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A Universal Concept Based on Cellular Neural
Networks for Ultrafast and Flexible Solving

of Differential Equations
Jean Chamberlain Chedjou and Kyandoghere Kyamakya

Abstract— This paper develops and validates a
comprehensive and universally applicable computational
concept for solving nonlinear differential equations (NDEs)
through a neurocomputing concept based on cellular neural
networks (CNNs). High-precision, stability, convergence, and
lowest-possible memory requirements are ensured by the
CNN processor architecture. A significant challenge solved
in this paper is that all these cited computing features are
ensured in all system-states (regular or chaotic ones) and in
all bifurcation conditions that may be experienced by NDEs.
One particular quintessence of this paper is to develop and
demonstrate a solver concept that shows and ensures that
CNN processors (realized either in hardware or in software)
are universal solvers of NDE models. The solving logic or
algorithm of given NDEs (possible examples are: Duffing,
Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers,
and the transport equations) through a CNN processor system
is provided by a set of templates that are computed by our
comprehensive templates calculation technique that we call
nonlinear adaptive optimization. This paper is therefore a
significant contribution and represents a cutting-edge real-
time computational engineering approach, especially while
considering the various scientific and engineering applications
of this ultrafast, energy-and-memory-efficient, and high-precise
NDE solver concept. For illustration purposes, three NDE
models are demonstratively solved, and related CNN templates
are derived and used: the periodically excited Duffing equation,
the Mathieu equation, and the transport equation.

Index Terms— Cellular neural networks (CNNs)-based neuro-
computing, CNN-based ultrafast solving of nonlinear differential
equations (NDEs), CNN processor concept as a universal
differential equation model solver, nonlinear adaptive
optimization (NAOP).

NOMENCLATURE

�x Vector of decision variables.
�λ Vector of multiplier variables.
f (�x) Objective function.
ga(�x) Constraints functions.
L(�x, �λ) Lagrange function.
t Time.

Manuscript received April 23, 2013; revised January 22, 2014, April 14,
2014, and April 24, 2014; accepted April 30, 2014. Date of publication June 6,
2014; date of current version March 16, 2015.

The authors are with the Transportation Informatics Group, Institute of
Smart Systems Technologies, University of Klagenfurt, Klagenfurt 9020,
Austria (e-mail: kyandoghere.kyamakya@aau.at; jean.chedjou@aau.at).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2014.2323218

ẋi First derivative of xi with respect to t .
ẍi Second derivative of xi (inertia).
∂x Partial derivative with respect to x .
α, β Learning rate parameters.
Dij Damped mass matrix.
�F Force producing the potential energy.
E P Potential energy.
EC Kinetic energy.
ET Total energy.
u j Input of the CNN-cell with index j .
Aij Elements of the state controlled template A.
Bij Elements of the feedback template B .
Cij Elements of feedforward template C .
�I (I1, . . . , In) Vector of the thresholds of CNN-cells.
�Y (y∗

1 , . . . , y∗
n ) Vector of the sigmoid functions (SFs).

�U(u1, . . . , un) Vector of the inputs of CNN-cells.
α∗

j Parameters for monitoring the shape of SF.
��(x1, . . . , xn) Vector flow of the CNN-model.
��(y1, . . . , yn) Vector flow of the equation to be solved

by CNN.
Fi ( ��, t) Nonlinear functions of � and t .
ε(t) Step-function.
δ(t) Dirac function.
xi (0), yi (0) Initial conditions/states.
∇χ j (t) Relative error of the learning process.
∇χ∗

opt Minimum of the relative error.
t∗ Time at which the relative error is

minimized.
|x | Absolute value of x .
�λ Vector of multiplier variables
λmax Lyapunov exponent (LE).
i Index of both rows and decision variables.
j Index of columns.
a Index of multiplier variables.
M Number of constraints.
n Order of the equation to be solved by CNN.

I. INTRODUCTION

IN VARIOUS areas of science and engineering, solving
nonlinear differential equation (NDE) system models is

a very crucial task in related system modeling, simulations.
and/or optimizations endeavors [1].

Traditional requirements while solving NDE models are evi-
dently high precision, sure, and stable convergence, the highest
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possible computing speed, and the lowest-possible memory
requirement [2]. All these features do result and contribute,
in the best-case, to a cost- and energy-efficient solving of
underlying NDE system models. Such requirements can only
be fulfilled if a given solver concept or paradigm does fully
master the related computational complexity while preserving
a consistent complexity-related scalability. Both practice and
literature clearly show and underscore that the traditional
numerical methods do not fully satisfy these relatively hard
and challenging requirements [3].

A core hypothesis of this paper is that cellular neural
network (CNN) processor concepts and models that may be
realized either in hardware (hard-core/hard-coded version or
digitally emulated version) or in software are the neuro-
computing-based solver platform of predilection that offers the
full potential of scalability, flexibility, and high-speed while
ensuring sure convergence and high-precision.

This paper is organized as follows. Section II presents
an overview of the classical methods for solving complex
ODEs. Some pros and cons of the classical methods are
discussed. Section III does focus on the complexity analysis of
CNN processor systems. We provide some seminal references
addressing this issue, which is of necessary importance when
dealing with the simulation of complex differential equation
models through CNN processors. Section IV describes the
general methodology for solving differential equation models
through CNN processors as a universal solver machine. We
provide an in-depth description of all steps involved in the
application of the nonlinear adaptive optimization (NAOP)
concept (this is the new concept developed in this paper
based on NAOP) for CNN templates calculation and solution
of complex ODEs and PDEs. Sections V–VII do then focus
on the proof of concept through two selected examples of
nonlinear ODEs and one example of PDE that are solved using
the novel concept developed in this paper: the periodically
excited Duffing oscillator (Section V), the forced Mathieu
equation with time varying coefficients (Section VI), and the
transport equation (Section VII). For each of these equations,
corresponding precise templates are calculated through NAOP.
Several concluding remarks are presented in Section VIII
along with the presentation of some interesting open research
questions (as an outlook) that are under investigation in some
of our on-going works.

II. RELATED WORKS AND APPLICATIONS BACKGROUND

During the last couple of decades both scientific com-
puting and the so-called computational engineering have
experienced a very strong boom that has been particularly
also sustained and motivated by the ever increasing perfor-
mance of computing systems. Thus, a huge research has
been producing since then various contributions related to
the development of both analytical and numerical methods
and computing concepts/platforms (either digital or analog)
for solving nonlinear and even stochastic ordinary differential
equations (ODEs) system models [ODEs, partial differen-
tial equations (PDEs), stochastic differential equations, and
stochastic PDEs (SPDEs)]. The interest devoted to solving

these complex system models (either solving in any case
and/or speeding-up the solving) is explained by their various
scientific, engineering and industrial applications. Examples
of applications can be found in various areas such as intel-
ligent transportation systems [4], image processing, wireless
communications [5], mechatronics [6], control systems [7],
medical image processing [8], clinical diagnosis, computer
graphics, aeroacoustics, aerodynamics, electromagnetics [9],
and quantum mechanics [10], just to name a few.

