
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 6, JUNE 2014 1147

Efficient Exploratory Learning of Inverse
Kinematics on a Bionic Elephant Trunk

Matthias Rolf and Jochen J. Steil

Abstract— We present an approach to learn the inverse kine-
matics of the “bionic handling assistant”—an elephant trunk
robot. This task comprises substantial challenges including high
dimensionality, restrictive and unknown actuation ranges, and
nonstationary system behavior. We use a recent exploration
scheme, online goal babbling, which deals with these challenges
by bootstrapping and adapting the inverse kinematics on the
fly. We show the success of the method in extensive real-world
experiments on the nonstationary robot, including a novel combi-
nation of learning and traditional feedback control. Simulations
further investigate the impact of nonstationary actuation ranges,
drifting sensors, and morphological changes. The experiments
provide the first substantial quantitative real-world evidence for
the success of goal-directed bootstrapping schemes, moreover
with the challenge of nonstationary system behavior. We thereby
provide the first functioning control concept for this challenging
robot platform.

Index Terms— Bionic handling assistant (BHA), continuum
robot, goal babbling, inverse kinematics.

I. INTRODUCTION

MOTOR learning is an important application of machine
learning and increasingly relevant for modern robotics.

Already standard robots with well-known geometry and mass
distribution largely benefit from learning for the purpose of
accurate and agile motor control [1]. Learning is even more
important for new generations of robots that combine mechan-
ical flexibility, elastic material, and lightweight actuation-
like pneumatics. Such robots are often inspired by biological
actuators-like octopus arms [2], elephant trunks [3], or human
biomechanics [4], and provide enormous potential for the
physical interaction between the robot and the world, and
in particular between robots and humans. The downside of
their biologically inspired design is that analytic models for
their control are hardly available, which qualifies learning as
an essential tool for their successful application. Robots with
elastic elements face additional problems with nonstationary
behaviors due to hysteresis effects, viscoelasticity, and wear
out effects of the mechanically exposed material.

This paper investigates the learning of reaching skills on
such systems, i.e., to move the end-effector of the robot
toward some desired position by changing the robot’s posture.
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Successful control of such tasks can be well understood with
the notion of internal models [5]. Once internal models are
established for a certain task, a forward model predicts the
consequence of a motor command, while an inverse model
suggests a motor command necessary to achieve a desired
outcome. Learning internal models from scratch requires
exploration. In artificial systems, exploration is traditionally
addressed by motor babbling [6]–[8]; that is, motor commands
are randomly selected and their consequences are observed.
This kind of exploration becomes very inefficient with increas-
ing dimension of the sensorimotor space. The exploration can
be significantly improved by active learning schemes [9], [10].
Although the risk of generating uninformative examples can be
reduced with these methods, they assume that the sensorimotor
space can be entirely explored. However, high-dimensional
motor systems cannot be entirely explored in a lifetime.

How can a motor system, that cannot even be fully explored
once, be mastered if it is non-stationary and changes con-
stantly? Humans face that problem in their early sensori-
motor development. While infants bootstrap their repertoire
of sensorimotor skills, their bodies undergo massive changes
in overall size, weight, segment lengths, and mass distribu-
tion. Therefore, investigations of infants’ exploratory behavior
can provide inspiration for algorithms to deal with high-
dimensional and nonstationary control problems: It has been
shown that infants explore by far not randomly or exhaustively
as supposed by motor babbling. Rather, they attempt goal-
directed actions already days after birth [11], even though
they fail, which indicates a strong role of learning by doing.
Infants learn to reach by trying to reach, which we refer to as
goal babbling [12]. This strategy is highly beneficial for high-
dimensional motor systems that are also highly redundant:
tasks in sensorimotor learning are typically much lower dimen-
sional than the motor systems themselves. Reaching can be
done in an infinite number of ways, because human bodies as
well as modern robotic systems have more degrees of freedom
than necessary to solve the task. While this redundancy is often
considered a problem for sensorimotor learning [13], [14],
it also reduces the demand for exploration. If there are multiple
ways to achieve the same result there is no inherent need
to know all of them. Goal babbling allows to focus on
behaviorally relevant data and leave out redundant choices as
long as there are known solutions that work.

A. Related Work

The general idea to mimic infants’ efficient sensorimotor
learning is to likewise perform goal-directed exploration from
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the very beginning, i.e., to perform goal babbling. Instead of
performing random movements for the sake of learning, the
robot chooses actions by trying to achieve goals, and performs
ongoing learning. Goal-directed exploration has been a part
of many learning schemes, but only been possible with prior
knowledge [15], [16] or nongoal-directed pretraining [7], [17].
Only recently, models have been proposed that investigate a
consistent, goal-directed bootstrapping of internal models for
sensorimotor control. In [18], an associative memory related
to forward models is learned. A full forward model, as well
as a full feedback model can, however, only be learned with
exhaustive exploration. The most direct way to perform partial
exploration of the sensorimotor space is to start with exactly
one solution that is learned directly in an inverse function. In
[12], we have introduced a model for learning such functions
with goal babbling based on batch-gradient learning. Yet,
online learning is particularly beneficial in this scenario: since
learning instantaneously results in more informative samples
during goal-directed exploration, online-learning constitutes a
positive feedback loop, which allows for enormous speedups
[19]. The method has so far demonstrated the fastest boot-
strapping performance among the proposed algorithms: it can
bootstrap the control of 2-D control tasks on high-dimensional
systems (e.g., 50 degrees of freedom) within a few hundred
exploratory movements, which is competitive with human
learning performance [20]. This performance stands in contrast
to thousands to hundred thousands of movements necessary
for other algorithms [12], [18], [21]–[23] when faced with
comparable tasks. The general advantage of goal-directed over
random exploration has been confirmed in several other studies
for the learning of forward models [21], [22] as well as
feedback control models [23]. It describes an incremental
and ongoing process that supersedes any decision when to
perform a relearning or to perform a distinct exploration phase.
Hence, it provides the basis for an efficient mastery of high-
dimensional nonstationary motor systems.

Yet, so far there has been no quantitative evidence for the
success of these methods in practical real-world scenarios.
Most of the studies investigated pure simulations with an
ideal execution of actions without noise or delays, stationary
system behavior, and comfortable ranges. In [24], it was
shown that the approach to learn inverse models can deal
with nonstationary behavior in an otherwise simple simulation
task if learning occurs from small batches of data, which
still requires too much data to be practically feasible. The
only physical robot experiments have been shown in [23]
and [25], but only with qualitative results. Both studies did:
1) not provide an actual assessment of the control accuracy
after learning (except for a single example trajectory with
only moderate accuracy in [23]) and 2) no details about the
development of this accuracy over the course of learning.

