
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

A Survey on Deep Active Learning: Recent
Advances and New Frontiers

Dongyuan Li , Graduate Student Member, IEEE, Zhen Wang , Yankai Chen , Renhe Jiang , Member, IEEE,
Weiping Ding , Senior Member, IEEE, and Manabu Okumura

Abstract— Active learning seeks to achieve strong performance
with fewer training samples. It does this by iteratively asking an
oracle to label newly selected samples in a human-in-the-loop
manner. This technique has gained increasing popularity due to
its broad applicability, yet its survey papers, especially for deep
active learning (DAL), remain scarce. Therefore, we conduct an
advanced and comprehensive survey on DAL. We first introduce
reviewed paper collection and filtering. Second, we formally
define the DAL task and summarize the most influential baselines
and widely used datasets. Third, we systematically provide a
taxonomy of DAL methods from five perspectives, including
annotation types, query strategies, deep model architectures,
learning paradigms, and training processes, and objectively ana-
lyze their strengths and weaknesses. Then, we comprehensively
summarize the main applications of DAL in natural language
processing (NLP), computer vision (CV), data mining (DM), and
so on. Finally, we discuss challenges and perspectives after a
detailed analysis of current studies. This work aims to serve as a
useful and quick guide for researchers in overcoming difficulties
in DAL. We hope that this survey will spur further progress in
this burgeoning field.

Index Terms— Active learning, adaptive sampling, computer
vision (CV), deep learning, natural language processing (NLP),
sequential optimal design, uncertainty quantification.

I. INTRODUCTION

THE remarkable success of deep learning relies heavily
on large-scale datasets with human-annotated labels [1].

However, continually labeling large-scale datasets is an
extremely time-consuming, expensive, and laborious task,
which tends to become a bottleneck for deep learning with
limited labeled data. To tackle this issue, deep active learn-
ing (DAL) recently exhibited great potential. As shown in
Fig. 1, DAL models are first trained on an initial training
dataset. Then, query strategies can be iteratively applied to
select the most informative and representative samples from
a large pool of unlabeled data. Finally, an oracle labels
the selected samples and adds them to the training dataset
for retraining or fine-tuning the DAL models. DAL aims to
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Fig. 1. General pipeline in deep active learning.

achieve competitive performance while reducing annotation
costs within a reasonable time [2], [3], [4]. Benefiting from the
strong representation capabilities of various neural networks,
such as graph neural networks (GNNs) [5], convolutional
neural networks (CNNs) [6], and transformers [7], as well
as leveraging prior knowledge from pretrained models, such
as contrastive language-image pretraining (CLIP) [8] and
generative pretrained transformer (GPT) [9], DAL has made
significant advances.

As a methodology for selecting or generating a subset of
training data in data-centric AI, DAL is closely related to
learning settings and practical techniques, including curricu-
lum learning [10], transfer learning [11], data augmentation or
pruning [12], [13], and dataset distillation [14]. The common-
ality of these methods is to train or fine-tune a model using a
small number of samples, aiming to remove noise and redun-
dancy while improving training efficiency without decreasing
models’ performance on downstream tasks. However, one
primary difference from DAL is that these approaches have
full access to all labels when selecting, distilling, or generating
training subsets. DAL defaults to that all data should be
unlabeled during the training subset selection process, making
it better suited for real-world scenarios where labels are
initially unavailable.

To summarize DAL methodologies, recent efforts have
focused on specific tasks such as text classification [15] and
image analysis [16], [17], specific domains such as natural lan-
guage processing (NLP) [18] and computer vision (CV) [19],
[20], or reproducing mainstream baselines [21], [22]. As for
most early survey work, one common inadequacy is that they
may not have enough discussion of recent advances [23], [24],
[25], or lack summarization of emerging learning paradigms
(contrastive learning and so on) and challenges [26], [27],
especially in light of rapidly developing deep learning tech-
niques (e.g., fine-tuning on pretrained models). To assist
researchers in reviewing, summarizing, and planning for future
exploration, we provide a comprehensive review encompassing
the latest advancements and insights in the field. While some
survey papers focus on stream-based DAL [28], this article
concentrates on pool-based DAL.
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Fig. 2. Taxonomy for deep active learning methods.