However, despite the interesting and extensive involvement
of complex differential equation models in different areas of
science and engineering the traditional methods (algorithms
and computing schemes) to solve or simulate them fail to cope
with a series of issues related to the high complexity. The rele-
vant literature clearly suggests that the traditional solving and
computing approaches (for stiff/stochastic ODEs and PDEs)
are very slow [11], generally less precise [12], and not always
robust enough [13]. Furthermore, those traditional paradigms
are computationally expensive and not capable of realizing
real-time computation at an acceptable and realistic perfor-
mance/cost ratio. Of course, not all applications do require a
real-time (ultrafast) processing. Nevertheless, it makes a big
difference if a simulation takes two weeks or rather 2 min.
Beyond that, many applications are really emerging and for
which a really real-time (ultrafast) computation is needed with
deadlines of a couple of seconds, whereby the current state-
of-the-art just enables a best-case solving within many hours
or days. Such a problem formulation calls for speed-ups of
many orders of magnitudes, and this is knowingly not trivially
reachable by the current instruments of the related state-of-
the-art (while maintaining the same level of precision) [14].
Even the most recent advances in parallel computing high
performance computing (HPC) do not succeed in breaking the
so-called Amdahl law and thus still suffer from this clear and
crucial limitation [15].

Thus, developing a reliable methodical instrumentation that
enables a real-time (ultrafast) and cost-effective solving of
such complex system models problem formulations does con-
stitute a real and interesting breakthrough that has a tremen-
dous scientific and market potential.

In practice, some parameters of NDE models of real systems
may be stochastic [16], time-varying [17], space varying [18],
or even spatio-temporally varying [19]. Deriving exact analyt-
ical solutions of these equations is very tough and practically
impossible [20]. Numerical solutions are possible, but not
for all levels of nonlinearity [21]. Furthermore, some forms
of nonlinear (integro-) differential equations (systems) are
not yet numerically solvable [22]. However, even for the
cases for which numerical solutions are available many of
the methods are still exposed to transient phenomena [23],
stiffness [24], overflows, and round-off errors during compu-
tations [25]. They are also often very time-consuming [26]
due to a generally nonpolynomial complexity. Furthermore,
in some cases there is no a priori convergence guarantee.
It is therefore clear that numerical solutions in this context
are computationally expensive (very slow) and the conver-
gence of the solutions is often very difficult/questionable, for
example, under complex Dirichlet boundary conditions [27].
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Overall, the classical numerical methods fail to cope with the
high complexity. Thus, traditional numerical approaches and
processing schemes are not capable of realizing accurate and
ultrafast/real-time solving of stiff ODEs and/or PDEs at an
acceptable and realistic cost.

A series of works has explored the better promising
(compared with numerical approaches) paradigm of solving
differential equations through neural networks, and this in
various architectures [28], [29]. The major limitation of all
those concepts is the lack of a systematic approach for train-
ing the neural network for any given underlying differential
equation model (ODE or PDE) corresponding to a given
problem. Furthermore, there are clear limitations related to the
integration interval. Neither comprehensive concepts nor clear
details have been provided so far by the relevant literature
regarding these issues.

Concerning CNN processors-based solvers of differential
equations, they do (among neuronal network architectures)
offer the biggest potential due to the following interesting
properties: 1) they are dynamical systems in form of coupled
nonlinear oscillators [30]; 2) their related easy and straight-
forward implementability and/or emulation either in software
or in digital hardware [31]; 3) their further property of being a
universal machine platform [32]; and 4) their proven property
of being a supercomputer on chip [33].

III. ON THE COMPLEXITY ANALYSIS OF A CELLULAR

NEURAL NETWORKS’ PROCESSORS SYSTEM

AS UNIVERSAL SOLVER MACHINE

One basic assumption of this paper is that both computa-
tional and computing complexity of a problem solving through
a CNN processor system is one of the actually best ones.
This assumption is supported by the extensive related works
in [34]–[36].

IV. GENERAL METHODOLOGY FOR SOLVING DIFFERENTIAL

EQUATION MODELS THROUGH CNNS PROCESSORS AS

UNIVERSAL SOLVER MACHINE

In essence, this section does address all key steps (see
Section IV-A–E) involved in the overall process of solving
ODEs and PDEs by CNNs.

A. Remodeling Procedure

The key issue is to explain how to perform a transformation
of a given model available in form of (ordinary or partial)
differential equations to prepare it for a solving by a CNN
processors system. This is an analytical process that can
eventually be supported by symbolic mathematical instruments
for large problem sizes; for small problem sizes, a manual
transformation is straight-forward.

1) Regarding ODE: the solutions of this equation are
dependent variables [e.g., y(t)]. These solutions are gener-
ally expressed as functions of a single independent variable
(e.g., t). The total derivative of the dependent variables is
introduced with respect to the single independent variable.
Furthermore, the ODE is originally provided in the general
form of an eventually nth– order equation, which should

therefore be rewritten (or transformed) in the simplified form
of a set of coupled first-order ODEs

⎧
⎪⎨

⎪⎩

y(1)
1 = F1( ��, t)

· · ·
y(n)

1 = Fn( ��, t)

(1)

��(y1, . . . , yn) = ��(
y1, . . . , yn−1

1

)
is the vector flow repre-

senting the state variables of the nth– order ODE in (1).
2) Regarding PDE: the solutions of this equation are

dependent variables [e.g., y(x, t)]. These solutions are gen-
erally expressed as functions of several independent variables
(e.g., x , t). The partial derivatives of the dependent variables
are introduced with respect to all independent variables, which
are generally spatiotemporal variables (i.e., variation in both
space and time). Thus, all partial derivatives with respect to the
space-dimensions are approximated (see application example
in Section VII) using the finite difference method (FDM).
This approximation leads to a set of coupled first-order ODEs
similar to (1).

B. Model-Mapping Procedure

This section explains the procedure of mapping the trans-
formed system model in (1) to the one expressing the dynamics
of a corresponding CNN processors system. The result is, to
name it in an abstract way, the CNN processors architec-
ture. The mapping is expressed in the form of a nonlinear
optimization problem, which does in essence express the
fact that two dynamical system models should display the
same behavior under all contextual conditions. This is also
an analytical process that can eventually be supported by
symbolic mathematical instruments for large problem sizes.
The outcome of the model-mapping procedure is the derivation
of the Lagrange function, which represents the total energy
of the system. The overall procedure is organized around the
following steps.