Simultaneously, no control concept for the bionic handling
assistant (BHA) (BHA, see Fig. 1) has been introduced so far.
This practically relevant scenario comprises several properties,
such as elastic motions and narrow and changing actuation
ranges, that are very hard to model analytically. The central
contributions of this paper are: 1) to show the success of
goal babbling on this challenging platform, which provides

Fig. 1. BHA mimics an elephant trunk.

the first quantitative and detailed results of such schemes in
a real-world scenario and 2) to introduce the first functioning
control concept for this practical robot platform, which also
includes a novel integration of such learning with feedback
control mechanisms.

B. Overview

We introduce the robot platform and its learning problem
in Section II. The nonstationary behavior is shown to express
mostly in terms of the actuation ranges: the limits in which
each actuator can be moved change over time due to the
viscoelasticity of the robot’s material. The exploration and
learning approach based on [19] is described in Section III.
The main contribution is described in Section IV: we show
how the learning performs on the physical, nonstationary robot
and present an in-depth analysis of the particular challenges
on this exemplary, but for bionic robots prototypical platform.
We discuss how the interplay of generalization during learning
and unknown actuation ranges can cause execution failures
on the highly constrained actuators—and how learning nev-
ertheless finds appropriate solutions. We introduce a novel
combination of learned models and feedback control, due to
which the BHAs end-effector can be controlled with only
a few millimeters error after learning. While the precise
nonstationarities on the real robot can hardly be determined
during its operation, Section V further investigates the impact
of nonstationary behaviors in simulation experiments. We
investigate the degeneration of actuation ranges, sensory-drifts,
and simulated morphological growth. Section VI concludes
this paper with a discussion.

II. BHA SETUP

The robotic platform used in this paper is the BHA [3]
which is a new, award-winning [26] continuum robot platform
inspired by elephant trunks and manufactured by Festo (see
Fig. 1). The robot is pneumatically actuated and made almost
completely out of polyamide, which makes it very flexible and
lightweight (ca. 1.8 kg).

A. Actuation and Sensing

The robot comprises three main segments, each with three
pneumatic bellow actuators, a ball joint as wrist, also actuated
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Fig. 2. Kinematic structure of the BHA comprises three main segments,
each consisting of three parallel pneumatic bellow actuators. The length of
these actuators can be determined with cable potentiometers.

by three actuators, and a three finger gripper actuated by one
bellow actuator. This paper only uses the main segments, so
that we use m = 9 actuated degrees of freedom. Each actuator
can be supplied compressed air, which unfolds and extends
the actuator. The combination of three actuators per segment
then allows to bend, and—in contrast to standard robots with
revolute joints–stretch the entire robot.

For a reliable positioning, it is not sufficient to control
the pressure alone: friction, hysteresis, and nonstationari-
ties can cause largely different postures when supplying the
same pressure several times. In particular, during dynamic
movements the pressure is not sufficient to determine the
posture or position of the robot, since it only expresses a
force on the actuators. This force reaches an equilibrium
with the mechanical tension of the bellows after some time,
so that the robot stands still. This physical process can,
however, take up to 20 s because of a strong mechanical
interplay between different actuators. Since pressure does
not provide reliable information about the robot’s position
and movement in space, we are solely concerned with the
geometric information from the BHAs length-sensors (see
Fig. 2). Each one cable-potentiometer spans the range from
the trunk’s base to the top end of each of the nine actua-
tors. Hence, they allow to measure the outer length of the
trunk along the actuators between the segment base 0 and
1, between 0 and 2, and between 0 and the end-effector
segment. For control and learning we do not use these mea-
surements directly, but subtract the lengths within each bundle
of potentiometers from each other to get the outer length of
each individual bellow actuator (e.g., length 1–0 from length
2–0 to get the length 2–1 of the middle actuator). Although
they do not allow a direct actuation-like pulling, the length
values can be controlled by adjusting the pressure in each actu-
ator. Our system comprises a length-controller that performs
this task automatically and itself was learned beforehand [27].
For the nine length values in the main segments, we generally
refer to the desired length as q∗ ∈ R

9. The actually measured
length is referred to as q ∈ R

9, which might differ from q∗
because of sensory noise, or q∗ being not yet reached or being
not reachable at all.

Fig. 3. Effector positions for an i.i.d. variation of the nine actuator
lengths. Already a deviation of 5 mm on each actuator-length causes several
centimeters sideward movement of the end-effector, but only small stretching
movements.

The forward kinematics function of this robot is not
exactly known analytically, although approximations exists
(see Section V). For the kinematic control of the robot,
we consider the 3-D position of the end-effector. Using the
position only (without orientation) is largely sufficient to grab
objects with the widely opened elastic fingers of the BHAs
gripper, and already requires to fully exhaust the narrow limits
of the bellow actuators (see Section II-C). For our experiments,
we measure the end-effector position with a VICON motion
tracking system [28]. Auto-reflective markers allow to measure
the position with high accuracy using triangulation. We use the
central position inside the gripper’s palm as point of reference
and refer to its cartesian value as x ∈R

n, n = 3. We denote the
robot’s implicit forward function as f (q) = x . This function
cannot be evaluated directly, but examples x and q can be
observed on the physical robot.

B. Achievable Accuracy

Although the length of the actuators can be controlled, there
are limitations to the positioning accuracy that need to be
considered for learning experiments. The first important prop-
erty of the BHAs morphology is that even minimal changes
of the actuator lengths can lead to large, and direction-wise
inhomogeneous changes of the effector position. To illustrate
this phenomenon, we recorded the end-effector position for
200 random postures, each drawn independent identically
distributed (i.i.d.) from normal distribution around a stretched
position qi = 0.225 m ∀ i = 1 . . .9 with standard-deviation
5-mm per actuator. Fig. 3 shows the resulting positions of
the end-effector from a sidewise perspective. The resulting
distribution extends to almost 15-cm sideward deviation (the
first axis, x1), while top/down stretching movements (x3) only
vary within ±2 cm. The standard deviations of the generated
distribution are 4.4 cm in x1 and x2 direction and 0.6 cm in x3
direction. The large amplitude of sideward movements implies
a very high sensitivity of the end-effector position to length-
changes. In reverse, a positioning of the end-effector with low
deviation (e.g., 1 cm) requires a control of the actuator lengths
with submillimeter accuracy. This is clearly difficult to achieve
on the BHA due to long delays in the pneumatic actuation,
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and strong sensory noise in the length-sensing (ca. 1-mm
amplitude).

