
894 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

A Spiking Self-Organizing Map Combining STDP,
Oscillations, and Continuous Learning

Timothy Rumbell, Susan L. Denham, and Thomas Wennekers

Abstract— The self-organizing map (SOM) is a neural network
algorithm to create topographically ordered spatial represen-
tations of an input data set using unsupervised learning. The
SOM algorithm is inspired by the feature maps found in mam-
malian cortices but lacks some important functional properties
of its biological equivalents. Neurons have no direct access to
global information, transmit information through spikes and
may be using phasic coding of spike times within synchronized
oscillations, receive continuous input from the environment, do
not necessarily alter network properties such as learning rate
and lateral connectivity throughout training, and learn through
relative timing of action potentials across a synaptic connection.
In this paper, a network of integrate-and-fire neurons is presented
that incorporates solutions to each of these issues through the
neuron model and network structure. Results of the simulated
experiments assessing map formation using artificial data as well
as the Iris and Wisconsin Breast Cancer datasets show that this
novel implementation maintains fundamental properties of the
conventional SOM, thereby representing a significant step toward
further understanding of the self-organizational properties of the
brain while providing an additional method for implementing
SOMs that can be utilized for future modeling in software or
special purpose spiking neuron hardware.

Index Terms— Artificial neural networks, neural engineering,
self-organizing feature maps, unsupervised learning.

I. INTRODUCTION

TOPOLOGICALLY ordered spatial representations of fea-
tures can be found in various sensory cortical areas

[1], [2], such as ocular dominance bands [3], [4] and orien-
tation maps [5], [6] in cat and primate primary visual cortex,
a tonotopic map in the auditory cortex in cats [7], a gustotopic
map in the primary taste cortex [8], an odor relationship
representation in the olfactory bulb [9], a whisker map in the
barrel cortex in rodents [10], [11], and a somatosensory map in
the somatosensory cortex of primates [12]. Throughout devel-
opment these cortical feature maps accrue several distinctive
properties, such as disruptions that reflect actual discontinuities
in the sensory periphery and disproportionate representation
of early developing portions of the receptor sheet [1]. The
relationship between the properties of the sensory input is
reflected in the relationship between the physical areas of
cortex that are tuned to represent those properties [13], and the
physical substrate of representation is capable of reorganizing
to a change in input properties [14], [15].

The self-organizing map (SOM) is a neural network algo-
rithm inspired by the organizational structure of feature maps

Manuscript received September 3, 2012; revised July 1, 2013; accepted
September 10, 2013. Date of publication October 17, 2013; date of current
version April 10, 2014.

The authors are with the Cognition Institute, Plymouth Univer-
sity, Plymouth PL4 8AA, U.K. (e-mail: timothy.rumbell@plymouth.ac.uk;
s.denham@plymouth.ac.uk; thomas.wennekers@plymouth.ac.uk).

Digital Object Identifier 10.1109/TNNLS.2013.2283140

in the brain [16]. Throughout learning a SOM gradually maps
statistical correlations present in a set of data onto a simple,
low dimensional, topological output representation. The dis-
covery of features and feature relations in a complex space
is also a goal of principal component analysis [17], and the
combination of winner-takes-all competition and a neighbor-
hood function for learning allows generated representations to
be sparse, orthogonalized, and analogous to the representations
developed by clustering algorithms [18]. Learning in the SOM
is unsupervised, making it useful in a variety of situations and
easily modified to suit a variety of purposes (for a review
of SOM applications, see [16]; for recent examples of SOM
modifications, see [19] and [20]).

However, the SOM algorithm in its conventional form
differs from the methods of learning and information coding
present in cortical feature maps in several functionally impor-
tant ways: biological neurons do not have direct access to
global information, such as the distance of their weights from
the current input data point relative to all other neurons in
the layer, or the actual values of the current input data point,
toward which their weights should be moved; information is
transmitted in a sequence of postsynaptic potentials (PSPs),
often synchronized within and between the layers [21], with
coding of information in relative firing times contributing to
rapid hierarchical processing abilities [22]–[24]; input enters
the sensory periphery continuously, so must be converted from
this stream into spike sequences; learning can be ongoing [25],
without necessarily resorting to reductions in learning rate
and neighborhood width at prescribed intervals throughout
training. This paper presents a series of modifications to
the original SOM that addresses these issues while retaining
functionality, thereby contributing toward understanding of the
self-organizational properties of the brain while providing a
SOM implementation that can be used for future modeling in
software or special purpose spiking neuron hardware.

Temporal coding can be incorporated into the SOM by
inserting spiking neurons in place of neurons that make
weight comparisons or communicate through time-continuous
gradual activity values. An influential model [26] consists
of two layers of integrate-and-fire neurons. The first layer
encodes input in the firing times of neurons in an array that
collectively represent a real value. The second layer represents
the SOM: the best matching unit is determined locally through
integration of the input spikes; the neighborhood function
consists of local interactions through excitatory and inhibitory
connections. The network self-organizes in an unsupervised
manner according to a learning rule based on spike timing,
but makes use of a global reference time to establish weight
adjustments. The reliance on globally available information

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

RUMBELL et al.: SPIKING SOM 895

TABLE I

NETWORK PARAMETERS FOR ALL SIMULATIONS DESCRIBED IN SECTION III

makes the rule unsuitable for the current purpose. Additionally,
the network is reset after each presentation of an input datum
as it is unable to handle continuously presented input without
this mechanism. Representative mappings of 1-D and 2-D
input data are reported as a result suggesting that important
functional properties of the SOM are present.

The network presented and analyzed in Sections II and III
implements the principles of the SOM algorithm in a network
of spiking neurons. Several features of the model are based in
part on the model detailed above [26]. This spiking SOM can
act as a base for future work, introducing additional biological
constraints to replicate properties of the cortex. It can be used
to help realize hardware and other technical applications of
the SOM algorithm that can benefit from the use of temporal
coding. Section II describes the model, explaining the com-
bination of mechanisms used, and the method of evaluating
output quality. Section III presents the results of testing the
model, including extensive parameter analyses, demonstration
of key features of the model and application to categorization
tasks. Finally, Section IV summarizes this paper, discussing
the current model in terms of its place within the field relative
to existing models, and its limitations.

II. METHODS

The model described in this section is a two layer network
of integrate-and-fire neurons similar to the model proposed
in [26]. In both models, firing in the first layer encodes an
actual data point as a temporal sequence of spikes. Neurons
in the second layer respond as a result of this firing, and
one of them will win the competition, i.e., fire first. Further
firing in the second layer is influenced by lateral connections,
representing the neighborhood. Neurons physically close to
the winning unit fire sooner due to stronger excitatory lateral
influence, and neurons further from the winning unit fire later
due to weaker excitatory or inhibitory lateral influence.

The current model differs from that of [26] by incorporating
realistic PSPs, spike-timing-dependent plasticity (STDP), and

inhibitory control of the input layer to generate oscillatory
behavior (facilitating continuous input presentation through
temporal segmentation), while allowing for continuous, on-
going learning, and stable neighborhood size. The mechanisms
controlling each of these aspects of the network will be
detailed in this section. Parameters for the equations intro-
duced below are listed in Table I.

Simulations were conducted using custom made C software.

A. Neuron Model

Leaky integrate-and-fire neurons were used for all neurons
in the network, modeled by

τm
dV

dt
= I (t) − V + gη(t),

if V ≥ θ then spike and reset V = 0. (1)

Each neuron has a membrane potential V that increases by
integrating current input I (t), and leaks toward a resting
potential of 0 when there is no input from its afferent synapses.
The membrane potential time constant, τm , is set to 1 ms for
all neurons in the model, except uI nh , in which τm = 0.5 ms.
A spike is generated when a neuron’s membrane potential
reaches a firing threshold θ , which varies by layer (see
Section II-C). Neurons are also subjected to a Gaussian white
noise process η, which is scaled by a factor g; g = 0 (i.e., no
noise injection) for the majority of testing, but the robustness
of network output to noise is tested by varying g in Section III.