Step 1: This step provides a brief explanation of the general
theory of optimization and presents the general form of the
Lagrange function. The Lagrange function is expressed as a
combination of both the objective function and the related con-
straints. The objective function is expressed by (2). Thereby,
�x = [x1, x2, . . . , xi ]T ∈ � denotes the vector of decision vari-
ables (also called decision neurons) of the optimization process
and f (�x) is a function of these variables. The constraints are
expressed by (3) in which ga(�x) is a function of the decision
variables. Furthermore, the Lagrange function (4) is expressed
as a combination of the objective function and the related
constraints. Thereby, �λ = [λ1, λ2, . . . , λa]T ∈ � is the vector
of multiplier variables (also called multiplier neurons) of the
process under optimization. The parameters i and a (4) are,
respectively, the indexes of decision variables and multiplier
variables. M is the number of constraints

Min f (�x) (2)

ga(�x) = 0 (3)

L(�x, �λ) = f (�x) +
M∑

a

[λaga(�x)]. (4)
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Step 2: This step presents the mathematical expression
of the CNNs model (used in the mapping procedure) and
provides an explicit definition of all parameter settings of the
CNN-model. This model is represented mathematically by the
expression of the state-controlled CNN processor architecture
as given by

dxi

dt
= −xi +

n∑

j=1

[
Aij x j + Bij y∗

j + Cij u j
] + Ii (5a)

where i = 1, 2, . . . , n and j = 1, 2, . . . , n. The function y∗
j

is an approximation of the basic and well-known piecewise
linear (PWL) sigmoid function (SF) proposed in [37]. The
advantages of using y∗

j (5b) instead of the PWL SF in [37] are
threefold. The first advantage is the possibility of performing
fast computing of the first derivative of the SF. Indeed,
the basic differential multiplier method (BDMM) algorithm
(Section IV-C) requires computation of the first derivative of
the SF. However, the computation of the first derivative of the
PWL SF in [37] is very time- and memory-consuming due
to its PWL form. Therefore, the function y∗

j is used as an
alternative solution to perform fast computations of the first
derivative of the SF with high approximation accuracy and
very low memory requirements. The second advantage is the
smoothness of y∗

j as this feature is not a characteristic to the
PWL function in [37]. This smoothness leads to decreasing
accumulation of round-off errors during computation and
consequently improves both speed and accuracy of compu-
tations. The third advantage is the offered possibility of using
the coefficient α∗

j as a decision variable of the optimization
process to determine the suitable shape of y∗

j according to a
given ODE or PDE under investigation. This underscores the
flexibility of the optimization concept developed in this paper.
This flexibility leads to increasing accuracy in computation

y∗
j = eα∗

j x j − 1

eα∗
j x j + 1

. (5b)

Equation (5a) and (5b) can be rewritten into the following
equivalent vector form:

d ��
dt

= − �� + A∗ �� + B∗ �Y + C∗ �U + �I . (5c)

The function ��(x1, . . . , xn) = ��(x1, . . . , xn−1
1 ) is the vec-

tor flow, which components xi represent the states of all
elementary cells involved in the full CNN-processor model.
Therefore, according to (5c) the full CNN-processor model is
a network of coupled first-order ODEs. In (5c), the parame-
ters A, B , and C are the matrices (called CNN-templates)
that are expressed in terms of their respective elements
Aij , Bij , and Cij .

Step 3: An in-depth explanation of the mapping-procedure
of (1) into (5c) is provided and, the resulting Lagrange function
is derived as the mathematical expression of the mapping-
procedure. The overall mapping-procedure is conducted as
follows. The ODE under investigation (1) is represented in the
state space (or phase space) in terms of the components of �.
Similarly, the dynamics of CNN is represented in the state
space in terms of the components of �. The objective function

is derived based on the condition that a best-possible mapping
must be achieved between the mathematical ODE model under
investigation (1) and the CNN model (5c). Equivalently to this
statement, the two vector flows � and � must evolve always
on a common trajectory in the phase space representation.
Therefore, the objective function f (�x, �y, t) can be expressed
by

f (�x, �y, t) = Min

⎡

⎣
n∑

j=1

(x j (t) − yi(t))
2

⎤

⎦. (6)

Equation (6) is not a combinatoric optimization, rather a
functional optimization over time. This equation expresses
the minimization of the global distance between the vector
flows �� and ��. According to (6), the two inputs ( �� and ��)
are compared and should be as equal as possible for all t
and for all state variable dimensions j . The general modeling
principle can be summarized (using the physical principles)
by the following two key requirements.

1) Minimization of the global distance between the vector
flows �� and �� (6).

2) The minimum of the global distance between �� and
�� must be equal to zero (for all t and for all state
variable dimensions j ) to insure that �� and �� are always
identical (same trajectory).

Regarding the first requirement, the minimum [defined in (6)]
is not necessarily equal to zero because we are dealing with the
optimization of complex functions undergoing nonlinear and
chaotic dynamics over time. The second requirement (to be
achieved) imposes a pairwise equality between the individual
components of �� and ��. This is an important condition for ��
and �� to evolve on a common trajectory. The pairwise equality
observed (for all t and for all state variable dimensions j )
between the components of �� and �� is modeled by the
constraints formulated in

(x j (t) − y j (t)) = 0. (7a)

According to [38] and [39], the improvement of the robustness
of the convergence properties of the BDMM [to tackle the
problem formulated in (6) and (7a)] is insured by the aug-
mented Lagrange method. This method is derived from (6)
and (7a) by introducing an additive penalty force expressed in
the form of a quadratic energy. This justifies the constraints
formulated in

(x j (t) − y j (t))
2 = 0. (7b)

Combining the objective function with the related constraints
leads to the augmented Lagrange expression formulated in (8).
The expression of L( ��, ��, λ j , γ j ) depends implicitly on
Aij , Bij , Cij and α∗

j (5)

L(x j , y j , Aij , Bij , Cij , α j , λ j , γ j )

=
n∑

j=1

(x j − y j )
2 +

n∑

j=1

λ j (x j − y j ) +
n∑

j=1

γ j (x j − y j )
2

(8)

The quantities x j , y j , Aij , Bij , Cij and α∗
j are the decision

variables/neurons and, λ j and γ j are multiplier variables.
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C. Neuroprocessor Training Procedure and Derivation of the
Corresponding Mathematical Model

This section provides a brief explanation of the
neuro-processor training procedure and discusses the related
challenges encountered by the traditional neuro-computing
methods for solving ODEs and/or PDEs. We end this section
by deriving the general mathematical expression of the
resulting neuro-processor model.

In essence, the key issue is how to efficiently solve the
model-mapping problem, which has been expressed in form of
a complex nonlinear optimization problem (in Section IV-B).
The result is, to name it in an abstract way, the CNN processors
configuration provided by a series of matrices called templates.
In this phase, the issue is to solve the model-mapping prob-
lem. This problem can be solved either numerically (NAOP
presented in this paper is an example of a numerical solution)
or using alternative selected instruments from soft-computing
that are particle swarm optimization, answer-set programming,
or using digitally emulated analog computer(s).

The neurocomputing paradigm (e.g., neural networks) has
been already used for solving differential equations. However,
already published works are mainly just focusing on proof-of-
concept examples and do not solve a series of fundamental
issues related among others to a systematic methodological
framework for efficiently solving any given complex problem
setting. An open challenge is related to suggesting and val-
idating a successful and systematic concept for controlling
and predicting the six performance key features that are:
precision, speed of computation, memory requirements, energy
consumption (of the computing process), stability, and robust-
ness. The theoretical analysis of both stability and bifurcation
scenarios help to depict, control and predict the various states
(regular and irregular states) of the novel CNN-based comput-
ing concept. The possibility of controlling these states is a key
innovation. This possibility is not offered by the traditional
related processing/computing paradigms for solving NDEs.
Furthermore, to the best of our knowledge, no comprehensive
and extensive benchmarking has been presented so far in the
literature.