To obtain a baseline for positioning accuracy of the BHA,
we chose P = 20 entirely random postures qp. These postures
were set as target for the length-controller [27]. Due to
the slow steady-state dynamics of the physical deformation
process, it is practically impossible to determine whether the
robot’s deformation due to an applied pressure has already
converged. Therefore, we chose to apply each posture as
target to the length-controller for entire 20 s, which is in
our experience long enough to reach a physical equilibrium.
This procedure was repeated R = 20 times with different
permutations of p. Each time we recorded the resulting
Cartesian end-effector position xr

p . We evaluated the distance
of these positions from the average position per qp

x p = 1

R

∑

r

xr
p

D = 1

P

∑

p

1

R

∑

r

||xr
p − x p||

where || · || is the Euclidean norm. Results show that
D = 0.0047 m. Hence, the end-effector can only positioned
with approximately 5-mm accuracy.

C. Nonstationary Actuation Ranges

A central problem for the control of the BHA is that the
limits, in which the actuator lengths can be controlled, are
not known and change over time. Limits for the lowest-
level physical actuation, i.e., the pressure, are easily formu-
lated: since the actuation only works with over-pressure, each
actuator has a minimum pressure of 0 bar. The maximal
admissible pressures that allow for a safe operation (i.e., that
do not burst the bellows) are 0.9, 1, and 1.2 bar for the first,
second, and third segments. These maximum pressures are
chosen by the manufacturer and cannot be exceeded. Hence,
the set of possible pressure combinations is a hyper-rectangle
in nine dimensions. In contrast, the set of possible length
combination is clearly not a hyper-rectangle since each length
is the result of a strongly nonlinear physical deformation
process. This is shown in the first part of Table I: combinations
of minimum/maximum pressure were supplied to the three
actuators in the third segment, and the resulting three actuator
lengths were recorded. Two effects are clearly visible.

1) The different actuators have different limits, even within
the same segment, due to viscoelasticity and wear-out
effects. This is particularly visible in the last line of
the table, where maximum pressure for each actuator
generates significantly different lengths.

2) There are significant interdependencies between the lim-
its of different actuators: the maximum reachable length
(i.e., the length for maximum pressure) depends on the
length of the other actuators.

Such combinations of minimum and maximum pressure
give some insight into the structure of the length ranges. Yet,
the analytic shape of the set of possible length combinations
is not known. We refer to this set as Q ⊂ R

9. Each vector

TABLE I

MEASURED ACTUATION LIMITS FOR SEGMENT 3 BEFORE AND AFTER

THE LEARNING EXPERIMENTS. CHANGES OF MORE THAN 2.5 mm ARE

MARKED WITH ∗ , CHANGES OF MORE THAN 5 mm WITH ∗∗

in Q represents a length-combination that is reachable for the
robot. Each vector that is not in Q cannot be reached.

Q is not only not known, it is not stationary. The upper
part of Table I was recorded before the experiments described
in Section IV. We repeated the same procedure after the
experiments and found that the limits have changed signif-
icantly (lower part of Table I). For instance, the maximum
values in the last column have changed by 6–7 mm, which is
substantially above sensory noise and can cause large changes
of the effector positions (see Fig. 3). This change is caused by
the viscoelasticity of the bellows’ polyamide material: it is not
perfectly elastic, but has a certain memory of its recent form.
This corresponds to a spring with changing force constant, so
that the same pressure (e.g., force on the spring) can cause
different elongations over the course of time. For practical
experimentation with the BHA means that whenever some
posture q∗ is desired, it is not even clear whether the posture
can be reached.

D. Kinematic Learning Problem

Reaching for some desired Cartesian position x∗ ∈R
3 with

this robot means to find some posture, i.e., a combination of
lengths q , that results in an end-effector position x = x∗. In the
following experiments, we consider the learning of reaching
skills for the volume X∗ of targets shown in Fig. 4. To describe
this volume using a finite set of representative targets, we
chose a grid with K = 120 vertices. A side view is shown
in Fig. 4(a): the representatives are the 24 vertices of the red
grid, which is shown in relation to the BHA. A 3-D workspace
description is constructed from this plain grid by rotating it
around five different angles. Fig. 4(b) shows the resulting grid
in a 3-D view from above. Note that the gaps in the 3-D
visualization are only for visual orientation.

The goal of the experiments is to learn an inverse model
g(x∗) for the volume X∗ enclosed in this grid. During
exploration, target positions x∗ are interpolated between the
K grid vertices. Furthermore, exploratory noise distributes
observations also around such paths to eventually cover the
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Fig. 4. Inverse model is learned for the volume of targets X∗ enclosed in
the red grid, shown (a) from a sidewise perspective in 2-D and (b) from a top
view in 3-D.

entire volume. The inverse model is asked to estimate a posture
q∗ that allows to move the effector to x∗: f (g(x∗)) = x∗.
During the process of learning, the resulting position f (g(x∗))
will generally differ from x∗. Hence, the central measure of
learning progress is the Cartesian performance error, which
measures the distance between the actual and the desired
positions at the K representatives

E X = 1

K

k<K∑

k=0

|| f (g(x∗
k ))− x∗

k ||. (1)

While all evaluations are performed in Cartesian coordinates
in order to provide easily understandable distances in meters,
the learning is performed in a different coordinate system.
Since the exploration is based on the sampling of continuous
paths (see the following section) it is desirable to have a con-
vex workspace, which allows to sample a linear path between
any two points. To achieve that for the given workspace, we
change the representation to an angular coordinate system.

The following transformation is applied before spatial coor-
dinates x = (x1, x2, x3)

T are used for learning

ψ(x) = ( sgn(x3)·||x ||, �(x,u1), �(x,u2) )
T

where u1 and u2 are the unit vectors along the first and second
axis. The first component of ψ: R

3 → R
3 represents the radial

component, i.e., the distance of some point from the BHAs
base. The last two components express angles. The workspace
ψ(X∗) after the transform is a convex set so that linear paths
can be sampled without leaving the set.