All connections between the neurons are modeled synapses
with weight wi j , which transmit PSPs to the postsynaptic
neuron when a spike is generated in the presynaptic neuron.
PSPs are modeled as α-functions, using

τr
ds1

dt
= (s − s1) (2)

τ f
ds2

dt
= (s1 − s2) (3)

where s is a binary value representing instantaneous presence
or absence of a presynaptic spike, s1 is an internal state

896 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

variable, s2 is the α-function output, and τr and τ f are time
constants for the rise and fall duration of the response. Time
constants are set independently for each layer (see Table I),
but the ratio of τr :τ f is always set at 1:5.

Input current to a neuron at time t , I (t), is calculated by

I (t) =
∑

j

w j s2 j (t) (4)

where w j represents the connection weight (or synaptic
efficacy) between the neuron j (presynaptic) and the cur-
rent neuron (postsynaptic), and s2 j (t) represents the current
α-function output from neuron j .

B. Learning

The learning rule used in [26] makes use of some artificial
features. Neurons have access to a global time stamp, which
allows the gap between the firing time of the best matching
unit and the firing time of the current neuron to be calculated.
In addition, the actual input value is compared with the current
synaptic weight to determine the weight change, meaning that
the synapse has knowledge of the input patterns. Replacing
this learning rule with a standard STDP rule removes these
issues, providing a basis for learning that is more biologically
plausible [27], and more robust due to reliance only on local
information to which each neuron already has access.

STDP [28] provides a function for long-term potentiation
(LTP) or depression (LTD) of synapses based on the time
difference �t between a single pair of pre and postsynap-
tic spikes, in neurons i and j , respectively, according to
wi j → wi j (t) + f (�t). A linear multiplicative rule for LTD
and exponential multiplicative rule for LTP are used, according
to [29]

f (�t) =

⎧
⎪⎨

⎪⎩

exp−wi j A+
(

1 − 1
τ+

)�t
, if �t > 0

−wi j A−
(

1 − 1
τ−

)�t
, if �t ≤ 0.

(5)

A+ and A− are both positive and determine the maximum
amount of synaptic strengthening and weakening that can
occur, respectively. τ+ and τ− are time constants determining
the range of time in which synaptic strengthening and weak-
ening will occur, respectively. Weights are bounded between
0 and wmax. The specific values these five variables are set to,
along with the motivation for differing forms of the rules for
LTD and LTP, are discussed in Section III-B, which details an
extensive parameter search conducted to optimize learning.

C. Network Structure

The spiking SOM network structure is shown schematically
in Fig. 1. Conventional instantiations of the SOM receive
input (numerical values for each dimension in the input data
set) directly into the SOM neurons. In the spiking version
presented here these values (represented by node I) feed
into a bank of neurons within an intermediate input layer, u.
The actual input values are converted into a temporal spike
sequence within each bank through the use of an inhibitory
mechanism, described in Section II-C.1. This spike sequence
then drives the SOM layer, v, through all-to-all feedforward

Fig. 1. (a) Spiking SOM network structure: an actual input value I
is encoded into spikes times by nodes in layer u; the inhibitory unit
causes oscillations, allowing continuous input to be presented to u (see
Section II-C.1 for details); feedforward connections from u to v drive firing
in v; early firing in v determines the location of output activity in v through
lateral (neighborhood) connections (see Section II-C.2 for details). (b) Time
course of the PSP from both of the u to Inh synapses (inhibitory is the lower
dotted line, excitatory is the upper dotted line), together with the combined
effect on the membrane potential of Inhu (solid line).

synaptic connections. All-to-all lateral synaptic connections in
v implement the neighborhood function.

1) Input Encoding Within Oscillations: Input to this model
is in the form of an m-dimensional vector of real numbers;
each dimension In of this vector needs to be encoded in
the firing of neurons in layer u. This can be achieved by
representing each In with a bank of neurons un from layer
u. Each neuron ui in that bank is tuned around a point from
within the range of values that In can take [30]. A Gaussian
function is used such that the closer the actual value In is
to the tuned value of ui , the higher the activation to ui , as
shown in Fig. 2. The use of integrate-and-fire neurons means
that ui with higher activation levels will reach threshold earlier
and fire faster than ui with low activation levels. This creates
a unique yet structured temporal pattern of spikes for each
value of In .

Continuous stimulus presentation is an important feature in
constructing a versatile and general network, allowing network
operation to be ongoing, with no need for discretization of
temporal aspects, such as automatic resetting of the network
state at each training step. Using the current method of input
encoding, continuous input presentation provides constant
activation to layer u. This disrupts the temporal representation
of each input pattern: the first ui to fire will begin integrating
input again first after resetting, and fire sooner in the next
cycle of firing. This quickly desynchronizes the input neurons

RUMBELL et al.: SPIKING SOM 897

Fig. 2. Generation of a temporal sequence from a value in an input dimension
and a bank of neurons tuned to points within that dimension. (a) Generation of
an activation value for each neuron (ui) from within the bank of input neurons
representing input dimension (In). An example input value, at arrow I , of 0.55
is shown by the vertical dotted line. Activation values are established by the
vertical point at which this dotted line crosses the tuning curve for a (ui)
neuron. Example tuning curves are shown for neurons 2 and 8, tuned to
values of 0.15 and 0.75, respectively. The vertical locations of the horizontal
lines from this curve then represent the activation levels. (b) Example of a
generated output firing sequence. The height of the bars shown next to each
ui represents the activation level generated from the intersection of a given
input value and the neuron’s tuning curve.

from one another, meaning that information is encoded in the
firing rates rather than the spike times.

This problem is remedied through an inhibitory neu-
ron, Inhu , which responds to firing in u with a slow inhibitory
PSP fed back to all the neurons in u. The inhibition depresses
the membrane potential of all ui after firing, establishing an
approximate baseline for the effects of activation from I , cre-
ating a close to identical repetition of the temporal sequence.
Inhibition in response to excitation creates an oscillatory
behavior, with a period of firing across the layer followed by
a period of inhibition ahead of the next spikes. The temporal
structure of spiking within each oscillation is maintained,
meaning that information is now encoded in spike times rather
than firing rates. Under the parameters in Table I, inhibition
in layer u commences 10–15 ms after the start of firing in the
layer, and the inhibitory PSP depresses membrane potentials
sufficiently to prevent firing for approximately 10 ms, when
the temporal sequence begins again. This behavior is shown
between 15 and 30 ms in the upper chart in Fig. 3, which
shows the membrane potential time course for a sample ui .
This inhibitory effect could also be reached by a population
of spiking neurons, but is simplified to a single neuron
here. Furthermore, firing in v synchronizes with oscillations

Fig. 3. Time course of membrane potentials in examples of the neurons ui
(top), u I nh (middle), and vi (bottom). Firing threshold is the top of the figure
in each case. A membrane potential reaching threshold generates a spike and
the membrane potential is reset, indicated by vertical lines. Potentials in layer
u neurons increase, generating spikes, at which time the potential in u I nh
is depressed temporarily, due to the inhibitory connection from each ui . The
excitatory connections from each ui then result in an increase in potential
in u I nh , which fires. This causes a temporary stagnation of the membrane
potential in ui , which would normally increase continuously due to continuous
exposure to the actual input. The membrane potentials of neurons in layer v
begin increasing after the onset of firing in u, some of which will spike (shown
here) if they have strong weights to the early firing layer u neurons.

in u, as the feedforward connections between the layers drive
activity in v.

The inhibitory neuron receives input from each ui through
both an excitatory and an inhibitory synapse, as shown in
Fig. 1(a). The excitatory synapse has a relatively long time
constant, making it slow, and the inhibitory synapse has a
relatively short time constant, making it fast, as shown in
Fig. 1(b). The overall effect of the pair of connections on the
membrane potential of Inhu is an initial dip, followed by a
recovery into the positive region, shown in the middle chart of
Fig. 3. Combined with a resting potential fractionally below
the firing threshold, the effect is that the membrane potential
of Inhu will stay subthreshold as long as there are spikes in
u within a reasonably short time of each other, and then reach
threshold when there is a sufficient gap in activity in u. Thus,
membrane potentials in ui are reset when there is a large gap
in firing, or when the pattern ends.