We now explain the general theory leading to the deriva-
tion of the mathematical model of the neuroprocessor. This
theory does fully exploit the neuron-dynamics process as an
optimization strategy that maps the optimization problem into
the energy expression of a neural network (i.e., a Hopfield
network) to find the optimal solution. In this context, this
energy is expressed into the Lagrange form (8) and the
minimization of the Lagrange function leads to a stable
state. The stability (see stability or convergence analysis in
subsection E) in this context expresses the robustness of the
optimization process as such. This robustness is characterized
by a straightforward (monotone) convergence to the optimal
solution. This convergence is achieved (in this paper) by
involving the so-called BDMM [40], [41], which is a com-
bination of two gradient-techniques: 1) the first technique is
based on gradient decent. Here, the state variables of the
network slide downhill, in opposition to the gradient, to find
the minimum of the function and 2) the second technique
is applying the gradient ascent. In this case, the maximum

function is obtained by evolving in the positive direction of
the gradient. We apply BDMM to the Lagrange function in
(8) to obtain (9). Specifically, the gradient descent is applied
on decision neurons and the gradient ascent is applied on
multiplier neurons

ẋi = −α ∂xi (L)

λ̇a = +β ∂λa (L). (9)

The relation/expression (9) is the characteristic model of
BDMM. This model (from which the CNN-templates for a
given ODE or PDE are calculated) implicitly reveals how
far the dynamics of decision neurons (xi) is coupled to the
dynamics of multiplier-neurons (λa). The parameters α and β
are the step sizes for updating the decision- and multiplier-
neurons, respectively.

D. Novel Concept NAOP for CNN Templates Calculation

The template calculation process is in the core based on the
NAOP concept. The strengths of this concept are its robustness
and flexibility, as well as its efficiency of deriving the CNN
templates in all states (regular and chaotic states) of the
nonlinear ODEs or PDEs under investigation. The analytical
conditions for controlling and predicting the robustness of the
NAOP concept are derived in Section IV-E.

We now provide an in-depth description of the NAOP
concept in the frame of a CNN-based solving of NDEs.
The complete flow diagram of this approach is schematically
presented in Fig. 1(a) and (b). NAOP is performed by a
complex computing procedure that does work on two basic
inputs vectors ( �� and ��), as shown in Fig. 1(a). Using
the defined inputs vectors, the output of the NAOP proce-
dures does provide, after extensive iterative computations or
training steps [see the details of these steps in Fig. 1(b)]
the appropriate CNN templates to solve the corresponding
Input-2 of Fig. 1(a) ODEs/PDEs expressed in the form of
(1) as soon as the convergence of the training process is
achieved. In NAOP, the convergence to local and/or global
minima is the key purpose governing the template calcu-
lation process, the very global aim being the tracking and
finding of the global minimum independently of basins of
attraction.

Using the bifurcation theory, various basins of attraction are
investigated sequentially in NAOP and corresponding CNN
templates are determined. The basin of attraction expresses
the sensitivity of a system/model to changes in the initial
states/conditions. If (for a given basin of attraction) some
local attractors diverge from the expected global minimum,
new sets of initial conditions are automatically generated to
annihilate the divergence leading to a possible convergence
to the expected global minimum. This global minimum is the
(unique) solution of the mapping-based training process which
generates CNN templates corresponding to the real solution of
the ODEs or PDEs under investigation, Input-2 of Fig. 1(a)
[see also (1)].

In NAOP, a large number of randomly generated attractors
[either regular or chaotic, as shown in Fig. 3(a) and (b)]
are obtained through various iteration steps, whereby each
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Fig. 1. (a) Illustration of the mapping concept of two inputs leading to CNN
templates calculation by the novel optimization technique NAOP. (b) Synoptic
representation of the key steps involved in the complete NAOP process leading
to the derivation of CNN templates for solving a given ODE.

attractor corresponds to a specific set of CNN templates.
An attempt to map these attractors to those generated by the
model (i.e., ODE or PDE under investigation) is performed
(through the temporal mapping in the nth– dimensional phase
space of (5c) and (1) by comparing the respective dynam-
ics of both the CNN model (5c) and the ODE/PDE under
investigation (1). This mapping is performed in a sequential
process [as shown in Fig. 1(b)] leading to the convergence to
the expected global minimum when the mapping is achieved

successfully. However, it is worth mentioning that during the
training process the various numerical trials have revealed that
it is always possible and straightforward to find the optimal
solution (i.e., the expected global minimum) using NAOP. This
is a strong point of the concept developed in this paper as
it is well known that many optimization concepts presented
in the relevant literature are subjected to a key weakness
(i.e., the difficulty to achieve convergence) due to the well-
known inherent local minima problem of the Hopfield neural
networks [42].

NAOP has been demonstrated to be capable of mapping
several forms (or types) of nonlinear ODEs/PDEs into CNN
models by deriving the corresponding appropriate templates.
The general mathematical model of the NAOP processor is
obtained by substituting the Lagrange function (expressed
in terms of both decision and multiplier variables/neurons)
denoted by L(x j , y j , Aij , Bij , Cij , α∗

j , λ j , γ j ) into (9).
This substitution leads to the expressions in (10). The NAOP
concept is thus supported by the set of coupled nonlinear equa-
tions in (10) from which the CNN-templates are calculated.
Thus, the full training phase is supported by

ẋ j = G j (x j , y j , Aij , Bij , Cij , α∗
j , λ j , γ j ) (10a)

ẏ j = Pj (x j , y j , Aij , Bij , Cij , α∗
j , λ j , γ j ) (10b)

Ȧi j = Ql(x j , y j , Aij , Bij , Cij , α∗
j , λ j , γ j ) (10c)

Ḃi j = Rl(x j , y j , Aij , Bij , Cij , α∗
j , λ j , γ j ) (10d)

Ċi j = Sl(x j , y j , Aij , Bij , Cij , α∗
j , λ j , γ j ) (10e)

α̇∗
j = Tj (x j , y j , Aij , Bij , Cij , α∗

j , λ j , γ j ) (10f)

λ̇ j = Vj (x j , y j , Aij , Bij , Cij , α∗
j , λ j , γ j ) (10g)

γ̇ j = W j (x j , y j , Aij , Bij , Cij , α∗
j , λ j , γ j ) (10h)

In equations (10a)–(10h), the quantities G j , Pj , Ql , Rl , Sl ,
Tj , Vj , and W j are the nonlinear functions. The indexes
are defined as follows: i = 1, 2, . . . , n, j = 1, 2, . . . , n,
and l = 1, 2, . . . , n2. These indexes are chosen according
to the order of a given ODE under investigation by CNN.
An example for illustration: if we are considering a second-
order ODE to be solved by CNN, the appropriate index is
n = 2. Thus, (10) is made up of at least 22 nonlinear and
coupled first-order ODEs since some additional constraints
(e.g., over-dimensioning, etc.) can be considered (if necessary)
to improve the robustness of the optimization process and
facilitate the convergence to the global minimum as well as
to improve the accuracy (or precision) of results.