Specifically, we first introduce our strategy for collecting
reviewed papers and explain our criteria for selecting them
in Section II. Then, we give a specific formal definition for
DAL in Section III-A and chronologically summarize the most
influential DAL baselines and the widely used datasets in
Section III-C. As shown in Fig. 2, in Section IV, we develop
a high-level taxonomy to provide a broad overview of this
field, categorizing previous studies from five perspectives.
In Section IV-A, we classify the annotation types into hard,
soft, hybrid, explanatory, and random/multiagent annotations
and give a detailed introduction to each annotation type.
In Section IV-B, we summarize query strategies into five
distinct categories, including uncertainty-based, representative-
based, influence-based, Bayesian-based, and their hybrid
methods, and analyze the strengths and weaknesses of each
query type. As for deep model architectures, in Section IV-C,
they are mainly categorized into recurrent neural networks
(RNNs), CNNs, GNNs, and pretrained methods. We discuss
the benefits and drawbacks of each type of architecture.
In Section IV-D, we are pleased to discover that various
emerging learning paradigms, such as curriculum learning
and continual learning, have shown promising results when
combined with DAL. For each learning paradigm, we provide
a detailed description of its definition and how to integrate
it with DAL. Finally, in Section IV-E, three different training
processes, including traditional training, curriculum learning-
based training, and pretraining and fine-tuning (Pre + FT),
will be introduced with typical examples.

In Section V, we comprehensively show some domains in
which DAL methods have been successfully applied, including
NLP, CV, data mining (DM), and so on. As depicted in
Fig. 3, despite the remarkable progress in DAL, this rapidly
developing field is still fraught with several crucial emerging
challenges. In Section VI, we analyze the causes and opportu-
nities of each challenge, which can be summarized as follows.

1) Pipeline-Related: Inefficient and costly human annota-
tion, insufficient research on stopping strategies, and
cold start.

2) Task-Related: Difficulty in cross-domain transfer,
unstable performance, and lack of scalability and
generalizability.

3) Dataset-Related: Outlier data and oracles, data scarcity
and imbalance, and class distribution mismatch.

Finally, after organizing and summarizing the current
DAL-related research, we have four intriguing findings that
we would like to share with the readers.

1) As shown in Section IV-E, DAL has great potential as a
sample selection strategy to apply few-shot or one-shot
setting for large-scale pretrained models with billions
of parameters [29], [30]. Furthermore, as discussed in

Fig. 3. Emerging challenges in deep active learning.

Section III-C, many studies have shown that using only
10∼20% labeled samples for fine-tuning the pretrained
language models (PLMs) with billions of parameters can
yield even better performance and be 5∼10 times more
efficient than training with a full labeled dataset [31],
[32].

2) Intuitively, having more high-quality samples can pro-
mote model performance for some tasks. Thus, as shown
in Section IV-D, many works integrate DAL with
semisupervised strategies, allowing to obtain more
high-quality labeled samples without increasing the need
for human labor. However, as discussed in Section VI-C,
semisupervised methods are highly sensitive to outliers
and error labels, easily fueling a vicious cycle, i.e., mod-
els continue to label samples with wrong pseudolabels.
How to effectively integrate DAL with semisupervised
strategies, using human-labeled true signals to guide
semisupervised annotation and avoid the mislabeled
circular, remains an open and challenging issue waiting
to be solved.

3) From the detailed analysis of scalability and general-
izability in Section VI-B, although DAL has achieved
great success in classification tasks, comparing various
DAL methods to choose the optimal one for a given task
remains time-intensive and unrealistic in practice. Thus,
there is an urgent need for a universal framework that
is friendly to various downstream tasks.

4) By summarizing DAL applications for NLP in
Section V-A, we find only a few DAL studies focused
on generative tasks. Generative tasks, such as summa-
rization and question answering, urgently require more
attention and research compared to classification tasks.
This is because generating informative objects, such
as annotations, is more difficult and time-consuming.
Defining the most meaningful samples for genera-
tion tasks and explaining why those samples play an
important role are two core problems that need to be
solved. We hope that future research can promote the
development of DAL for generation tasks.