In summary, oscillations are induced in the layer through
excitatory followed by inhibitory firing, as in a classic
excitatory-inhibitory feedback loop [31]. Oscillations of this
type allow input neurons to be constantly excited and maintain
a reliable firing pattern for an input. In turn, this allows for
a stimulus, or input datum, to be continuously presented to
the network, resulting in a versatile and reliable input coding
mechanism.

2) Neighborhood Function: Self-organization in the spiking
SOM is produced through the use of a lateral interaction
profile (analogous to a neighborhood function), and STDP
(see Section II-B). Learning in the spiking SOM occurs
when an output node fires in response to the input sequence;
in particular, learning the current input values is strongest
when an output neuron fires soon after the start of the
input sequence, causing greater strengthening of the afferent
synapses from nodes that better represent the actual input

898 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

values. Lateral synaptic connections in the output layer v send
excitatory signals to neurons that are within a certain distance
and inhibitory signals to more distant neurons. This lateral
profile encourages neurons within a spatial region to fire and
discourages neurons outside of that region from firing.

A suitable neighborhood kernel, both in terms of capturing
qualitative properties of cortical structure and functional prop-
erties of the SOM network, is a Mexican-hat function [32].
Keith–Magee [33] discussed a lateral connection initialization
function for a SOM based on a Laplacian kernel

w̄i j = (1 + a)G(||i − j ||, r) − aG(||i − j ||, br) (6)

in which the lateral connection strength w̄i j between the
output neurons at locations i and j in the grid is determined
by (6), where a represents the magnitude of the negative
component of the function, b determines the decay of the
negative component of the function, r determines the radius
of the positive component of the function, and the function G
is a Gaussian function of the distance between i and j .

The traditional SOM formulation includes a decaying neigh-
borhood width over time to produce a more finely tuned output
mapping. An appropriate decay function for the width (r) of
this lateral connection kernel is established, through a series
of experiments [33], as a step function with a filter to smooth
the step function over time

r(t) = X − X − X ′

1 + (
√

2 − 1)((T/t)2n)
(7)

where r(t) gives the value of r to use in (6) at training step
t in the simulation, X and X ′ are values of r at the start and
end of training, respectively, T represents the value of t that
the step is centered around, and n is the order, or amount of
smoothing, of the smoothed step function.

Compared with classic linear decay schemes and a non-
smoothed step decay, use of (7) results in an accurate output
mapping being reached more quickly [33]. In addition, iden-
tical values for X and X ′ results in no neighborhood decay,
facilitating a simple transition between the regimes.

The current spiking SOM model uses (6) and (7) to establish
the lateral synaptic weights. For a 10 × 10 grid of neurons
in layer v, parameter searching reveals that setting a, b,
X , and X ′ all to 3.0 provides a lateral connection profile
capable of topological map formation. Identical values for
X and X ′ lead to a constant r in (6); this was found to
be capable of topological map formation, demonstrated in
Section III, although it is possible that more accurate mappings
can be obtained using a larger X and smaller X ′ [33]. This
decision was made to ensure continuous learning in the output
map, identified as a goal of the current system. Decay of
neighborhood size throughout training was used for results
in Sections III-F and III-G, however, and in these cases the
step function in 7 was used to modify the lateral weights.

3) Self-Organization: The inhibitory current generating an
oscillation, the temporal coding of each input dimension in
spike times, the neighborhood function, and multiplicative
STDP all contribute to the self-organization of the output
map. At the start of an oscillation, the input neurons have
depressed membrane potentials due to inhibition from the

Fig. 4. Mechanics of self-organization in the spiking SOM. A spike sequence
in a bank of neurons in layer u represents the actual input value, with early
firing neurons being well tuned to the actual value, and late firing neurons
being poorly tuned to the actual value. Black arrow: all-to-all feedforward
synaptic connections from u to v . At some point in the firing of the pattern
in u, a neuron in v fires, winning the competition and becoming the best
matching unit. Neighboring neurons in v are caused to fire within close
temporal proximity. The gap between the LTP and LTD boxes in layer u
represents the time at which firing in v occurs relative to the firing in u.
Synapses from any neurons that have fired before that point are strengthened
(the LTP box) and synapses from any neurons that fire after that point are
weakened (the LTD box).

previous oscillation. Membrane potentials increase through
constant input current and early spikes within an oscillation
indicate neurons that represent the actual input well. Fig. 3
shows the relationship between these membrane potentials,
with a spike in a ui leading to temporary depression of the
membrane potential of the inhibitory neuron. The inhibitory
neuron then fires, temporarily preventing the increase of the
membrane potential of all ui . This first part of the input
firing pattern generates a spike in the output layer from the
neuron best matching the input firing. This is followed by
the firing of nearby output neurons due to lateral activity, all
before firing of neurons in the input layer that are relatively
poor representatives of the actual input. STDP causes the
synaptic connections from neurons in the early part of the
input pattern to be strengthened, and the later part of the input
pattern to be weakened, for output neurons within the neigh-
borhood of the winning neuron. This is shown schematically
in Fig. 4.

A multiplicative form of STDP helps to ensure that weights
reach a stable point roughly proportional to how often an
input neuron fires before an output neuron relative to how
often it fires after an output neuron. Output neurons will
respond for actual input values that are a distance away from
their preferred input value, due to lateral excitation. As such,
weights will be increased at synapses from input neurons that
normally fire after the output neuron in the output neuron’s
preferred input pattern. Weights will be decreased from input
neurons that normally fire before the output neuron in the
output neuron’s preferred input pattern. These changes are
weight dependent, so for a certain weight value a few instances
of depression balance with a greater number of instances of
excitation, and vice versa, creating stability. This stability
means that there can be precise differentiation between the

RUMBELL et al.: SPIKING SOM 899

winning output neurons; adjacent output neurons will prefer
similar input neurons, so stable weights between the maximum
and the minimum are important in determining, which of sev-
eral neurons with similar preferences reaches threshold first.

D. Quality of Map Formation Metric

The ability of a SOM to map an input dataset can be
assessed by checking the topographic mapping error of the
output map given the input data. For a map with no mapping
error, the relative distance between any pair of data in the
input space is the same as the relative distance between the
locations activated by that pair of input data in the output map.
Metric multidimensional scaling (MDS) can be used to assess
this, according to

EMDS =
N∑

i=1

∑

j<i

(F(i, j) − G(M(i), M(j)))2 (8)

where N is the number of input patterns, F(i, j) represents
the actual dissimilarity of the pair of input patterns i and j
(measured as Euclidean distance), and G(M(i), M(j)) repre-
sents the dissimilarity between the locations in the output map
representing patterns i and j (measured as Euclidean distance),
where M(i) and M(j) are the locations of the winning nodes
in layer v for input patterns i and j , respectively, [34]. The
value of EMDS represents how well the final network mapping
preserves the topology of the input dataset. The most accurate
mapping achieved is one in which relative distances between
the patterns in the input space are reflected exactly by relative
distances between the neurons representing those patterns in
the output space, resulting in a minimum EMDS value of 0.
The least accurate mapping observed in practice is one in
which all the input patterns result in activation of the same
location in the output map; the EMDS value for this situation
will vary depending on the distribution of input patterns. This
test is used in [26] to analyze their spiking SOM, with final
EMDS values of under 20% of the starting value being reported.
Values in Section III are reported using the mean values for
EMDS, with the final summed EMDS divided by the total
number of pairs of input patterns compared, with give a value
that can be compared regardless of the number of patterns in
the input space.