E. Training and Convergence of the NAOP Concept

The key important issue in this context is how to control the
training, robustness and convergence of the NAOP concept.
The training phase and convergence checking are clearly
shown in Fig. 1(b).

Regarding the training process, this phase is conducted by
updating the step sizes of decision- and multiplier-neurons.
The accuracy of the training based on NAOP is obtained by
comparing �(x1, . . . , xn) with �(y1, . . . , yn). The metric of
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Fig. 2. Sign flip concept is illustrated as a key step toward the convergence of
the BDMM algorithm. Damped oscillations are exhibited around the constraint
subspace leading to constraints minimization (system’s final state).

the comparison is the relative error (∇χ j (t)) expressed in

∇χ j (t) =
n∑

j=1

∣
∣
∣
∣
x j (t) − y j (t)

y j (t)

∣
∣
∣
∣. (11)

The relative error ∇χ j (t) expresses the rate of divergence
between the two trajectories described by the vector flows.
A computation of the relative error has revealed the existence
of several minima of ∇χ j (t) each of which corresponds to
a specific set of CNN-templates. Therefore the optimal (or
plausible) set of CNN-templates is obtained at a specific
time t∗ corresponding to the global minimum of ∇χ j (t)
denoted ∇∗

χopt
. Equation (11) is used to sort the suitable

CNN-templates among the huge amount of solutions provided
at each time/iteration t by (10).

Regarding the convergence, the stability (or convergence) of
the optimization process is ensured by the sign flip concept.
Fig. 2 shows the core idea explaining the sign flip concept.
This concept is summarized as follows. As the parameters α
and β increase, the system in (9) exhibits damped oscillations
around the constraints subspace ga(�x) = 0. These oscillations
are characterized by the alternation (in time-domain) of the
sign of the constraint function (i.e., ga(�x) < 0, ga(�x) > 0 and
vice-versa) during the optimization process to converge to a
point located on the constraint subspace defined by ga(�x) = 0
(Fig. 2). The damped mass matrix Dij is used to provide
an insight of the above-mentioned convergence. Indeed, the
damped mass matrix controls the energy dissipation within
the system. Thus, according to (15) a positive value of the
damped mass matrix is an insight that the total energy ET

within the system decreases with time and finally, the system
settles down into the state where the energy is minimized. This
characterizes an attraction of the system state to the constraint
subspace (stability). At the attraction point, or convergence
state (see Fig. 2), all constraints are fulfilled. However, when
the damped mass matrix is negative the total energy within the
system increases with time. A negative damped mass matrix

is an insight that all constraints are not fulfilled (instability).
To tackle this problem, the learning rate parameters (α and β)
and the system’s parameters can be tuned/monitored to bring
the system into its stable state. A brief summary of the key
analytical steps involved in the stability/convergence analysis
is as follows. Equations (4) and (9) are used to establish the
second-order nonlinear ODE in

ẍi +
∑

j

Di j ẋ j + �F = 0 (12a)

Dij = α

[
∂2 f

∂xi∂x j
+

∑

a

(

λa
∂2ga(�x)

∂xi∂x j

)]

(12b)

�F = (2αβ)
∑

a

(

ga(�x)
∂ga(�x)

∂xi

)

(12c)

where ẍi is an inertial force, Dij is a damping matrix, and
�F is an internal force needed to fulfill the constraints (Fig. 2).

This force produces the potential energy into the system. The
total energy ET of the system is expressed as the sum of both
kinetic- and potential-energies

ET = EC + E P (13a)

Considering the state variable xi in (12), the energies EC and
E P are expressed as follows:

E P(xi ) =
∫

F ∂xi , (13b)

EC(xi ) =
∑

i

[
1

2
(ẋi )

2
]

(13c)

Thus, substituting (13b) and (13c) into (13a) leads to the
expression of the total energy in

ET (xi ) =
∑

i

[
1

2
(ẋi)

2
]

+
∫

F ∂xi . (13d)

Combining (12c) and (13d) leads to

ET (xi ) =
∑

i

[
1

2
(ẋi )

2
]

+
∫ (

2αβ
∑

a

[

ga
∂ga

∂xi

])

∂xi .

(13e)

Equation (13e) can be written into the following simplified
form:

ET (xi ) =
∑

i

[
1

2
(ẋi)

2
]

+ αβ
∑

a

[∫ (
∂g2

a

∂xi

)

∂xi

]

(13f)

Finally, an evaluation of the integral part/term in (13f) leads
to the following expression of the total energy:

ET (xi ) =
∑

i

[
1

2
(ẋi )

2
]

+ αβ
∑

a

[
g2

a

]
. (14)

The expression (14) is used to derive (15). Equation (15) is
a key expression of the time derivative of the total energy in
the system. This expression is the characteristic formula used
to illustrate and underscore the significance of the sign flip

ĖT (xi) = −
∑

i

∑

j

ẋi Di j ẋ j . (15)
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Fig. 3. (a) Bifurcation diagram. (b) Lyapunov Exponent (LE). (a) and
(b) States of the system in (16) when monitoring the parameter κ between
[0.25 and 0.55]. Windows of regular states alternate with windows of chaotic
states. Our work in [45] provides the full detail.

Thus, if the damped mass matrix Dij is positive, then the
time derivative of the total energy is negative and the system
converges to fulfill both constraints and objective function.
The essence of this principle is being exploited and realized
by the NAOP concept under design in this paper. NAOP is
used to compute the CNN templates corresponding to the
system-mapping for a set of given NDEs under consideration
for solving through CNN processors.

In the following sections, the NAOP concept is used to
solve three differential equation models (ODEs and PDEs)
for illustration. Furthermore, a benchmarking is considered as
proof of concepts to validate the concept developed in this
paper.

V. APPLYING NAOP TO SOLVING THE ODE MODEL OF

THE PERIODICALLY EXCITED DUFFING OSCILLATOR

WITH A DOUBLE-WELL POTENTIAL

A. Model Development and Parameter Settings

The ODE model of a periodically excited Duffing oscillator
with double-well potential is considered for solving by CNN

ÿ + μ1 ẏ − ω2
1 y + c0 y3 = κ sin(�t + ϕ). (16)

The model in (16) describes real physical systems such as a
Bunckle beam, mechanical vibrations in physical structures,
or the well-known Sommerfeld effect [43], [44], just to name
a few. μ1 stands for the dissipative coefficient, ω1 denotes
the natural frequency of the forced oscillator, c0 is the cubic
nonlinearity, κ represents the amplitude of excitation, � is
devoted to the frequency of external excitation, and ϕ stands
for the initial phase of excitation. For the sake of generalization
of the NAOP concept, (16) is transformed into the following
form:

ẏ1 = y2 + [δ(t) ∗ y1(0)] ∗ ε(t)

ẏ2 = −μ1 ẏ1 + ω2
1 y1 − c0y3

1

+ [δ(t) ∗ y2(0) + κ sin(�t + ϕ)] ∗ ε(t). (17)

Equations (5) and (17) are further used to establish the
mathematical model of the corresponding Lagrange function
as expressed in (8). Thus, substituting this function into (9)
leads to the derivation of a set of coupled first-order nonlinear
ODEs [as expressed in (10)] from which the CNN templates
are calculated through NAOP.