III. ONLINE GOAL BABBLING

The general idea for the coordination of the BHA is to
learn an inverse model g : ψ(X∗) → Q that suggests motor
commands q∗ for reaching targets ψ(x∗). Such a function g
can be learned by exploring actions, observing their outcomes,
and then using the collected data for a supervised learning step.
During exploration, these examples are generated iteratively
over time steps t . We denote the motor commands that are sent
to the robot during exploration as q∗

t . The resulting postures qt

and effector positions xt are measured for learning, so that that
qt and xt correspond to an evaluation of the robot’s implicit
forward function

xt = f (qt). (2)

Examples (xt , qt ) can then be used for supervised adaption
of the inverse estimate g(ψ(x∗), θ), where θ is a set of
parameters adaptable by learning. Since learning in this paper
is consistently done in the angular coordinates as described
above, we write ψ(xt ) = ψt and ψ(x∗

t ) = ψ∗
t as short

notation.
Goal babbling refers to the way these examples are gener-

ated, i.e., how actions q∗
t are chosen using goal-directed move-

ment attempts. Section III-A introduces the basic formalism to
perform such goal-directed movements. Section III-B explains
how this formalism is used to organize continuous movement
paths in time t , and Section III-C describes how exploratory
noise is injected into this mechanism. Finally, Section III-D
details how the inverse model is represented and learned based
on the generated training data. The entire algorithm is based on
[19] with some minor modifications to improve the efficiency
in challenging physical robot setups like the BHAs.

A. Goal-Directed Movements

To generate examples, goal babbling starts with an initial
inverse estimate g(ψ∗, θ0) that always suggests some com-
fortable home posture: g(ψ∗, θ0) = const = qhome. Then,
continuous paths of target positions ψ∗

t through ψ(X∗) are
iteratively chosen by interpolating between the K representa-
tive points. The system then tries to reach for these targets,
which corresponds to infants’ early goal-directed movement
attempts. For that purpose, the inverse estimate is evaluated
as expressed in the fundamental equation of goal-directed
exploration

q∗
t = g(ψ∗

t , θt )+ Et (ψ
∗
t ). (3)
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The command q∗
t is sent to the length controller, the out-

comes qt and ψt are observed, and the parameters θt of the
inverse estimate are updated based on the example (ψt , qt )
immediately before the next example is generated. In contrast
to earlier simulation studies [19] it is crucial to make the
distinction between q∗

t and qt at this point: the command q∗
t

might not be executable, or might not yet be reached at the
time of measurement. Hence, only (ψt , qt ) but not (ψt , q∗

t )
represents a sample of the ground truth forward function that
is useful for learning. The perturbation term Et (ψ

∗) adds
exploratory noise in order to discover new positions or more
efficient ways to reach for the targets. This allows to unfold the
inverse estimate from the home posture and finally find correct
solutions for all positions in the volume of targets ψ(X∗).

B. Path Generation

A major aspect of goal babbling is how to choose target
positions. We do so by generating continuous, piecewise linear
target movements through ψ(X∗). The initial target (t = 0)
is the effector position corresponding to the home posture:
ψ∗

0 = ψ( f (qhome)). In the first movement, the system tries to
move along a path toward another target�∗

1 which is randomly
chosen from the K representative points of ψ(X∗). This path
is generated by interpolating linearly between ψ∗

0 and �∗
1 .

Afterward, a new target �∗
2 is chosen from ψ(X∗) and the

second movement is attempted between �∗
1 and �∗

2 . This
movement is generated with a fixed difference δψ between
the successive samples: as long the next endpoint �∗

l is more
than δψ away from the last target ψ∗

t , it receives an update

ψ∗
t+1 = ψ∗

t + δψ

||�∗
l − ψ∗

t || · (�∗
l − ψ∗

t ). (4)

When ψ∗
t was closer than δψ to �∗

l , we set ψ∗
t+1 = �∗

l , and
a new �∗

l+1 is chosen to continue. An example is generated
for each of these targets according to (2) and (3). Earlier
simulation work [19] used an interpolation between the end-
points with a fixed number of intermediate samples. The sam-
pling with fixed step-length (varying number of intermediate
samples) proposed here generates a more uniform distribution
and keeps a movement speed that is neither too fast to be
executable, nor too slow, preventing a bad signal-to-noise ratio.

In nonlinear redundant domains, it is generally possible to
generate inconsistent examples with same effector pose but
different joint angles. Learning from such examples leads to
invalid solutions [16]. We have previously shown in [12] that
the structure of goal-directed exploration allows to resolve
such inconsistencies using a weighting scheme

wdir
t = 1

2

(
1 + cos �(ψ∗

t − ψ∗
t−1, ψt − ψt−1)

)
(5)

weff
t = ||ψt − ψt−1|| · ||qt − qt−1||−1 (6)

wt = wdir
t ·weff

t . (7)

wdir
t measures whether the actually observed movement and

the intended movement have the same direction.weff
t measures

the kinematic efficiency of the movement and assigns high
weight to examples that achieve a maximum of effector
movement with a minimum of joint movement. For learning,

each example (ψt , qt ) is weighted by wt . In addition to
resolving inconsistencies, the weighting guides the redundancy
resolution in redundant domains: efficient movements will
dominate the learning in the long term and cause the inverse
estimate to select smooth and comfortable solutions [12].

A special kind of movement is used to prevent drifts into
irrelevant regions of the sensorimotor space. Similar to the
infants practicing their motor skills, the system returns to
a stable point after a while and starts to practice again.
With a probability phome, the next movement after a target
�∗

l has been applied is not another goal-directed movement.
Instead, the system returns to its home posture. This kind
of movement leads to a repetitive presentation of examples
close to the home posture and forces the inverse estimate to
reproduce these postures for goal-directed movements. It acts
as a developmentally plausible stabilizer that helps to stay in
known areas of the sensorimotor space [12], [18]. We model
this movement as a linear path in the space of postures Q to
get smooth and continuous behavior for online learning: the
system moves from the last actuated posture q∗

t to its home
posture qhome, whereas (3) is replaced by the following:

q∗
t+1 = q∗

t + δq

||qhome − q∗
t || · (qhome − q∗

t ) (8)

if q∗
t is not closer than δq to the home posture, and

q∗
t+1 = qhome if it is close enough. For every generated motor

command q∗
t , the resulting posture and effector position is

observed (2) and learning is applied online in the same way
as for goal-directed movements. These examples are only
weighted with weff

t , because targets ψ∗
t for the evaluation

wdir
t do not exist during this homeward movement. After the

home posture has been reached, a goal-directed movement is
attempted from the initial target ψ∗

t+1 = ψ( f (qhome)).