Alternate methods for analyzing the quality of output map-
ping produced by a SOM are available (see [34]–[36] for
reviews). MDS has been selected as an analytical tool ahead
of other techniques for two primary reasons. First, it meets
two criteria proposed in [37] that are required for a SOM
analysis tool: it should provide evidence of the self-organizing
process during training (shown through a reduction in error
value); and it should measure the embedding of the set of
neurons into the data manifold (the error value measures
how well changes in the input space are mapped by changes
in the output space). Second, given that it represents an
appropriate SOM analysis tool, it is important that results
described here are generalizable for potential comparison with
other spiking neuron network implementations. Other spiking
neuron networks may not be specifically designed as SOM
implementations, and specific SOM analysis metrics would

lose their relevance when comparing the topographic mapping
capabilities of one spiking neuron network with another.

III. RESULTS

This section covers the results of testing conducted to
confirm the behavior of the spiking SOM. A measure of
the quality of map formation is introduced in Section II-D,
to be used to interpret the rest of the testing results. The
parameters used during testing are described in Section III-A,
and a parameter search on the variables involved in (5) is
described in Section III-B, to determine the range of values
that result in good map formation. Section III-C demonstrates
the robustness of learning under the chosen parameters in
the presence of noise. The spiking SOM has been tested in
common scenarios used to test the conventional SOM: the
response of the spiking SOM to evenly distributed, randomly
selected, 2-D input data is analyzed in Section III-D. Finally,
the results of categorization tests carried out with the spiking
SOM are reported in Sections III-E, III-F, and III-G.

A. Network Parameters

The testing conducted in Sections III-B and III-D made use
of standardized parameters for the network, shown in Table I.
In summary, each dimension n in the input I was associated
with a bank un of 10 neurons in layer u. The value of n was
set to 2 for 2-D input. The preferential values of the neurons in
each un were equally spaced between 0.05 and 0.95. Gaussian
tuning curves around these preferential points were used for
calculation of the activation values, with distance calculations
including circular wrapping from 1 to 0.

Layer v, the SOM layer, was initialized with 100 neurons,
arranged in a 10 × 10 grid through the lateral connection
weights. Feedforward connections were initialized from all
layer u neurons to all layer v neurons with a random-
ized weight between 0.4 and 0.6 of the maximum synaptic
weight wu to v

max . The radius r in (6) was set to 3.0, and the
distance between the neurons in the layer were calculated with
toroidal structure. Values of τ+ and τ− in (5) were set to
11 and 10 ms, respectively. This width of learning window
approximately matches the temporal width of a network oscil-
lation, leading to a negligible influence on learning of spikes
from within neighboring oscillations.

At the start of each training step an input value was
determined by selecting randomly from 10 values for each
dimension, equally spaced between 0.05 and 0.95, making a
total of 100 input patterns from within the 2-D input space.
A training step lasted through five oscillations of the network
(approximately 125 ms) before the input pattern was changed.
The network was allowed to learn for 4000 training steps.
Quality of map formation was assessed using mean EMDS for
each pair of input patterns. Given that for the 2-D case both the
input and output space wrap toroidally, this situation results
in a maximum mean EMDS value of (1/6).

The maximum connection strength values for synapses with
presynaptic neurons in layer u are varied for the categorization
tests conducted in Sections III-F and III-G. These datasets
contain four and nine input dimensions, resulting in 40 and

900 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 5. Parameter search results for A+ to A− values: normalized final
EMDS values averaged from 30 trials are presented, for ranges of A+ and
A− values at (a) low resolution and (b) high resolution.

90 neurons in u, respectively. As such, the value of wu to v
max is

scaled down to 1.5 in Section III-F, and 0.7 in Section III-G,
and the wu to I nh u

max values to 0.4 in Section III-G.

B. Learning Parameter Analysis

Parameter testing was conducted to establish suitable values
for the maximum and minimum weight change parameters,
A+ and A− from (5). A test of a parameter set consisted of 30
randomly initialized maps, trained using the method described
in Section III-A involving random selection from 100 input
patterns evenly spaced across the 2-D surface. An average
normalized EMDS value taken at the end of training used
to gauge the quality of maps formed with those parameters.
Coarse- and fine-grained searches were conducted, the results
of which are shown in Fig. 5(a) and (b), respectively.

The fine-grained search results establish that, for a range
of A+ values up to 0.01, and A− values up to 0.02, a ratio

Fig. 6. Time course of EMDS values for three points in the parameter
space. (a) Normal learning (A+ = 0.002, A− = 0.007). (b) Dominance of
depression (A+ = 0.0005, A− = 0.01), and (c) dominance of potentiation
(A+ = 0.02, A− = 0.005).

between 1:2.5 and 1:3.5 of A+ to A− will result in good
map formation. The coarse-grained search result establishes
that there is little performance degradation up to A+ values
of 0.045 and A− values of 0.11, meaning that large weight
changes relative to the maximum weight can still result in map
formation. Only 500 training steps were used in the coarse-
grained simulation results; the high learning rates involved
result in a fluctuating error value after this point, rather than
increased convergence of error values.

Fig. 6 shows the progression of EMDS values through-
out training for important locations in the parameter space.

RUMBELL et al.: SPIKING SOM 901

Fig. 7. Average EMDS value after training plotted against the value of
variable g, magnitude of noise in the neuron model. Error bars represent one
standard deviation. Accuracy of the output mapping stays high until noise
levels reach a critical point around 0.5, with accuracy of the final mapping
ending up close to the maximum error value as g reaches 1.

Fig. 6(a) shows the mapping error attained for multiple trials
for an A+ to A− ratio of 1:3.5, a ratio that reliably results
in good map formation. Fig. 6(b) shows the degradation of
map quality for an A+ to A− ratio of 1:20. Depression
dominates, and weights are gradually lowered until activity
in u no longer evokes any spikes in v. If no neurons win the
competition for any input pattern, there is no distance between
the winning nodes for any input pattern, so a maximum error
value is reached. This outcome is characteristic of all A+
to A− ratio smaller than 1:6. Progression of error values
throughout training for the opposite situation, a dominance
of potentiation, is shown in Fig. 6(c), with an A+ to A− of
4:1. In this regime, there is too little depression of weights
for connections from input neurons representing less preferred
input patterns, eventually resulting in one output region of
the map dominating for all input patterns. Wild fluctuations
are observed in the error value; this is caused by slightly
different neurons, still close to the dominant region, winning
the competition for different input patterns. A brief change in
winning neuron can result in a temporary large variation in
error value. This outcome is characteristic of all A+ to A−
ratio greater than 1:1.

For the following simulations, an A+ value of 0.0016 and
an A− value of 0.0055 will be used. These values are situated
within the acceptable ratio of these parameters, and represent
a low learning rate compared to the maximum acceptable
rate.

C. Robustness to Noise

The noise scaling factor g was tested for 11 values between
0.0 and 1.0, with the same value used for both layers u and v,
to analyze the robustness of the SOM formation to variable
spike times. These values of g resulted in spike time variations
in the input pattern of up to around 3 ms. Other network
parameters, input data set and input pattern selection remained
as described in Section III-A and used in Section III-B. Fig. 7
shows the average EMDS values for training with variation in g.
The average values of EMDS ranged from 0.008 to 0.020 for
values of g up to 0.5, and between 0.090 and 0.146 for g from

Fig. 8. Final u (y-axis) to v (x-axis) synaptic weights after training with
2-D data (light: strong connection and dark: weak connection; the top half
of the graphic is the bank of input neurons encoding the first dimension
and the bottom half is the bank encoding the second dimension; and each
10 steps along the x-axis represents a row of output neurons, then the
next 10 represent the next adjacent row, etc.). The connections to the output
layer vary in 1-D across an individual row (with consistency throughout
the map), and vary in the other dimension across the rows, encoding the
current input as a location in the output map in an organized way. A change
in one input dimension (the bottom 10 rows) as one moves through each
row of the output layer (each block of 10 columns), and a change in the
second dimension (the top 10 rows) as one moves down through rows in the
output layer (changes between each block of 10 columns in the figure) can
be observed. For a given output neuron (one column), a gradual decrease in
weights either side of a central point in each input dimension is visible.