Fig. 4. Evolution and convergence of the control CNN-templates Ai j for (16).

To derive the appropriate CNN templates corresponding
to (16), we now consider for a first calculation exercise the
following parameter settings: μ1 = 0.3, ω1 = 1, c0 = 1,
� = 1.2, and ϕ = π/2. The coefficient κ is the control
parameter of the bifurcation analysis. The results of this
analysis are shown in Fig. 3. This figure reveals the possible
states of the system modeled by (16). The existence of regular
and chaotic dynamics is confirmed by the bifurcation diagram
in Fig. 3(a) and the corresponding λmax in Fig. 3(b). Chaotic
states are observed for positive values of λmax while the neg-
ative values of λmax correspond to regular states. Some values
of λmax are shown in Table I together with the corresponding
states. According to the results in Table I, the optimization
procedure is carried out in both regular and chaotic states.
Using the parameter settings considered for the first calculation
exercise, the NAOP is exploited to calculate the corresponding
CNN templates as well as the corresponding values of the
coefficients α∗

j , which are considered as decision variables
during the optimization process. The template calculation
process has revealed the dependence of these templates with
regards to time/iterations (Fig. 4). According to Fig. 4, each
iteration results/leads to the calculation of a new combination
of templates. Thus the sorting process is considered to deter-
mine the appropriate setting of templates corresponding to a
given problem. The appropriate templates that are obtained
after convergence of the training process represent the CNN
signature of the autonomous part of the model in (16). The
appropriate CNN-templates are obtained at a global minimum
point (t∗, ∇χ∗

opt). Thus, for the first calculation exercise, it
has been obtained that the global minimum point corresponds
to (t∗, ∇χ∗

opt) = (312 388, 13 10−5). The corresponding
CNN-templates are: A11 = 0.9995, A12 = 0.9997,
A21 = −6.5552, A22 = 0.7081, B11 = 0, B12 = 0,
B21 = 9.9085, B22 = 0, C11 = −0.0005, C12 = 0,
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TABLE I

BIFURCATION STATES IN RELATION TO κ AND RESPECTIVE

VALUES OF THE CORRESPONDING LE (λmax)

DEDUCED FROM FIG. 3

Fig. 5. (a) and (c) Phase portraits obtained as numerical solutions of (16)
using the CNN-model in (5a). (b) and (d) Corresponding phase portraits
obtained as direct numerical solutions of (16). (a) and (b) κ = 0.250. (c) and
(d) κ = 0.300. The other parameters are defined in the text (see Section V).

C21 = 0.9957, C22 = 0, I1 = 0, I2 = 0, α∗
1 =

1.5675, and α∗
2 = 0. These CNN-templates are, for veri-

fication and validation, further inserted in the CNN-model
in (5a).

The phase portraits shown in Fig. 5(a), (c), (e), and (g) are
obtained as solutions of (16) using the CNN-model in (5a).
The control parameter κ is monitored/varied in the window
[0.25, 0.55]. Figs. 5 and 6 confirm the extreme sensitivity
of the model in (16) to tiny variations of the amplitudes κ
of the external excitation as it is clearly shown in Fig. 3.
Indeed, several bifurcation scenarios are depicted such as
periodic bifurcation (κ = 0.25), quasi-periodic bifurcations
(κ = 0.275, κ = 0.29, κ = 0.366, κ = 0.510) and
chaotic bifurcations (κ = 0.30, κ = 0.45, κ = 0.55).
The phase portraits in Figs. 5(b), 5(d), 6(f), and 6(h) are
obtained from the direct numerical simulation of (16). The
possible states of the system are defined in Table I in
terms of the control parameter κ . Both regular states (i.e.,
periodic, quasi-periodic, and torus) and chaotic states are
observed.

Fig. 6. (e) and (g) Phase portraits obtained as numerical solutions of (16)
using the CNN-model in (5a). (f) and (h) Corresponding phase portraits
obtained as direct numerical solutions of (16). (e) and (f) κ=0.450. (g) and (h)
κ = 0.510. The other parameters are defined in Fig. 5.

It is worth mentioning that we have derived a unique/fixed
set of CNN-templates from which all the bifurcation sequences
in Figs. 5 and 6 are obtained. This is another strong point (i.e.,
a significant contribution) of the NAOP concept presented in
this paper.

Overall, the strong point of NAOP (this is one of the
significant contributions of this paper) is the straightfor-
ward, rapid, and easy possibility of detecting the global
minimum (i.e., the unique/optimal solution) among the huge
amount of local minima depicted during the optimization
process. Furthermore, the results shown in Figs. 5 and 6
demonstrate, confirm and validate the great and straight-
forward possibility of synthesizing nonlinear regular and
chaotic oscillators using the novel NAOP-concept involving
CNN-based solving of differential equations as developed in
this paper.

B. Benchmarking of the NAOP-Concept

Now, a validation exercise of the NAOP concept is con-
ducted through a comparison of the results provided by the
CNN-model in (5a) defined by templates obtained by NAOP
(method-1) with the results of a direct numerical solving by
MATLAB of (16) (method-2). Using the same parameter-
setting values, the corresponding phase portraits obtained from
the first method are shown in Figs. 5(a), 5(c), 6(e), and 6(g)
while the results from the second method are shown in
Figs. 5(b), 5(d), 6(f), and 6(h). According to Figs. 5 and 6,
a straightforward qualitative judgment of the results provided
by the two methods reveals that both concepts (CNN versus
direct MATLAB solving) do provide the same bifurcation
(i.e., same qualitative changes in the dynamics of a system).
There is clearly a good qualitative agreement between the two
methods. Furthermore, the quantitative analysis of the results
provided by the two methods does confirm the good agreement
between them.
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VI. APPLYING NAOP TO SOLVING A NONLINEAR AND

TIME-VARYING ODE: ILLUSTRATION OF THE ULTRAFAST

POTENTIALITIES OF THE CNN-PROCESSOR

A. Model Development and Parameter Settings

This section considers a nonlinear oscillator described by
the second-order nonlinear and time-varying ODE model in

ÿ + κ1

[
(ec1 y − 1)

(ec1 y + 1)

]

+ [
ω2

1 + κ0 sin(ω0t)
]
y

−[κ2 sin(ω2t)]ẏ − κ3 sin(ω3t + ϕ) = 0 (18)

where κ1 and c1 are coefficients of the nonlinear term, κ0 and
κ2 stand for the amplitude of the time-varying coefficients, and
κ3 denotes the amplitude of external excitation. ω1 stands for
the natural frequency of the oscillator, ω0 and ω2 denote the
frequencies of the time-varying coefficients, and ω3 represents
the frequency of external excitation.