C. Structured Continuous Variation

To find kinematic solutions for all target positions, it is
necessary to consider exploratory noise, or rather perturbations
of the motor system [12], [29]. Such perturbations arise nat-
urally in physical systems and lead to the exploration of new
postures that would not be suggested by the inverse estimate.
Physical perturbations typically lead to smooth variations of
the intended movements. At any point in time, we model this
effect by adding a small, randomly chosen linear function to
the inverse estimate

Et (ψ
∗) = At · ψ∗ + bt , At ∈ R

m×n , bt ∈ R
m . (9)

Initially, all entries ei
0 of the matrix A0 are chosen i.i.d. from

a normal distribution with zero mean and variance σ 2. To
explore the local surrounding of the inverse estimate, we vary
these parameters slowly with a normalized Gaussian random
walk. A small value δi

t+1 is chosen from a normal distribution
N(0, σ 2

�) with σ 2
� � σ 2, and added to the previous value

ei
t . The variance of the resulting value is the sum of the

individual variances σ 2 +σ 2
�. We normalize with the factor
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√
σ 2/(σ 2+σ 2

�) to keep the overall deviation stable at σ

ei
0 ∼ N(0, σ 2), δi

t+1 ∼ N(0, σ 2
�)

ei
t+1 =

√
σ 2

σ 2 + σ 2
�

· (ei
t + δi

t+1) ∼ N(0, σ 2).

The same process generates vectors bt with deviations σ (b) and
σ
(b)
� .1 Hence, Et (ψ

∗) is a slowly changing linear function. It
is smooth at any time, which is important for the evaluation
of the weighting scheme (5) and (6). It is furthermore zero
centered and limited to a fixed variance, which leads to a local
exploration around the inverse estimate.

D. Incremental Regression Model

For learning, a regression mechanism is needed to repre-
sent and adapt the inverse estimate g(ψ∗). The goal-directed
exploration itself does not require a particular functional form
or other details of this regressor, such that in principal any
regression algorithm can be used. For a safe and incremental
online learning, we have chosen a local-linear map [30] for
our experiments. The inverse estimate consists of different
linear functions g(k)(ψ), which are centered around prototype
vectors p(k) and active only in its close vicinity, which
is defined by a radius d . The function g(ψ∗) is a linear
combination of these local linear functions, weighted by a
Gaussian responsibility function b(ψ)

g(ψ∗) = 1

n(ψ∗)

K∑

k=1

b

(
ψ∗− p(k)

d

)
· g(k)

(
ψ∗− p(k)

d

)

b(ψ) = exp
(
− ||ψ||2

)
, n(ψ∗) =

K∑

k=1

b

(
ψ∗− p(k)

d

)

g(k)(ψ) = W (k) · x + o(k).

The normalization n(ψ∗) scales the sum of influences of the
components to unity, which is known as soft-max.

The inverse estimate is initialized with a single local func-
tion with center p(1) = ψ( f (qhome)) that outputs the constant
value qhome (W (1) = 0m×n , o(1) = qhome). New local functions
and prototypes are added dynamically. Whenever the learner
receives an input ψ∗, that has a distance of at least d to all
existing prototypes, a new prototype pK+1 = ψ∗ is created.
To avoid abrupt changes in the inverse estimate, the function
gK+1(ψ) is initialized such that its insertion does not change
the local behavior of g(ψ∗) at the position ψ∗. We set the
offset vector oK+1 to the value of the inverse estimate before
the insertion of the new local function: oK+1 = g(ψ∗).
The weight matrix is initialized with the Jacobian matrix
J (ψ∗) = ∂g(ψ∗)/∂ψ∗ of inverse estimate: W K+1 = J (ψ∗).

In each time step, the inverse estimate is fitted to the current
example (ψt , qt ) by reducing the weighted square error

E Q
w = wt · ||qt − g(ψt )||2 .

1Earlier work used identical amplitudes for At and bt . We split these values
for the BHA to account for different numerical amplitudes of the goals, with
which At is multiplied. This keeps the same ratio between At · ψ∗ and bt
that was found useful in [19].

TABLE II

PARAMETERS USED FOR EXPLORATION AND LEARNING

The parameters θ = {W (k), o(k)}k of g(ψ∗) are updated using
online gradient descent on E Q

w with a learning rate η

W (k)
t+1 = W (k)

t − η
∂E Q

w

∂W (k)
o(k)t+1 = o(k)t − η

∂E Q
w

∂o(k)
.

IV. REAL-WORLD BHA EXPERIMENTS

This section presents experiments with online Goal Bab-
bling on the physical BHA robot. During the experiments,
the robot underwent a change of actuation ranges, as detailed
in Section II-C so that learning operated on a nonstationary
system. We first illustrate how the reaching performance
develops during learning. We then present a method for local
error correction, which reduces the residual errors due to
nonreachable target postures.

A. Learning on the Nonstationary Robot

We applied the exploration and learning algorithm on the
BHA in three independent trials. The workspace description
X∗ was used, as illustrated in Section II-D. All parameter
values are shown in Table II. The most influential parameters
are the amplitude of the perturbation terms, which has been
extensively investigated in [12], and learning rate, which has
been focus of investigation in [19]. The sampling rate on the
robot is 5 Hz: in each second, five targets ψ∗

t are generated
and the resulting samples are used for learning. With the target
step length δψ = 0.01 m this corresponds to a target velocity
of 5 cm/s, which is suitable for the robot. In each trial, the
method used T = 90 000 samples, which corresponds to five
hours real time.

Every 9000 samples the learning was interrupted to mea-
sure the current performance on the K = 120 targets in
Fig. 4. The current inverse estimate g(·, θt ) was used to
estimate the posture q∗

k = g(ψ∗
k , θt ). The length controller had

20 s time to reach and stabilize q∗
k . Statistics of the Cartesian

performance errors between the targets x∗
k and the actually

observed positions xk are shown in Fig. 5(a) for all three trials.
The initial error is approximately 30 cm, which corresponds to
the average distance of the home position, in which the learner
is initialized, and the different target positions. Subsequently,
the exploration procedure reduces the error rapidly. After
T = 90 000, the errors consistently reach a mean level of ca.
2 cm and a median level of ca. 1.5 cm in all three trials.
For an average robot-length of 80 cm this corresponds to
2%–3% relative error, which already includes the general
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Fig. 5. (a) Cartesian performance error is reliably reduced in all three
trials. The mean reaches approximately 2 cm and the median value 1.5 cm.
A decomposition into (b) angular and (c) radial components shows that the
2-D angular subproblem is solved already within the first 9000 samples.

execution uncertainty of 5 mm (see Section II-B). The learning
clearly succeeds to bootstrap the reaching skill on the robot.
The remainder of this section closely investigates the details
of this performance curve, the reasons for residual errors, and
how they can be removed by further exploitation of the learned
inverse model with a feedback controller.