0.6 to 0.9, showing that noise in the neuron model does not
prevent the learning mechanism from picking up the statistical
correlations present in the input data until a value of g greater
than 0.5.

D. 2-D Input

A test often applied to SOM algorithms is to present random
samples from a range [0, 1] in two dimensions as input to the
network, and test the ability of the output to organize itself
into a formation capable of representing this input data.

An average final normalized EMDS value of 0.00554 was
achieved, over 64 trials (standard deviation 0.00483). The final
weight matrix for the feedforward connections from input to
output neurons is shown in Fig. 8; neurons in one row of
the output layer are strongly connected to a specific range of
input neurons in 1-D, while varying their connection strength
to input neurons in the other dimension uniformly across
the row (with the inverse pattern seen within and between
columns). Fig. 9 shows the output layer neurons as circles,
with nearest neighbor connections indicated by connecting
lines, positioned in the input space according to the input
value to which they respond most quickly (i.e., are best tuned
to); this preferential tuning is initially random, and throughout
training organizes to mirror the inputs received. It is worth
noting that Fig. 9(c) and (d) both show the network state
after a good mapping has been achieved, but the position of
the neurons is quite variable; this is because the network is
learning at the same rate throughout training in this example,
and will morph slightly depending on the distribution of the
most recent input data.

The spiking SOM is also capable of generating a map
representation skewed to fit the input distribution. To test this
the map was trained using six distributions of 2-D input data.
In each distribution, the likelihood of either dimension being
drawn from the range [0, 0.5] was altered to a value in the
range of [0, 0.5] at increments of 0.1. A likelihood of 0.5
represents an even distribution across the 2-D space, and a
likelihood of 0 represents a distribution entirely in the quadrant
of the 2-D space between 0.5 and 1.0 in both dimensions.

902 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 9. Representation of u-v feedforward weights in the 2-D input space, where black dots represent output layer neurons and black lines represent nearest
neighbor synaptic connections (input and output dimensions are toroidal, but nearest neighbor edges to opposite sides of the input space are omitted for clarity
of the figure). (a) Random starting distribution; after 200 training steps. (b) Nodes begin to align to the input data. (c) and (d) Trained map after 2800 and
3600 training steps, respectively—learning is ongoing, so stochastic fluctuations in the distribution of recent input patterns are reflected by minor modulations
in the map weights.

Fig. 10. Representation of u-v feedforward weights in the 2-D input space, where black dots represent output layer neurons and black lines represent nearest
neighbor synaptic connections (input and output dimensions are toroidal, but nearest neighbor edges to opposite sides of the input space are omitted for clarity
of the figure; neurons on the map border are alternating from one side of the figure to the other because the toroidal nature of the input space means that
input values of 0 and 1 are essentially identical, and the row or column that the neurons are a part of is lined up along the 0–1 divide, with some neurons
placed just on one side and some just on the other). (a)–(d) Final mapping for input distributions in which the probability in both dimensions of an input
value being between 0 and 0.5 is 0.1, 0.2, 0.3, and 0.4, respectively.

Within each half of each dimension, the distribution is even
across the range. The representation of the output nodes in the
input space is shown in Fig. 10, as in Fig. 9. In Fig. 10(a)–(d),
the input distribution can effectively be split into quadrants of
likelihood. At any training step the input pattern is least likely
to be selected from the lower-left quadrant (between 0 and 0.5
in both dimensions), most likely to be selected from the upper-
right quadrant (between 0.5 and 1 in both dimensions), with
each of the remaining quadrants at an intermediate likelihood
(between 0 and 0.5 in only one dimension). Discontinuities
can be observed in the map representation in Fig. 10(d);
these are at the boundaries of the toroidal space, and are
actually adjacent such that the extended sections on the top
are interlocked with the gaps at the bottom. Fig. 11 shows
that map formation on average results in good representations
of input distributions by the proportion of nodes in the
final output mapping that represent a quadrant of the input
space.

Another feature of the mapping shown by some SOM
algorithms that attempt continuous learning is the ability of
the network to reconfigure to a new input distribution midway
through training, after a mapping has been established to an
existing input distribution. This was tested by training the

Fig. 11. Probability of an output node in a trained map representing
each quadrant of the input space, plotted against the likelihood of an input
dimension having a value within the range [0, 0.5]. Bar height: average
over 30 trials. Error bars: standard deviation. Black horizontal marks: actual
probability of an input datum being within a quadrant of the input space.
q1, q2, q3, and q4: lower left, upper left, lower right, and upper right
quadrants, respectively.

network using only 75% of the input data space, leaving out
the quarter of the input space square covered by values of
greater than 0.5 in both dimensions. This reduced data set

RUMBELL et al.: SPIKING SOM 903

Fig. 12. Typical evolution of average EMDS value for 2-D input: the error
in the output map reduces up to the halfway point in training, at which point
the input distribution is expanded; the error in the map jumps up as the error
measure is now relative to the new distribution; the error then decreases again
as the map adjusts to the new distribution.

was used for 2000 training steps, then the full range of input
data, including the previously omitted quarter, was used for a
further 2000 training steps.

The evolution of the topographic error (Fig. 12) shows that
the network adjusts to the initial input range as normal, but
settles at a slightly higher EMDS value, most likely due to
the discrepancy between the shape of input space and shape
of lateral connections in the output layer. The extra data is
introduced half way through training, resulting in a spike in
EMDS value, as the output mapping is no longer suitable for
the input data, and the error is then reduced to a lower value
as the output map reorganizes to the new data. The mapping
of the output nodes in the input space is shown in Fig. 13. The
output nodes map to the original input space during the first
half of training, and reorganize in the second half such that
the final mapping is qualitatively identical to that observed in
Fig. 9. The final weight matrix for the feedforward synapses is
also qualitatively identical to the one obtained when training
using the full data range from the start (Fig. 8). This simulation
demonstrates that the map has learnt to represent the initial
input distribution, but when a new distribution is presented
the map is capable of adjusting appropriately.

E. Categorization

SOMs can cluster input patterns, creating a specific spatial
location that is activated by incoming members of a specific
category. If there are category divisions in the input data, nodes
in the output layer will respond more reliably to one category
of input than to others. A trained SOM can therefore be used as
a categorization tool by assigning each output node a category
to represent based on whether that node fires reliably for one
particular category. The capacity of the spiking SOM to be
used as a categorizer in this way has been tested through
training with two datasets commonly used for assessing the
categorization ability of a system. This capacity is demon-
strated to provide evidence that organization to datasets that
contain relatively distinct categories within a high-dimensional
space is possible using this network, alongside representations
of less discrete input data.

In the examples in Sections III-F and III-G five-way cross
validation is performed: a dataset is split into five chunks

and the network is initialized and trained five times, using a
different set of four chunks as training data and one chunk
as testing data each time, so that in total all data points
are used for testing once. Each training phase lasted for
4000 training steps with random selection of input pattern
after each five oscillations of the network, as described in
Section III-A. At the end of a training phase, the output
nodes were designated as representing a category based on the
input category to which they responded most frequently during
training. The testing patterns were then presented to the trained
network one at a time, and the output activity recorded. Lateral
connections were still used in this testing phase, so multiple
neurons in the output layer fired for each testing pattern,
in an area with width determined by the lateral connection
profile at the end of the training phase. The testing pattern
was categorized by the network as belonging to the category to
which the highest number of output neurons firing in response
to that input pattern had been designated as representing. If
more of the output neurons firing in response to a testing
pattern had been designated with that pattern’s category during
the training phase than any other single category, then the
pattern was considered to have been correctly classified.

F. Iris Dataset

The first dataset used to test the categorization performance
of the spiking SOM was the Iris dataset [38]. This dataset is of
sizes of flowers of the Iris plant; it consists of three categories
each with 50 members, and each data point has four values,
petal length, petal width, sepal length, and sepal width. One of
these categories Iris Setosa Canadensis, is fairly distinct from
the other two, Iris Virginica and Iris Versicolor.