Overall, the main contributions of this article are given as
follows.

1) This is the latest comprehensive and systematic survey
paper on DAL to help researchers review, summarize,
and look forward to the future of DAL.

2) Based on the novel DAL taxonomy, we detail the
explanations and discussions of the methodology, rang-
ing from annotation types, query strategies, deep
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Fig. 4. Keywords and publication trend on DAL.

model architectures, learning paradigms, and training
processes.

3) The difficult challenges in DAL are presented from
multiple perspectives. Through a detailed analysis of
challenges and current studies, we discuss possible
advanced solutions for them.

4) A GitHub repository1 is available with the most up-
to-date DAL techniques, including papers, code, and
datasets.

The remaining part of this survey is organized as follows.
Section II shows the collection of DAL papers. Section III
introduces important DAL baselines and datasets. Section IV
details the taxonomy of DAL methods. Section V reviews
DAL-related applications. Section VI introduces DAL chal-
lenges and opportunities. Section VII concludes this article
with the conclusions.

II. PAPER COLLECTION AND FILTERING

We first determine relevant keywords used to search articles
and create an initial keyword list, as shown in Fig. 4. We per-
form searches across multiple databases using all possible
three-keyword combinations from defined keyword groups,
such as “active learning,” “machine learning,” and “open-
set.” The databases searched include Google Scholar, Scopus,
Semantic Scholar, and Web of Science. We limit the number
of papers collected per query to 200, and the publication date
ranges from January 2013 to March 2023.

We collect a total of 10 000 research papers from various
sources and obtain 3967 unique papers after removing any
duplicates. Fig. 4 shows the trend of these articles over time,
revealing a growing interest in the topic that we are investigat-
ing. To ensure the relevance of the collected articles to DAL,
we conduct a detailed manual inspection of their abstracts.
As a result, we identify 1273 articles that are considered
interesting and pertinent to our study. Based on the collected
materials, we employ these keywords to perform a final filter-
ing process and also consider the reputation of conferences or
journals in which the papers were published, as well as their
impact. This approach further refines our dataset, resulting
in 405 articles that are selected for systematic analysis, and
220 articles are finally summarized and discussed, focusing
on their key findings and contributions. This rigorous analysis
ensures that the articles are relevant and provide valuable
insight into the field of DAL.

1https://github.com/Clearloveyuan/Awesome-Active-Learning

III. DEEP ACTIVE LEARNING

In this section, we first introduce the basic notation and
definition of DAL and then discuss the most important DAL
baselines based on their relevance and chronological order.

Algorithm 1 DAL Procedure
Input: Unlabeled Data Dpool
Parameter: Batch Size b, Iteration Times T , Query Function
α

Output: The final trained model M
1: Q0 ← Initialization sampling from Dpool where |Q0| = b;
2: D0

train ← Q0 [Initialization of training dataset];
3: M0 ← Train M0 on D0

train;
4: while not stop-criterion( ) & i ≤ T do
5: Qi ← α(Mi−1,Di−1

pool, b) [Annotating b samples];
6: Di

train = Di−1
train ∪ Qi ; Di

pool ← Di−1
pool\Qi ;

7: Mi ← Train Mi−1 on Di
train;

8: end while

A. Notations and Definitions
We focus on pool-based DAL methods since most DAL

methods belong to this category. Pool-based DAL methods
iteratively select the most informative samples from a large
pool of unlabeled datasets until either the base model reaches
a certain level of performance or a predefined budget is
exhausted. As shown in Algorithm 1, we use a classification
task as an example for illustration, while other tasks follow
the typical definition of their task domains. Given an initial
labeled training dataset Dtrain = {xi , yi }

m
i=1 and a large-scale

pool of unlabeled data Dpool = {xi }
n
i=1, where m≪n, xi

represents the feature vector of the i th sample, and yi ∈ {0, 1}
is the class label for binary classification (or yi ∈ {1, . . . , k}
for multilabel classification), the DAL procedure is carried
out in T iterations. In the i th iteration, a batch of samples
Qi with batch size b is selected from Di−1

pool on the basis of
the base model M and an acquisition function α( ). These
samples Qi are then labeled by an oracle and added to
the i th training dataset Di

train, with which the model M
is then retrained. DAL terminates when the labeled budget
Q is exhausted or the desired performance of the model is
reached.