Figs. 6 and 7 show a more detailed view on the first trial.
Fig. 6 shows the observed effector positions xt during the
entire learning procedure. Starting from the home posture
and the discrete set of representative targets, the exploration
and learning procedure eventually generates movement paths
through the entire volumetric workspace. Thereby both the

Fig. 6. Examples xt = ψ−1(ψt ) generated during goal babbling in the
first trial. Only every 10th sample is shown, i.e., one example for every two
seconds of exploratory time. While the 9-D space of motor commands cannot
be exhaustively sampled, goal babbling achieves a comprehensive sampling
of the 3-D workspace. Hence, a continuous inverse model for this space can
be learned.

interpolation between the goals (4) as well as the addition of
exploratory noise (3) contribute to the coverage of the volume.
After the successive presentation of the 90 000 examples a
continuous inverse model is learned for reaching within the
volume. Histograms of the performance error are shown for
t = 0, t = 9000, and t = 90 000 in Fig. 7. The initial
histogram simply shows the distances of the initial posture
from the four rings of the target grid. Further histograms
show that the error is reduced continuously, but also that few,
isolated targets generally show an comparably high residual
error. The right side of the figure shows the behavior of the
learner in the 3-D space. The red grid again shows the set
of targets. The blue grids show the measured behavior of the
inverse estimate when trying to reach for the targets, i.e., the
observed positions xk = f (g(ψk)). Already after t = 9000
the positions are spread out along the angular directions, but
do not yet cover the volume of the target set. After t = 90 000
the learner has also discovered how to stretch along the radial
axis: target and actual grid are in good correspondence.

Stretching seems to be a simple movement on the robot: in
a straight position all actuators need to be extended and the
effector moves upward. It is the most difficult movement: it
requires a highly coordinated motor action, and the robot will
deviate substantially if only one degree of freedom does not
follow this movement. Due to the very restrictive actuation
limits it is also necessary to include all three segments into
the movement to reach from the very bottom of the workspace
to the very top. In contrast, angular motions are much simpler
and can be done in a lot of different ways. Due to the high
sensitivity of the robot to movements in these directions (see
Fig. 3) they are also easily discovered during autonomous
exploration. Since the combination of goal-directed explo-
ration and online learning unfolds a positive feedback-loop
during the initial bootstrapping [19], the learner can basically
master angular movements already after a few minutes. Radial
stretching movements have lower sensitivity, which implies a
lower gain in the feedback loop. Hence, it requires more time
to learn this movement direction.
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Fig. 7. Histograms of the (a) initial performance error, and the performance
error (b) after t = 9000 and (c) after t = 90 000 samples. While the initial
histogram shows the ring structure of the target set, ongoing learning reduces
the errors consistently. At t = 9000 the learner still has to make strong
extrapolation, which lead to outliers (several points with errors above 10 cm),
which are caused by execution failures q 	=q∗. Further learning consolidates
these extrapolations.

This behavior occurs consistently over the three trials:
Fig. 5(b) and (c) shows a decomposition of the performance
error into angular and radial components. For the angular
component, we projected both xk and x∗

k on the unit-sphere
with radius 1 m, such that the radial component is erased,
and measured the Euclidean distance between the projected
points. We evaluated this component only for the central
of the three target layers (see Fig. 4). The top and bottom
layers are not considered to blend out the difficulties of
stretching movements for this evaluation. The radial error
is the difference between the first components of ψ(xk)
and ψ(x∗

k ), which is evaluated for all target positions. The
plots show that the angular error component is reduced from
30 to 2 cm already in the first exploration episode, and further
stabilizes around 1.3 cm. The bootstrapping and fine-tuning
of radial movements takes significantly more time in all three
trials. The difficulty to discover (and also control) stretching
movements, while other directions are that simpler to find is

TABLE III

CARTESIAN PERFORMANCE ERRORS WITHOUT AND WITH CARTESIAN

FEEDBACK CONTROL ON TOP OF THE LEARNED INVERSE MODEL. THE

CONTROLLER REMOVES ERRORS INDUCED BY EXECUTION FAILURES,

AS INDICATED BY THE ERASED FAILURE CORRELATION

very specific for the BHAs trunk morphology that combines
bending and stretching. After all, this problem is solved by
the exploration procedure.

B. Execution Failures

While the average performance during learning quickly
reaches a good level, there remain rather isolated outliers.
This behavior is particularly visible in Fig. 7(b), where a few
targets are only reached with an error of more than 10 cm.
These outliers are largely consolidated during learning, but a
heavy-tail in the error-histogram remains [see Fig. 7(c)]. The
reason for this behavior is grounded in the inevitable process
of generalization and interference during the regression of
g. During the initial bootstrapping of a motor skill this is
an enormously useful mechanism: already based on the first
examples x the learner generalizes and makes extrapolations
for other targets x∗. These extrapolations are, of course, not
perfect but allow a quick coverage of the workspace.

Once the learner has roughly covered the workspace, gen-
eralization can become more problematic due to the highly
constrained actuation limits of the BHA. Moving through the
entire set of targets requires to operate very closely to the
limits of the possible length configurations Q. Any data used
for learning lies inside Q since the values of qt have been
observed on the robot. Interference, however, can cause a
projection of g beyond Q for other positions x than that one
currently used for learning (xt ). Suppose the current learning
step is done on an example (xt , qt ). Due to interference, the
learner’s output is changed at another position x 	= xt to
g(x) = q∗ and q∗ /∈Q. When the inverse estimate is now used
to reach for x , it would suggest q∗, which is not reachable.
On the robot, this results in a different posture q . We refer
to this mismatch q∗ 	= q as an execution failure. Due to
the high angular movement sensitivity of the BHA already
minor execution failures cause large deflections of the end-
effector, and thus high Cartesian performance errors. The tight
connection between the Cartesian errors and execution failures
is shown in Table III. The upper part shows the final Cartesian
errors for all three trials. The last column shows the failure
correlation for the final evaluation after t = 90 000

Cq
x = 


[ ||x∗
k − xk ||, ||q∗

k − qk ||
]

k (10)

where 
 ∈ [−1 : 1] is the Pearson correlation coefficient. It
measures how well Cartesian errors are correlated with the
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Fig. 8. (a) Cartesian feedback control on a simple robot with three revolute joints. (b) If an inverse model suggests a posture that cannot be executed due
to actuation ranges. (c) Shifting of the target position allows to exploit the redundancy and nevertheless reach the target.

occurrence of execution failures. The table shows very high
positive correlation in all three trials, which indicates that
the largest Cartesian errors are indeed caused by execution
failures.

