsets.
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Fig. 14. Failure cases of MTMVTLAD. (a) Failure cases on Skiing and
MotorRolling sequences of CVPR2013 benchmark. (b) Failure case in the
LongDuration subset of ALOV++4 data set. The numbers appear on the
top of each bar is the tracker’s average F-score over 10 sequences of
the LongDuration subset.

of the proposed tracker, we also report the respective average
F-scores of MTMVTLAD in 14 ALOV++ challenge subsets
in Fig. 13.

F. Discussion

The experimental results demonstrate robust tracking perfor-
mance of our approach. However, our tracker can indeed fail
in some scenarios, which are shown in Fig. 14. Our tracker
can fail when the objects undergo very large pose transfor-
mation caused by rotation or scale changes. For example,
Fig. 14(a) shows two failure cases of MTMVTLAD on Skiing
and MotorRolling sequences of CVPR2013 benchmark where
MTMVTLAD loses the targets when the targets undergo
rotations and/or change their appearance and scale. Another
failure case of MTMVTLAD is on the LongDuration subset of
ALOV++ data set. On this subset, the trackers run on 10 long
sequences where some of targets may move completely out of
the frame and then reappear. MTMVTLAD does not perform
well and obtains a low F-score on this subset as shown in
Fig. 14(b). It is possible that the tracker locks on an irrelevant
patch when the target is fully occluded. We expect our future
investigation to address this failure mode of the proposed
tracker.

VI. CONCLUSION

In this paper, we have presented a LAD-based robust multi-
task multiview sparse learning method for PF-based tracking.
By appropriately introducing the /1 » norm regularization, the
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method not only exploits the underlying relationship shared
by different views and different particles, but also captures the
frequently emerging outlier tasks which have been previously
ignored. The proposed regularized LAD problem is effec-
tively approximated by the Nesterov’s smoothing method and
efficiently solved by the APG. We implemented our method
using four types of complementary features, i.e., intensity,
color histogram, HOG, and LBP, and extensively tested it
on numerous challenging sequences including publicly avail-
able sequences, synthetic noisy sequences, real-world noisy
sequences, and two comprehensive tracking data sets. The
experimental results demonstrate that the proposed method
is capable of taking advantage of multiview data and cor-
rectly handling the outlier tasks. Compared with several pop-
ular trackers, our tracker demonstrates superior performance.
Moreover, the proposed method can potentially be extended
to handle data obtained from sensors other than cameras.
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