We now use the technique that has been intensively devel-
oped in Section V to derive the appropriate CNN templates
corresponding to (18). Using the parameter values κ1 = −2,
c1 = 2, ω1 = 1, κ2 = 0.01, ω2 = 1, κ3 = 0.5,
ω3 = 1, ϕ = 2nπ , κ0 = 0.01, and ω0 = 15, the NAOP
is exploited to calculate the corresponding CNN templates.
A full explanation of the training process based on the NAOP
concept has been provided in the preceding Section V (see
first application example). Considering (18), this process has
been exploited to derive the following corresponding CNN
templates obtained at the global minimum point

(
t∗, ∇χ∗

opt

) =
(78 052, 3.047410−7): A11 = 1.0015, A12 = 0.9391, A21 =
−0.9636, A22 = 0.9974, B11 = 6.571710−4, B12 = 0.2380,
B21 = 1.8677, B22 = 0.0386, C11 = 0.0048, C12 = 0.0048,
C21 = 0.5017, C22 = 0.5017, α∗

1 = 2.0995, α∗
2 = 0.5798.

These CNN templates are, for verification and validation,
further inserted in the CNN model in (5a) and the phase por-
traits are considered. The phase portraits shown in Fig. 7 are
obtained using both the CNN model in (5a) [Fig. 7(a) and (c)]
and the direct numerical simulation of (18) using MATLAB
[Fig. 7(b) and (d)]. The depiction of two different phase por-
traits under the same parameter settings is a proof that the sys-
tem undergoes a long transient phase. This transient phase is
characterized by the growing of the amplitude of oscillations in
time-domain and consequently the depiction of different phase
portraits under/for the same parameter settings and same initial
conditions (i.e., x(0) = y(0) = 1, and ẋ(0) = ẏ(0) = 1).

B. Benchmarking of the NAOP-Concept

The purpose of the benchmarking is to compare simulation
duration (in seconds) taken by each approach until one reaches
(or can see) a complete cycle of the phase portrait. We should
notice that in general there is a transient phase that can be
long for some approaches until one reaches the target phase
portrait. The duration of the transient phase is therefore a key
feature of a given solving approach that determines the needed
simulation duration until the target is reached.

Fig. 7(a) and (c) [respectively, Fig. 7(b) and (d)] shows the
phase portraits obtained using two different methods under
the same parameter settings. As it appears in Fig. 7, the
two methods provide the same phase portraits. However, the

Fig. 7. (a) and (c) Phase portraits obtained as numerical solution of (18) using
the CNN-model in (5a). (b) and (d) Corresponding phase portraits obtained
as direct solution of (18). The parameter settings are defined in the text
(Section VI).

difference between the two methods is obtained with regards
to the computing speed.

Regarding the phase portraits in Fig. 7(a) and (b), the cor-
responding simulation durations are TSim(CNN) = 0.232237s
for the simulation of (5a) using the CNN processor [Fig. 7(a)]
and TSim(Direct) = 5.597485s for the direct numerical simu-
lation of (18) using MATLAB [Fig. 7(b)].

It is worth mentioning that the simulation durations above
have been measured on the same computer-environment using
the MATLAB commands tic and toc.

The MATLAB solver used is the ODE23t and the simulation
time-intervals (domains of iterations) within which the phase
portraits in Fig. 7(a) and (b) are obtained correspond to
[Bmin, Bmax] = [0, 120] and [Bmin, Bmax] = [0, 2830] for
Fig. 7(a) and (b), respectively. Let us mention that (in the
case of direct numerical simulation) it is not possible to
obtain the graph in Fig. 7(b) when simulating in the interval
[Bmin, Bmax] = [0, 2800]. Therefore, while using the direct
numerical simulation to obtain the target phase portrait the
lower boundary of the simulation interval must be chosen such
that Bmin > 2800. This observation is due to the presence of
the transient phase. The duration of this transient phase is
longer when using the direct numerical simulation (method-2)
while it is very short when performing the simulation using
CNN (method-1). Thus, according to the observed simulation
durations measured above, the CNN processor for solving (18)
is approximately 24 times faster than the direct numerical
simulation in MATLAB, TSim(Direct) ≈ 24 ∗ TSim(CNN).
Such a difference in computation speed (or speed-up) is
very remarkable, especially while considering that traditional
(HPC) or other related schemes cannot reach such a perfor-
mance easily.

Also, the phase portraits in Fig. 7(c) and (d) are obtained
using the same parameter settings values and the same initial
conditions as in Fig. 7(a) and (b). In the case of Fig. 7(c),
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the simulation time interval is [Bmin, Bmax] = [0, 1800]
while in the case of Fig. 7(d) the simulation time interval is
[Bmin, Bmax] = [0, 13 830]. Mention that it is not possible
to obtain the graph in Fig. 7(d) when simulating in the
interval [Bmin, Bmax] = [0, 13 800]. Therefore, the lower
boundary of the simulation interval must be chosen such that
Bmin > 13 800.

Overall, using the two different methods (CNN versus
direct-simulation) on the same computing environment, and
the same programming language, it has been demonstrated
that the method based on the CNN paradigm is faster than its
counterpart. Furthermore, it has been demonstrated that identi-
cal phase portraits are obtained. This confirms the effectiveness
of applying the novel method (i.e., NAOP) developed in this
paper as a universal solver of nonlinear and chaotic ODEs.

The following section does present a demonstration of the
applicability as well as the effectiveness of the NAOP concept
for solving PDEs.

VII. APPLYING NAOP TO SOLVING PDES

A. Model Development and Parameter Settings

This section demonstrates the applicability of the NAOP
scheme for solving PDEs. This scheme is an excellent numer-
ical solver of PDEs as it can be designed to share a com-
mon property with a given PDE. This property emphasizes
the strong dependence of the dynamical behavior of both
NAOP and PDEs to only their spatial local interactions. This
statement expresses the possibility of approximating PDEs
on a finite spatial grid by NAOP using cloning templates
(i.e., space invariant templates) [32]–[35]. Thus, a given PDE
(under investigation) is discretized in space leading to a set
of coupled ODEs. The NAOP concept is further applied
to derive the CNN-templates corresponding to the set of
coupled ODEs. The process/principle/procedure leading to the
respective CNN templates calculation is then the same, as in
Sections V and VI.

We now consider for illustration the transport equation (19).
This is a well-known prototype of PDE which leads to various
potential applications in the fields of transportation, chemistry,
and semiconductor physics, just to name a few [46], [47]

∂u(x, t)

∂ t
= D

∂2u(x, t)

∂x2 − v
∂u(x, t)

∂x
. (19)

Equation (19) is defined for t > 0 and 0 < x < L . u(x, t) is
the concentration (or density), D is the diffusion coefficient,
v is the velocity, and x is the coordinate in the direction of
flow. The initial condition is u(x, 0) = ui and the boundary
conditions are u(0, t) = u0 and u(L, t) = uL .