C. Feedback Control for Local Error Correction

Although the interference is rather limited by the locally
linear learning in our experiments, it is sufficient to cause the
heavy-tailed error-distributions. Also, the projection outside
Q is hardly avoidable, since Q is not even known and
changes during operation. For our final experiment on the
physical BHA, we propose a scheme that integrates the learned
inverse models with an additional feedback controller, and
demonstrate its ability to reduce residual errors caused by
execution failures. Fig. 8(a) shows a simplified domain, with
a planar arm comprising three revolute joints. An inverse
model is used to reach a target position x∗ [Fig. 8(b)]. The
suggested posture q∗ would indeed solve the task, but is not
executable since the last joint has reached its actuation limit
and cannot be bent further downward. The resulting posture
q ends up in a position x 	= x∗. When an inverse model g
has been established, feedback control can be applied in the
Cartesian space without further learning: the target position
is virtually shifted toward some value x̂∗

t and the posture
q∗

t = g(x̂∗
t ) is applied on the robot, which results in a posture

qt and an effector position xt [see Fig. 8(c)]. The shifting of
goals thereby follows the currently observed Cartesian error
et = x∗ − xt , which is integrated over time

x̂∗
0 = x∗, x̂∗

t = x̂∗
t−1 + α · et−1.

This procedure is guaranteed to converge to the target position
x̂∗

t = x∗ if a shift of targets α ·et−1 always results in an actual
effector movement that has a positive angle to the desired
movement (�(et−1, xt − xt−1)<90◦). If, however, the inverse
estimate is not able to generate a positive movement direction,
the control can diverge. It is possible that the limited actuator
is driven even deeper into its limit during this feedback-
controlled movement, since also the feedback-controller is not
aware of Q. One of the central strengths of our goal babbling
algorithm is that it learns to efficiently distribute movements
over all actuators [19]. This behavior can be exploited by

Fig. 9. Cartesian performance of a learned model when Cartesian feedback
control is applied on top [compare Fig. 7(c)].

Cartesian feedback control, even if one actuator is blocked. As
long as other actuators are still movable, the inverse estimate
involves them to reach for x̂∗

t , which brings the observed
effector position xt closer to x∗ [see Fig. 8(c)].

We evaluated the final inverse estimates of all trials with
this procedure. For each target ψ∗

k , the initial inverse estimate
q∗ = g(ψ∗

k ) was sent to the length controller and was active
for 5 s before the feedback control was activated. Then, the
feedback control on top of g was applied with 5 Hz and gain
α = 0.02 for 15 s, so that the overall evaluation time per target
was 20 s, consistently with other evaluations in this paper.
Results for the first trial are shown in Fig. 9: the heavy-tail in
the error histogram has disappeared [compare Fig. 7(c)] and
the maximum error is below 3 cm. The performance in 3-D
shows an excellent match between the targets x∗

k (red) and
actual positions xk (blue).

Results for all three trials are shown in Table III (bot-
tom). The mean Cartesian performance errors are reduced to
7–9 mm and the median errors to 6–8 mm, which is a
substantial improvement and close to the accuracy baseline
of 5 mm. While the amplitude of execution failures (not
shown) is not reduced by the feedback control, the failure
correlation has dropped to zero. No divergence of the feedback
control was observed in the experiment. These results clearly
show that the combination of a kinematically efficient inverse
estimate that exploits all degrees of freedom, and a Cartesian
feedback controller can cope with the problem of execution
failures.
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V. NONSTATIONARY BEHAVIOR IN SIMULATION

The experiments on the physical BHA have shown the
success of our method for the robot’s trunk morphology as well
as physical problems like sensory noise or delayed execution
of physical motions in time. Thereby, we have observed a
significant change of the actuation ranges Q. Other changes
like drifting sensors or slight changes of the true forward
function f due to viscoelasticity are known to occur but
are hard to capture. This section complements the previous
experiments with learning in a simulated environment in which
such nonstationary behaviors can be controlled, and their effect
on the learning method can be effectively investigated.

A. Kinematic Simulation of the BHA

To simulate the kinematics of the BHA we use an open
source implementation [31] of a constant curvature continuum
kinematics model. This model assumes that bending and
stretching movements of each robot segment behave like a
torus section, which allows to infer the coordinate transforma-
tions for the forward kinematics. The model allows to predict
the end-effector position x of the BHA based on the actuator
lengths q with an average accuracy of 1 cm [31]. Instead of
applying a length on the robot, the end-effector position is
simply computed with this library: x = f sim(q).

An important aspect of the BHAs kinematics are the actua-
tion ranges Q. Since this set is also not known analytically
we used the minimum/maximum pressure results recorded
on the real BHA (see Table I). The eight combinations of
minimum/maximum pressure were recorded for each segment
separately. The possible length combinations Qsim

(i) ⊂ R
3 for

a segment i are modeled by the convex hull of the resulting
eight lengths. The possible lengths of different segments are
modeled independently: Qsim = Qsim

(1)×Qsim
(2)×Qsim

(3) . When the
exploration suggests a posture q∗ /∈ Qsim, it is projected onto
the surface of Qsim

q = c(q∗) =
⎧
⎨

⎩

q∗, if q∗ ∈ Qsim

argmin
q̂∈Qsim

||q∗ − q̂||, else.

B. Nonstationary Actuation Ranges

We first investigate varying actuation ranges Qsim, which
have been identified as important problem of the physical
robot. The experiments in Section IV-C have shown that a
feedback controller on top of learning can deal with a certain
amount of residual errors caused by this problem. Yet, it is
impossible to quantify on the actual robot to what extent the
learning can actually deal with these changes because there is
no accessible baseline: the robot cannot be made stationary to
compare learning with and without changes of the system.
Simulation experiments allow to manipulate nonstationary
behavior and to quantify its impact.

For a direct comparison with the real BHA results, we
performed three independent trials, each with T = 90 000
examples and parameters identical to the previous experiments.
We initially let the learning run on a stationary system
for T(s) = 45 000 examples. Between T(s) = 45 000 and

Fig. 10. Performance for (a) shrinking ranges and (b) for drifting sensors.