B. Comparisons Between Traditional and Deep AL
The differences between traditional and deep AL mainly lie

in the following two aspects.
1) Most traditional AL methods use fixed preprocessed fea-

tures to calculate uncertainty/representativeness. In deep
learning tasks, feature representations are jointly learned
with deep neural networks (DNNs). Therefore, feature
representations dynamically change during DAL pro-
cesses, and thus, pairwise distances/similarities used by
representativeness-based measures need to be recom-
puted in every stage. In contrast, for traditional AL
with classical ML tasks, these pairwise terms should be
precomputed [22].

2) DAL can leverage advanced large-scale PLMs to achieve
comparable performance in few-shot or one-shot set-
tings. In contrast, traditional AL methods with few-shot
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TABLE I
DETAILED TAXONOMY OF IMPORTANT DEEP ACTIVE LEARNING BASELINES. REFER TO SECTION IV FOR A DETAILED

EXPLANATION OF EACH CATEGORY. ANY TYPES IN QUERY STRATEGY MEAN THAT THE PROPOSED
FRAMEWORKS CAN BE COMBINED WITH ANY TYPES OF DAL QUERY STRATEGIES

or one-shot settings may not meet the minimum require-
ments for the number of training samples needed to
achieve comparable performance [30], [33]. On the other
hand, the most similar aspect between traditional and
deep AL methods is their utilization of a small number
of the most informative samples to train models, thereby
improving efficiency and reducing reliance on labeled
samples.

C. Important DAL Baselines and Datasets
The most important baselines for DAL are carefully cat-

egorized in Table I from six perspectives to provide readers
with a complete understanding of the development of DAL and
the identification of the most relevant works. These influential
studies have achieved breakthroughs in designing new DAL
methods, tackling novel tasks, or integrating with emerging
learning paradigms. They have been published in influential
international conferences or high-quality journals in machine
learning, CV, NLP, and so on and have been highly cited with
more than 100 total citations or more than ten citations per
year.

BCBA [34] pioneers the combination of AL with Bayesian
neural networks (BNNs), using Monte Carlo dropout for
a variational Bayesian approximation to apply for image
classification. Based on this, DBAL [35] proposes an
uncertainty-based query strategy for high-dimensional image

classification. To expand the number of labeled samples with-
out increasing human labors, CEAL [36] combines DAL
with semisupervised strategies by assigning pseudolabels to
high-confidence samples while requesting annotations for the
most uncertain samples. Relying on a single query strategy
may lead to errors. Thus, ESNN [37] uses a deep ensemble of
DNNs to measure sample uncertainty from multiple aspects
and achieves good robustness for unbalanced datasets. How-
ever, the aforementioned methods are criticized for being less
effective for batch DAL [45]. To address this issue, Core-
Set [41] selects informative batches that cover the whole data
distribution, and BatchBALD [45] uses mutual information to
identify the most informative batches. Cluster-Margin [55]
aims to select informative and diverse minibatches to improve
accuracy and efficiency.

To better help DAL adjust to different tasks, reinforcement
learning provides detailed rewards for dynamically controlling
query strategies. For example, PAL [38] learns a deep rein-
forcement learning-based Q-network as an adaptive policy to
select data samples for labeling. Similarly, DRAL [46] uses
a reinforcement learning framework to dynamically adjust the
acquisition function via rewards to obtain high-quality queries.
UCBVI [62] provides a new modification to the Q-network
formulation for reward-free exploration, significantly reducing
query complexity. However, reinforcement learning requires
a large amount of training data and human-designed rewards,
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which is difficult for many real-world applications. To address
this issue, meta learning and transfer learning have become
main solutions. LAL [39] trains a regressor to learn optimal
query strategies for downstream tasks. MAML [59] combines
meta learning and DAL by initializing an active learner with
meta-learned parameters obtained through meta training on
tasks similar to the target task during DAL. DLER [47]
designs an architecture to learn a transferable model from a
high-resource setting to a low-resource one, allowing DAL
to select a few informative samples based on the knowledge
of the source domain. AADA [50] jointly considers domain
alignment, uncertainty, and diversity for sample selection.