For the current purpose, the values for each dimension were
normalized in the range [0–1], and the spiking SOM model
was initialized as in Section III-D but with 40 input neurons,
making one bank of 10 for each dimension. This increase in
number of input neurons meant that the feedforward connec-
tion strength from layer u to layer v had to be reduced; the
value of wu to v

max was scaled down to 1.5. Remaining parameters
remained identical, with the exception of the X and X ′ values
in (7), controlling the evolution of the width of the neigh-
borhood function. For continuous learning these values are
identical, meaning no change in lateral connection strengths
over time. The standard neighborhood parameters were used as
one condition in the categorization performance tests (X = 3.0
and X ′ = 3.0). However, output map quality can potentially be
improved by starting with a large neighborhood and reducing
it throughout training. This approach can obtain a globally
ordered topology initially, and refine details later on. This
regime was used as a second condition in the categorization
tests, with X set to 4.0 and X ′ to 2.5. These values are in
numbers of neurons, so for a 10 × 10 map a radius of greater
than 4.0 is the majority of the map.

Categorization accuracy, averaged over 9 trials, was 87.8%
(standard deviation = 1.3%) in the without-NR condition,
and 90.9% (standard deviation = 1.7%) in the with-NR
condition. Table II shows these results in comparison with the
results achieved for other categorization algorithms using this
dataset. The spiking SOM categorizes better than MATLAB

904 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 13. Representation of u-v feedforward weights in the 2-D input space (arranged as per Fig. 9). (a) Random starting distribution; after 8000 training
steps with the partial input data. (b) Nodes are aligned to the input data space, leaving a gap in the input space from which no training examples have yet
been received. (c) Expansion of the map to the newly increased range of input data after 800 training steps with the full input distribution. (d) Trained map
after 2000 training steps with the full data range—the map has adjusted to the new input data.

TABLE II

CATEGORIZATION ACCURACY (%) OF SPIKING NEURON AND

NONSPIKING NEURON ALGORITHMS FOR THE IRIS DATASET.

THE CURRENT APPROACH IS SHOWN AS SPIKING SOM

WITH NEIGHBORHOOD REDUCTION (NR) AND

SPIKING SOM WITHOUT NR

implementations of the k-means and SOM algorithms [30]
(although parameters used and the extent of parameter search-
ing conducted to achieve these results are unclear), the field-
programmable gate array (FPGA) implemented classification
network of [43], and the spiking neuron radial basis function
(RBF) network of [41].

Categorization performance is slightly worse than several
other networks: the spiking RBF model of [30], the Spike-
Prop model of [39], the synaptic weight associations training
algorithm model of [40], the training-estimation-training algo-
rithm [42], and MATLAB implementations of the backpropa-
gation and Levenberg–Marquardt training algorithms [40]; it is
worth noting, however, that these are designed specifically for
data classification purposes, and do not feature the topograph-
ical ordering properties of the SOM model.

G. Wisconsin Breast Cancer Dataset (WBCD)

The second dataset used for categorization testing was the
WBCD, consisting of 683 samples from two categories (444
benign and 239 malignant tumors), with nine measures of
features of cytology. Each of the nine measures is a discrete
value from 1–10, converted into a value in the range 0:1 for
the current purpose, and represented using a bank of 10 input
neurons, meaning that layer u consisted of 90 neurons. As
such, the value of wu to v

max is scaled down to 0.7, the value of

TABLE III

CATEGORIZATION ACCURACY (%) OF SPIKING NEURON AND

NONSPIKING NEURON ALGORITHMS FOR THE WBC DATASET

wu to I nhu
max to 0.4, and the X and X ′ values were adjusted to

3.5 in the without-NR condition, to account for only having
two categories occupying the 10 × 10 output map; all other
parameters remained identical to those used in Section III-F.

Categorization accuracy, averaged over eight trials, was
96.4% (standard deviation = 0.4%) in the without-NR con-
dition and 97.0% (standard deviation = 0.1%) in the with-
NR condition. Again, these results are compared with the
categorization accuracy of other algorithms using this dataset,
shown in Table III. The spiking SOM again outperforms the
FPGA categorization algorithm implementation of [43], and
achieves a very similar level of accuracy to models that have
been designed specifically for clustering and categorization
operations.

IV. DISCUSSION

The spiking neuron SOM model implemented here has
been demonstrated to produce qualitatively and quantitatively
similar output to the traditional SOM algorithm. This imple-
mentation combines continuously presented input, regular
oscillatory firing, phase coding of input values, α-function
PSPs, leaky integrate-and-fire neurons, and STDP. The current
model exhibits good categorization performance for generic
datasets without resorting to additional fine-tuning of parame-
ters. Furthermore, it can function similarly to the traditional
SOM algorithm without necessarily decaying learning rate or
neighborhood size throughout training. This section contains a
set of comparisons of the current model with related existing
approaches (Section IV-A), and a discussion of some novel

RUMBELL et al.: SPIKING SOM 905

aspects of the mechanisms used, and limitations of those
within the current model (Section IV-B).

A. Related Approaches

The current model improves on the spiking SOM model
of [26], described in Section I, in several significant ways.
The incorporation of continuous input and oscillatory firing
means that the current network does not need resetting. The
change to STDP for learning and introduction of α-function
PSPs both contribute to an improvement in the biologi-
cal plausibility and performance of the model. Additionally,
testing has established the robustness of the new approach
to changes in the learning parameters, noise, and input
data.

Other SOM-like networks have been implemented using
spiking neurons. In [44], a two layer SOM structure similar
to [26] made up of MacGregor neurons [45] is used to test
a pair of Hebbian learning rules, one with learning based
on strength of PSPs and the other based on temporal cor-
relations. It is demonstrated that, with an appropriate lateral
connection neighborhood, either of these learning approaches
can result in output space segregation that is related to
properties of the input space. However, properties of the
conventional SOM such as smooth mapping of input to output
space and categorization are not demonstrated. In addition,
this model does not process continuous input, encode spe-
cific input values in temporal sequences, or use oscillatory
behavior.

In [46], a three-layer feedforward network of integrate-
and-fire neurons with a STDP-like LTP window is used to
produce a self-organized map of orientation preference, given
appropriate receptive field shape and input properties. This
map does not feature lateral connections or direct competition
between the neurons, instead relying on those receptive fields
and input properties for the self-organization to occur. As
such, it is likely that an organized output map will only result
from a limited range of inputs. The current approach can
produce an output map based on organization to input data
with any properties, due to the use of lateral connections for
competition.

The laterally interconnected synergetically self-organizing
map model has been modified to incorporate spiking neuron
properties in [47], with Hebbian learning dependent on average
activity rather than spike timing. This learning method is less
biologically relevant than the STDP used in the current model,
and using a network structure based on the visual system
means that the map is not necessarily capable of mapping
a wide variety of input data as in the current model and the
conventional SOM.

In other recent work, a pair of self-organizing models have
been presented that learn spatiomotor [48] and visual [49]
representations using leaky integrate-and-fire neurons and
STDP. Again, these models do not tackle the general problem
addressed by the current model, but they are based on a
shared core model, which can be compared with the current
method. This underlying model features Gaussian tuning of
responsiveness to input properties, but using a firing-rate

rather than spike-timing encoding. This leads to a slightly
different role for STDP, in that it picks average pre and
postsynaptic combinations out of noisier activity, as opposed
to being a method for storing phase-of-firing relationships in
the current model. The visual representation model [49] has
separate STDP rules for excitatory and inhibitory synapses
in the map layer. The inhibitory plasticity is found to be
crucial for emergence of the representations, while preventing
recurrent excitation from increasing firing rates. The current
model avoids this through control of the relationship between
maximum synaptic strength and number of neurons, but this
method warrants investigation for an automatic control of these
properties in SOMs of different scales.