T = 90 000, we reduced the ranges of two actuators continu-
ously. Both the minimum and maximum values are narrowed
by 30% for the first actuator of segment 2 and the second
actuator of segment 3. The progress was linear in t . We inves-
tigated how the learning procedure can deal with this change,
as well as how the performance develops if learning is stopped
at the onset of nonstationary behavior. Results are shown in
Fig. 10(a). Ongoing learning reduces the performance error
even after the onset of change. When learning is turned off,
the error increases slowly. While the increase of the average
error is comparably mild, there are drastic differences in the
maximum errors over the K targets in X∗: the first simulated
trial exposes a maximum error of 5.5 cm after T = 90 000.
When learning is turned off, the same trial results in 10% of
the target positions with more than 10-cm error (maximum
20 cm). During the ongoing change of the ranges, learning
is able to continuously find new solutions to reach for goals,
once previously learned solutions become unreachable.

C. Sensory Drifts and Morphological Growth

We finally investigate different kinds of nonstationary
behaviors for which there is no direct or quantitative evidence
on the BHA, but which demonstrate the generality of our
approach. A kind of nonstationary behavior that is typical
for robotic systems is the drift of sensor values, when the
physical sensors are not repeatedly calibrated. Such behavior
is plausible, but hard to quantify, for the BHAs pressure
and length sensors. We model such behavior in the BHA
simulation by defining a drift function d : R

9 → R
9 that
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Fig. 11. We simulated morphological growth of the BHA (a) from half its size (b) to its full scale. (c) Without learning the error increases rapidly.

distorts the measurements of the actuator-lengths

d(q) = (19 + β · diag(�s)) · q + β · �o
where �s and �o are a linear distortion. β allows to scale
its impact. When the learner operates with a length q , the
true lengths with respect to effector position and ranges
are d(q)

f ′(q) = f sim(d(q)), c(q∗) = d−1 (
c
(
d(q∗)

))
.

Again, we simulated three trials over T = 90 000, with a
sensory drift beginning at T(s) = 45 000. The entries of �s
and �o where drawn from a normal distribution with deviation
0.05 independently for each trial. The drift amplitude β was
linearly scaled from 0.0 to 1.0 between T(s) and T . Results are
shown in Fig. 10(b). Without learning, the performance error
increases significantly and reaches a average level of 8–10 cm.
With enabled learning the performance error is approximately
stabilized, although the amplitude and rate of the drift is too
strong to further reduce the error as in the previous experiment.

The last experiment deals with a nonstationary behavior that
is, in particular in its amplitude, clearly not a problem on the
real BHA. It shows that our method can deal with even more
drastic changes as they occur in infant development, which
served as inspiration for our approach. We perform learning
on a growing simulation of the BHA. The simulation starts
with a BHA that is scaled to half of its original size and
grows to full size between T(s) = 45 000 and T = 90 000 [see
Fig. 11(a) and (b)]. The change goes on linearly and concerns
the radius of the simulated segments, the actuation ranges,
as well as the reachable workspace. To assess the learning
performance for a workspace with varying size the resulting
errors are normalized to (1/γ )E X , where γ ∈ [0.5; 1.0] is
the current relative size of the simulated BHA. The results
[Fig. 11(c)] show that the performance without learning degen-
erates to almost initial error values. With enabled learning
the median error is nevertheless decreasing, while the mean
error is approximately constant. Since also the goals grow
with the robot, the learning procedure has to continuously
discover new goals on the top surface of the target volume.
Based on the continuous sampling of the workspace (see
Fig. 6) the learner has to initially make extrapolations how to
reach them. These extrapolations are not necessarily perfect

(as shown by the increased error in the learning off con-
dition), but on a short distance (during slow change) good
enough to trigger an efficient reexploration and therefore
learning.

This experiment generates the largest gap between the learn-
ing and nonlearning during nonstationary behavior. Although
the morphological change extinguishes the learned perfor-
mance when learning is turned off, the change seems to be
comparably easy to track during learning. This result clearly
shows how goal-directed exploration also contributes to the
successful mastery of infants’ learning during growth.

VI. CONCLUSION

We have shown that online goal babbling allows to bootstrap
the inverse kinematics of the pneumatically actuated BHA,
which provides the first quantitative proof for the success of
goal-directed bootstrapping schemes in real-world scenarios.
The method is robust enough to cope with the inherent sensory
noise, delays during the execution, and the varying actuator
ranges. The successful learning of reaching skills is an impor-
tant milestone for the applicability of such systems in practical
real world scenarios. For the BHA, no control concept could
so far be demonstrated that can deal with the platform’s
substantial challenges. Hence, our learning approach, together
with a novel integration of feedback control, allows for the
first time the practical operation of this system in terms of
an accurate and reliable positioning of its end-effector. The
method is, thereby fast enough to perform on the robot in
reasonable time. We used 90 000 samples during our experi-
ments, which corresponds to approximately 1000 crossings of
the Cartesian workspace. Previous methods for the learning
of inverse models in high dimensions required, even on much
simpler and stationary 2-D problems, up to ten thousands or
hundred thousands of such movements [12], [25], or several
million samples for simple 3-D problems [21], which is not
practical on a real robot.

The learned skill represents a direct, feedforward control
from desired effector position to actuator lengths. Residual
inaccuracies are unavoidable for feedforward control schemes.
Yet, we have shown that such errors can be handled with
an additional Cartesian feedback controller if necessary. The
controller exploits the learner’s efficient use of all actuators,
which even allows to correct errors that are caused by the
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narrow actuation ranges. The use of feedforward control is
highly beneficial for a pneumatic robot: delays usually only
allow to apply feedback-control with very low gains, which
implies slow movements. A feedforward controller can quickly
estimate the necessary motor commands, which can be applied
immediately. This is particularly useful due to the narrow
actuation ranges, for which the learned model has already
stored valid solutions while a pure feedback controller needs
to search for them newly during each movement.

Besides learning on the nonstationary robot, we have shown
in simulation how the method copes with various changes such
as changing ranges, drifting sensors, and even morphological
growth. For each of these setups, we have shown that the
performance degenerates significantly without learning, but
is stable or improves for ongoing learning. The key idea to
master such changes on a high-dimensional motor system is to
structure exploration in a goal-directed manner. Goal babbling
defines an incremental and ongoing process that is always
based on currently observed data, and thus grounded on the
current system behavior. Most importantly, it does not require
an exhaustive exploration of the motor system. This could not
even be done once on robots with many degrees of freedom
like the BHA, so that a tracking of ongoing changes would
even conceptually not be possible. Goal babbling discards
redundant choices if multiple motor commands exist to solve
the same target position, although additional mechanisms
allow to exploit multiple solutions as well [32]. Hence, it only
samples a low-dimensional submanifold in the space of motor
commands, which can be quickly explored. Online learning
then quickly reacts to a changing environment and allows to
adapt to changes efficiently.
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