To enlarge the labeled training dataset for DNNs with-
out incurring additional human labor costs, semisupervised,
semisupervised, and self-supervised DAL methods have been
proposed. MIAL [44] pioneers semisupervised DAL using
cluster-based strategies to measure sample informativeness.
ASM [43] collaborates with self-learning and DAL, designing
a selector function to selectively and seamlessly determine
the confidence of the samples, where high-confidence samples
are labeled by a pseudolabeling module, and low-confidence
samples are labeled by humans. CSAL [51] first uses semisu-
pervised learning to distill information from unlabeled data
during the training stage and then uses consistency-based sam-
ple selection for DAL. TOD [54] leverages a novel unlabeled
data sampling strategy for data annotation in conjunction with
a semisupervised training scheme to improve the performance
of the task model with unlabeled data. Recently, data aug-
mentation has expanded to become a deep neural model that
generates virtual instances to help expand training datasets.
GAAL [40] introduces a generative adversarial network to
the DAL query method to generate informative samples to
train the model. BGADL [48] expands GAAL and combines
generative adversarial DAL with Bayesian data augmentation
to generate diverse and informative samples. DFAL [42] uses
adversarial DAL to select samples close to the decision bound-
ary as the most informative samples for DAL. VAAL [49]
learns a latent space using a variational autoencoder (VAE)
to generate new informative samples and trains an adversarial
network to discriminate labeled and unlabeled data. Inspired
by these works, TA-VAAL [57] incorporates a learning loss
prediction module and a task ranker to enable task-aware
sample selection. SRAAL [52] proposes a relabel adversarial
model that aims to obtain the most informative unlabeled
samples. LADA [56] anticipates data augmentation impact by
scoring both real and virtually augmented instances, allowing
training in informative labeled and augmented data.

Large-scale PLMs achieve great success and become a
milestone in artificial intelligence. Due to sophisticated pre-
training objectives and huge model parameters, large-scale
PLMs effectively capture knowledge from massive labeled
and unlabeled data. DAL also ushers in a new paradigm by
leveraging the prior knowledge in PLMs to enable few-shot
or zero-shot learning for many downstream tasks. ALPS [31]
extracts knowledge from PLMs to select the first batch of
data using masked language modeling loss, which successfully
solves the cold-start problem of DAL. Ein-Dor et al. [53]
use multiple DAL methods to select samples for fine-tuning
in BERT-based text classification. It achieves comparable or
higher performance than fine-tuning on full datasets only with
10%∼20% labeled samples. Karamcheti et al. [58] use DAL
to identify and remove noisy data, select balanced samples
to fine-tune PLMs, and achieve better performance in visual

TABLE II
WIDELY USED DAL DATASET INFORMATION

question-answering. BATL [32] is a task-independent batch
acquisition method on PLMs with triplet loss to determine
hard samples, which have similar features but difficult to
identify labels in an unlabeled data pool. TYROGUE [60]
designs an interactive DAL framework to flexibly select
samples to fine-tune PLMs for multiple low-resource tasks.
Schroder et al. [61] extend the PLMs using available unla-
beled data for greater adaptability and introduce effective
fine-tuning for the robustness of DAL in low-resource and
high-resource settings.

As shown in Table II, we also conclude the most widely
used datasets in DAL including images, text, and audio.

IV. TAXONOMY OF DAL

A. Annotation Type
1) Hard Annotations: These provide one or multiple dis-

crete categorical labels independently for each sample. For
example, Citovsky et al. [55] annotate each image with a
specific label such as “balloon” or “strawberry” for an image
classification task. Wiechman et al. [77] design an online
annotation system to assign multiple labels to long documents
based on their sentiments, topics, and spam/nonspam status.

2) Soft Annotations: These allow continuous and subjec-
tive labels for samples. For instance, ReDAL [78] annotates
continuous 2-D region labels for 3-D point clouds in semantic
segmentation. Kothawade et al. [79] use mutual information as
an auxiliary metric to select annotation regions in images for
autonomous vehicles. Xie et al. [80] propose a region-based
approach to automatically query a small subset of image
regions to label while maximizing segmentation performance.