Each of these models suggest ways in which spiking neuron
models can facilitate self-organizational network properties,
but none of them represents a solution that incorporates the
ideas of temporal coding of input data through relative phases
of spikes within oscillations, continuous presentation of input
data points to the network, and learning via STDP simul-
taneously. In addition, none of these models present a net-
work structure possessing self-organizational and classification
properties comparable with the traditional SOM algorithm.

B. Mechanisms, Limitations, and Future Directions

The inhibitory mechanism introduced to produce oscillatory
firing with phase-of-firing coding from a continuously pre-
sented input activity level (see Section II-C.1) is a versatile
and useful neural function in its own right. A drawback is
that it is necessary to predetermine the required size of a gap
in the input pattern that will allow the inhibitory neuron to fire
and the length and magnitude of the inhibition, which controls
the rate of oscillation, by setting PSP values in (2) and (3).
These values do not require rigorous fine-tuning provided the
range of input activity levels across the pool of input neurons
is relatively low, such that all neurons in the pattern will
fire within a restricted time, followed by a gap before the
neuron with the strongest input will fire again. In addition, it
is also necessary to predetermine the strength of feedforward
connections between the layers when the number of input
neurons changes. Currently, there is no general method for
deriving maximum weight values for different network scenar-
ios, and the development of such a method would represent
an important step toward a generalized spiking SOM.

Crucial future research will revolve around establishing
more precisely the extent of the qualities of self-organization
that the spiking SOM possesses. It is currently unclear exactly
how well the network can reorganize to shifting, nonstationary
inputs, either varying distributions of a continuous multidi-
mensional space, or in the form of correct incorporation and
classification of additional input categories introduced after
the network has been allowed to learn for some time. It can
be speculated that the network will respond well to these
challenges, a claim supported by the impressive ability of
the network to accurately model input distributions and to
adjust to one change in input data during training, results
demonstrated in Section III-D. A more detailed comparison
of the capabilities of the current network with the capabilities

906 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

of the conventional SOM would also require the introduction
of analytical techniques that can assess more features of
the mapping than the topographic representation. Measures
such as quantization error can assess whether a minimum
distance from input patterns to their respective output layer
representatives is achieved, and integrated measures, such as
CQoCO, incorporate the extent to which nodes map regions
from outside of the desired input space and the twistedness of
the representation as it untangles throughout training into the
quality of mapping metric [36].

Additional future research could also improve on the bio-
logical plausibility of the network structure and connection
profile by basing these on knowledge of cortical areas. The
current model is not based on a specific brain region, but
the all-to-all connectivity used between the layers is not
observed in cortex, so represents a deviation from the way
in which cortical functions are generated. As introduced in
Section IV-A, other work on self-organization with spiking
neurons has focused on generating maps using specific brain
regions as inspiration. A synthesis of those approaches with
the current one could lead to biologically plausible models
with increased functionality and versatility in the future.

The use of phase-of-firing coding and an STDP learning
rule has some limitations in the current context. Synaptic
connections from neurons involved in the input pattern are
weakened if the neuron fires late within the temporal sequence
(i.e., after firing in the output layer). However, a neuron with
much lower input activity would not fire at all for the current
input; with STDP learning, synaptic connections from such
neurons to the input layer are not weakened. This problem
is not relevant if the input neurons that have connections to
an output map represent a narrow domain of actual input
stimuli, in which case any stimulus from the associated domain
presented to that bank of input neurons would generate some
relatively high activity level (and therefore firing) for the
entire bank of neurons. In addition, if output neurons have
connections from input neurons that never fire in correlation
with the dominant banks of input neurons connected to an
output neuron, there is a chance that spontaneous activity
would gradually weaken the connection, although the current
model does not support this.

A second problem with the use of phase coded input
is that hierarchical layers of these SOMs are not possible.
Output representation is spatial, within a relatively narrow
temporal window. The same learning rule will not work if
the SOM output is taken as input to a downstream SOM
layer. Spreading the firing in the SOM layer into a temporal
code (e.g., by adjusting synaptic time constants) would cause
the self-organization to fail, as neighboring neurons in the
output layer need to fire in close temporal proximity to
ensure their weights are adjusted toward the same point. Of
course, multiple independent SOMs could be set up with a
temporal sequence between the SOMs, which could become
input to a downstream SOM layer, creating a multimodal
association/integration of spatially coded features.

This type of spiking neuron network has the potential to
be used to explore the connectivity and learning mechanisms
involved in formation of networks analogous to cortical maps

that display topological organizational structures, in artificial
intelligence mechanisms that perform tasks like clustering, cat-
egorization and concept formation in a biologically plausible
manner, and in the development of spiking neuron hardware
that physically represents neurons and networks in digital or
analogue circuits.

ACKNOWLEDGMENT

This work has been supported by the Engineering and
Physical Sciences Research Council of the United Kingdom
(EPSRC) under grants EP/C010841/1 (“COLAMN: A Novel
Computing Architecture for Cognitive Systems based on the
Laminar Microcircuitry of the Neocortex”) and EP/J004561/1
(“BABEL: Bio-inspired Architecture for Brain Embodied Lan-
guage”).

REFERENCES

[1] J. H. Kaas and K. C. Catania, “How do features of sensory represen-
tations develop?” BioEssays, vol. 24, no. 4, pp. 334–343, 2002.

[2] B. A. Wandell, “The neurobiological basis of seeing words,” Ann. New
York Acad. Sci., vol. 1224, no. 1, pp. 63–80, 2011.

[3] V. A. Casagrande and J. H. Kaas, “The afferent, intrinsic, and efferent
connections of primary visual vortex in primates,” in Primary Visual
Cortex in Primates (Cerebral Cortex), vol. 10. New York, NY, USA:
Springer-Verlag, 1994, pp. 201–259.

[4] J. C. Horton and D. R. Hocking, “Anatomical demonstration of
ocular dominance columns in striate cortex of the squirrel monkey,”
J. Neurosci., vol. 16, no. 17, pp. 5510–5122, 1996.

[5] G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular
organization in monkey striate cortex,” Nature, vol. 321, pp. 579–585,
Jun. 1986.

[6] D. H. Hubel, T. N. Wiesel, and M. P. Stryker, “Anatomical demonstra-
tion of orientation columns in macaque monkey,” J. Comparat. Neurol.,
vol. 177, pp. 361–380, Feb. 1978.

[7] M. M. Merzenich, P. L. Knight, and G. L. Roth, “Representation of
cochlea within primary auditory cortex in the cat,” J. Neurophysiol.,
vol. 38, no. 2, pp. 231–249, 1975.

[8] X. Chen, M. Gabitto, Y. Peng, N. J. P. Ryba, and C. S. Zuker,
“A gustotopic map of taste qualities in the mammalian brain,” Science,
vol. 333, pp. 1262–1266, Sep. 2011.

[9] F. Wang, A. Nemes, M. Mendelsohn, and R. Axel, “Odorant receptors
govern the formation of a precise topographic map,” Cell, vol. 93, no. 1,
pp. 47–60, 1998.

[10] T. A. Woolsey, C. Welker, and R. H. Schwartz, “Comparative anatom-
ical studies of the SmL face cortex with special reference to the
occurrence of ‘barrels’ in layer IV,” J. Comparat. Neurol., vol. 164,
no. 1, pp. 79–94, 1975.

[11] K. Fox, Barrel Cortex. Cambridge, U.K.: Cambridge Univ. Press, 2008.
[12] R. M. Friedman, L. M. Chen, and A. W. Roe, “Modality maps within

primate somatosensory cortex,” Proc. Nat. Acad. Sci. USA, vol. 101,
no. 34, pp. 12724–12729, 2004.

[13] D. E. Feldman and M. Brecht, “Map plasticity in somatosensory
cortex,” Science, vol. 310, pp. 810–815, Nov. 2005.

[14] M. M. Merzenich, J. H. Kaas, J. Wall, R. J. Nelson, M. Sur, and
D. Felleman, “Topographic reorganization of somatosensory cortical
areas 3b and 1 in adult monkeys following restricted deafferentation,”
Neuroscience, vol. 8, no. 1, pp. 33–55, 1983.