The partial derivatives of u(x, t) with respect to x can be
approximated using the FDM

(
∂u

∂x

)

i
= ui+1 − ui−1

2�x
(20a)

(
∂2u

∂x2

)

i
= ui+1 − 2ui − ui−1

(�x)2 (20b)

Fig. 8. (a) and (c) Numerical solutions of (21) using the CNN-model in (5a).
(b) and (d) Corresponding numerical solutions obtained as a direct numerical
solution of (18). The parameter settings are defined in the text (see Section
VII). (a) and (b) Obtained using 10 grid-points. (c) and (d) Obtained using
50 grid-points.

Substituting (20) into (19) leads to the set of coupled ODEs
in (21). i is the index of grid-points

dui

dt
= ξ1ui+1 + ξ2ui + ξ3ui−1. (21a)

The parameters ξ1, ξ2, and ξ3 are defined as follows:
ξ1 =

[
D

(�x)2 − v

(2�x)

]

(21b)

ξ2 =
[

− 2D

(�x)2

]

(21c)

ξ3 =
[

D

(�x)2 + v

(2�x)

]

. (21d)

We now use the NAOP technique (see Section V) to derive
the appropriate CNN templates corresponding to (21). The
parameter values used are ξ1 = −0.35, ξ2 = −2, ξ3 = 3, and
u(x, 0) = 1. Two levels of discretization (or resolution) are
considered along the x-axis (while keeping the same length).
The first level uses 10 grid points and the second level uses
50 grid points. Each grid point is represented/modeled by a
first-order ODE. For each level of discretization the NAOP has
been exploited to calculate the CNN templates corresponding
to (21).

While considering the discretization into 10 grid points, the
corresponding CNN-templates A (state controlled template)
and B (feedback template) have been obtained and are shown
at the top of the next page. The feedforward template C
(or input matrix) is zero (i.e., Cij = 0) and α∗

i = 2.
These CNN templates are, for verification and validation,

further inserted in the CNN model in (5a) and the solutions
of (21) are considered (method 1). The solutions displayed in
Fig. 8(a) and (c) are obtained using the CNN-model in (5a)
while Fig. 8(b) and (d) stand for the corresponding solutions
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.254 −0.140 −0.048 −0.010 0.0002
2.1862 −0.517 −0.251 −0.077 0.1003
1.4255 0.5873 0.0004 −0.138 0.0107
1.0498 0.5873 0.1407 0.0551 0.0832
0.1600 0.2583 0.8653 0.1330 0.0779
0.3093 0.6351 0.6943 0.5271 0.2859
0.1448 0.4314 0.6059 0.5968 −0.145
0.0594 0.2573 0.7537 0.5564 0.5293
0.0188 0.1589 0.5330 0.1265 0.5254
0.0009 0.0912 0.1227 0.1386 0.5130

0.0016 0.0010 0.0001 −0.001 −0.001
0.0160 0.0132 0.0056 −0.001 −0.007
−0.049 −0.010 0.0072 0.0111 0.0098
−0.094 −0.058 −0.020 0.0053 0.0254
−0.046 −0.073 −0.053 −0.019 0.0232
0.0875 −0.024 −0.060 −0.049 −0.003
0.2529 0.0821 −0.025 −0.072 −0.063
0.3944 −0.216 0.0503 −0.071 −0.016
0.4792 0.3319 0.1377 −0.061 −0.013
0.5621 0.6509 0.3290 0.0804 0.1062

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ai j

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.139 −0.031 −0.041 −0.023 −0.010
0.1510 −0.178 −0.109 −0.093 −0.059
0.1824 0.1589 0.1363 0.0683 −0.002
0.2199 0.1882 0.1828 0.1536 0.0963
0.2102 0.1823 0.1767 0.1670 0.1409
0.1653 0.181 0.1589 0.1543 0.1444
0.0993 0.1504 0.1420 0.1356 0.1305
0.0428 0.1284 0.1279 0.1196 0.1127
0.0073 0.1015 0.1139 0.1079 0.0972
−0.011 0.0759 0.1063 0.1124 0.1059

−0.002 0.0005 0.0009 0.0006 0.0002
−0.025 −0.004 0.0040 0.0052 0.0040
−0.035 −0.038 −0.026 −0.012 −0.002
0.0334 −0.009 −0.024 −0.024 −0.014
0.0983 0.8509 0.0139 −0.007 −0.013
0.1244 0.0947 0.0608 0.0293 0.0401
0.1221 0.1076 0.0882 0.0619 0.0401
0.1063 0.0983 0.0874 0.0700 0.0561
0.0847 0.0714 0.0590 0.0456 0.0483
0.0863 0.0540 −0.016 −0.038 −0.183

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Bi j

obtained by the direct numerical simulation of (21) using
MATLAB (method-2).

Overall, the solutions in Fig. 8 reveal a very good qualitative
and quantitative agreement between the results provided by
the two methods. Furthermore, Fig. 8 reveals the apparition of
new modes (i.e., new solutions) when increasing the number of
grid-points. These modes show resonance dynamics whereby
the values of top points increase with the increasing index
of grids. It should be mentioned that similar results (i.e.,
numerical solutions of the transport equation) were reported
in [46] and [47].

VIII. CONCLUSION

The novel concept presented in this paper is particularly
challenging. It does demonstrate a systematic and straightfor-
ward way to solve nonlinear ODEs using the CNN paradigm.
The key challenge has been the possibility and then the
appropriate way and algorithmic path for mapping the system-
model of a given nonlinear ODEs unto the system model
expressed by a CNN-processor system.

Furthermore, the approach developed in this paper is very
flexible as it is applicable for solving various types and forms
of nonlinear ODEs and/or PDEs. The NAOP concept has been
shown to be central as it enables a systematic straightforward
computing of necessary templates for a given ODE system-
model. Two illustrative ODE and one PDE examples have been
provided in this paper.

Using NAOP, the calculation of respective CNN templates
for solving some of the classical and well-known ODE models
(i.e., Rayleigh, Lorenz, and Rössler equations, etc.) is straight-
forward. Of particular interest and worth a mentioning is that
the same templates provide the model solutions for all possible
bifurcation states, regular, or chaotic.

This paper has presented and validated a comprehensive
theoretical and practical concept based on the CNN paradigm

for enabling an ultrafast, potentially low-cost, energy-efficient,
high-precision, and flexible solving of nonlinear ODEs and
PDEs. Since all ODEs can be solved by the CNN processors-
based solver independently of both their form and related
nonlinearity type, the quintessence of this paper does evidently
represent a significant scientific achievement.

All CNN related features related to ultrafasting computing
are the foundation for enabling a really real-time (ultrafast)
computational engineering. A referencing of seminal works on
the complexity analysis related to CNN as a universal machine
has been provided in this paper as well.

The benefits of a CNN-based differential equations solver
under all possible bifurcation contexts are already visi-
ble and significant, and this independently of the effective
CNN implementation in hardware: n-CPU, DSP, field pro-
grammable gate array, Graphics Processing Unit (GPU), n-
CPU+GPU, or on a very large scale integration analog
CNN-Chip.
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