[15] M. B. Calford, “Dynamic representational plasticity in sensory cortex,”
Neuroscience, vol. 111, no. 4, pp. 709–738, 2002.

[16] T. Kohonen, Self-Organizing Maps, 3rd ed. New York, NY, USA:
Springer-Verlag, 2001.

[17] J. Hertz, A. S. Krogh, and R. G. Palmer, Introduction to the Theory of
Neural Computation, 1st ed. New York, NY, USA: Perseus, 1991.

[18] E. T. Rolls and G. Deco, Computational Neuroscience of Vision.
Oxford, U.K.: Oxford Univ. Press, 2002.

[19] N. Manukyan, M. J. Eppstein, and D. M. Rizzo, “Data-driven cluster
reinforcement and visualization in sparsely-matched self-organizing
maps,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5,
pp. 846–852, May 2012.

RUMBELL et al.: SPIKING SOM 907

[20] C.-C. Hsu and S.-H. Lin, “Visualized analysis of mixed numeric and
categorical data via extended self-organizing map,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 1, pp. 72–86, Jan. 2012.

[21] P. Maldonado, C. Babul, W. Singer, E. Rodriguez, D. Berger, and
S. Grün, “Synchronization of neuronal responses in primary visual
cortex of monkeys viewing natural images,” J. Neurophysiol., vol. 100,
no. 3, pp. 1523–1532, 2008.

[22] P. Fries, D. Nikolić, and W. Singer, “The gamma cycle,” Trends in
Neurosci., vol. 30, no. 7, pp. 309–316, 2007.

[23] S. J. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, no. 6582, pp. 520–522, 1996.

[24] R. Van Rullen and S. J. Thorpe, “Rate coding versus temporal order
coding: What the retinal ganglion cells tell the visual cortex,” Neural
Comput., vol. 13, no. 6, pp. 1255–83, 2001.

[25] T. K. Hensch, “Critical period regulation,” Annu. Rev. Neurosci.,
vol. 27, pp. 549–579, Jul. 2004.

[26] B. Ruf and M. Schmitt, “Self-organization of spiking neurons using
action potential timing,” IEEE Trans. Neural Netw., vol. 9, no. 3,
pp. 575–578, May 1998.

[27] S. Song and L. F. Abbott, “Cortical development and remapping
through spike timing-dependent plasticity,” Neuron, vol. 32, no. 2,
pp. 1–20, 2001.

[28] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity,” Nature Neurosci.,
vol. 3, no. 9, pp. 919–926, 2000.

[29] D. Bush, A. Philippides, P. Husbands, and M. O’Shea, “Reconciling
the STDP and BCM models of synaptic plasticity in a spiking recurrent
neural network,” Neural Comput., vol. 22, no. 8, pp. 2059–2085, 2010.

[30] S. M. Bohte, H. La Poutré, and J. N. Kok, “Unsupervised clustering
with spiking neurons by sparse temporal coding and multilayer RBF
networks,” IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 426–435,
Mar. 2002.

[31] X.-J. Wang, “Neurophysiological and computational principles of corti-
cal rhythms in cognition,” Physiol. Rev., vol. 90, no. 3, pp. 1195–1268,
2010.

[32] J. S. Law, “Modeling the development of organization for orientation
preference in primary visual cortex,” Ph.D. dissertation, School of
Informatics, Univ. Edinburgh, Edinburgh, Scotland, 2009.

[33] R. Keith-Magee, “Learning and development in Kohonen-style self-
organising maps,” Ph.D. dissertation, School of Computing, Curtin
Univ. Technol., Bentley, Australia, 2001.

[34] G. J. Goodhill and T. J. Sejnowski, “A unifying objective function for
topographic mappings,” Neural Comput., vol. 9, no. 6, pp. 1291–1303,
1997.

[35] D. Vidaurre and J. Muruzábal, “A quick assessment of topology
preservation for SOM structures,” IEEE Trans. Neural Netw., vol. 18,
no. 5, pp. 1524–1528, Sep. 2007.

[36] D. Beaton, I. Valova, and D. Maclean, “CQoCO: A measure for
comparative quality of coverage and organization for self-organizing
maps,” Neurocomputing, vol. 73, nos. 10–12, pp. 2147–2159, 2010.

[37] D. Polani, “Measures for the organization of self-organizing maps,”
in Self-Organizing Neural Networks, U. Seiffert and L. C. Jain, Eds.
Berlin, Germany: Springer-Verlag, 2002, pp. 13–44.

[38] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugen., vol. 7, no. 2, pp. 179–188, 1936.

[39] Q. Wu, T. McGinnity, L. Maguire, B. Glackin, and A. Belatreche,
“Learning under weight constraints in networks of temporal encoding
spiking neurons,” Neurocomputing, vol. 69, nos. 16–18, pp. 1912–1922,
2006.

[40] J. Wade, L. McDaid, J. Santos, and H. Sayers, “SWAT: A spiking
neural network training algorithm for classification problems,” IEEE
Trans. Neural Netw., vol. 21, no. 11, pp. 1817–1830, Nov. 2010.

[41] N. Gueorguieva, I. Valova, and G. Georgiev, “Learning and data
clustering with an RBF-based spiking neuron network,” J. Experim.
Theoretical Artif. Intell., vol. 18, no. 1, pp. 73–86, 2006.

[42] S.-Y. Yoon and S.-Y. Lee, “Training algorithm with incomplete data for
feed-forward neural networks,” Neural Process. Lett., vol. 10, no. 3,
pp. 171–179, 1999.

[43] L. Bako, “Real-time classification of datasets with hardware embedded
neuromorphic neural networks,” Briefings Bioinformat., vol. 11, no. 3,
pp. 348–363, 2010.

[44] D. M. Sala, K. J. Cios, and J. T. Wall, “Self-organization in networks
of spiking neurons,” Austral. J. Intell. Inf. Process. Syst., vol. 5, no. 3,
pp. 161–170, 1998.

[45] R. J. MacGregor, Neural and Brain Modeling. San Francisco, CA,
USA: Academic, 1987.

[46] F. Veredas, H. Mesa, and L. A. Martínez, “Imprecise correlated activity
in self-organizing maps of spiking neurons,” Neural Netw., vol. 21,
no. 6, pp. 810–816, 2008.

[47] Y. Choe and R. Miikkulainen, “Self-organization and segmentation in
a laterally connected orientation map of spiking neurons,” Neurocom-
puting, vol. 21, nos. 1–3, pp. 139–157, 1998.

[48] N. Srinivasa and Y. Cho, “Self-organizing spiking neural model
for learning fault-tolerant spatio-motor transformations,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1526–1538, Oct. 2012.

[49] N. Srinivasa and Q. Jiang, “Somatosensory cortex: Structural alterations
following early injury to sense organs,” Frontiers Comput. Neurosci.,
vol. 7, no. 10, pp. 1–24, 2013.

Timothy Rumbell received the Ph.D. degree from
Plymouth University, Plymouth, U.K., in 2013,
investigating unsupervised learning of concepts in
networks of spiking neurons.

He is currently a Post-Doctoral Fellow with the
Mount Sinai School of Medicine, New York, NY,
USA, researching the mechanisms underlying cogni-
tive decline with aging using single cell models. His
current research interests include the computational
properties of neural systems.

Susan L. Denham is a Professor of cognitive
neuroscience and she was appointed the director of
the Plymouth Cognition Institute, Plymouth, U.K.,
in 2012. Her research focuses on understanding the
computational principles of sensory perception and
perceptual organization in the brain using perceptual
experiments, computational models, and neuromor-
phic hardware implementations.

Thomas Wennekers is a Reader in Computational
Neuroscience with Plymouth University, Plymouth,
U.K. His research aims at an understanding of brain
function at a systemic level and its application
to future brainlike computing architectures in soft
and hardware. His current research interests include
cortical sensory and cognitive function.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