3) Hybrid Annotations: These combine automatic pseu-
dolabels of high-confidence predictions with human labeling
of low-confidence samples in an iterative self-paced man-
ner [43]. For example, Wang et al. [36] propose a comple-
mentary sample selection strategy to progressively choose
the most informative samples, pseudolabeling high-confidence
predictions for training. Yu et al. [81] jointly use the expertise
of different annotation groups, interrelations between workers,
and label correlations within groups. By weighting groups,
they reduce the impact of low-quality workers and calculate
reliable consensus labels.

4) Explanatory Annotations: These provide a hard or soft
label along with an explanation for each annotation. For
example, Schröder et al. [82] use topic-related annotations
for environmental texts. Similarly, Yan et al. [83] annotate
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the text and list keywords as evidence of the accuracy of
the label. Unlike the above methods, Zhou et al. [84] anno-
tate samples by minimizing correlations between tasks and
provide explainable medical knowledge to distinguish selected
samples.

5) Random/Multiagent Annotations: These use multiple
independent pseudoannotators to randomly label new unla-
beled samples without human input [85]. For example,
Gong et al. [86] use an agent team to collaboratively select
informative images for annotation based on the decisions from
the other agents.

B. Query Strategy
1) Uncertainty-Based Methods: These aim to select the

most ambiguous samples according to model predictions.
Given an input xi

Entropy(xi ) = arg max
xi

∑
j

P(ŷ j |xi ) log P(ŷ j |xi )

 (1)

where P(ŷi |xi ) represents the likelihood that xi is classified
into the i th class [87]. Uncertainty-based methods focus on
designing various score functions to measure sample uncer-
tainty and informativeness, including predictive entropy [87],
least confidence [88], highest estimated dual variables [89],
and mutual information between model posterior and predic-
tions [79]. Some strategies check samples near the decision
boundary as the most uncertain ones [90], such as instances
close to the hyperplane [44] or close to the margin [91].
Others combine multiple query strategies, forming a query-
by-committee [92] or disagreement-based [93] DAL strategy
to decrease errors made by a single query strategy. With
the development of adversarial learning, instead of selecting
samples from unlabeled datasets, models tend to generate the
most informative and uncertain synthetic samples to expand
the training dataset [48].

However, they have some common drawbacks: 1) redundant
samples, as uncertain points, are continually selected yet in
short of coverage; 2) simply focusing on a single sample lacks
robustness to outliers; and 3) these task-specific designs exhibit
limited generalizability.

2) Representative-Based Methods: These aim to sample
the most prototypical data points that effectively cover the
distribution of the entire feature space. Existing methods can
be categorized into density- and diversity-based approaches.
Density-based methods prefer to select samples that can rep-
resent all unlabeled samples. They use clustering methods to
select cluster centers [94] as the most representative samples or
select samples that can maximize probability coverage of the
whole feature space of unlabeled datasets [41]. For example,
Kim and Shin [95] design the density awareness CoreSet
approach to estimate sample densities and preferentially select
diverse points from sparse regions. Given the input xi

Density(xi ) =
1
k

∑
j∈N (xi ,k)

∥xi − x j∥
2
2 (2)

where N (xi , k) represents the k-nearest neighbors of xi [95].
Coleman et al. [96] and Gudovskiy et al. [97] achieve effi-
ciency by only considering nearest neighbors rather than all
data or matching feature densities with self-supervised meth-
ods. Diversity-based methods prefer to select samples that are

different from the labeled samples. They use context-sensitive
methods [98] that take into account the distance between
a sample and its surrounding labeled samples to enrich the
diversity of the labeled dataset. BMAL [99] performs DAL
for the image labeling problem, where diversity is measured
by the KL divergence of the class probabilities distribution of
similar neighboring instances, formulated as

Divergence(xi , x j ) =
∑

j

P(ŷ j |xi )−P(ŷ j |x j ) log
P(ŷ j |xi )

P(ŷ j |x j )
.

(3)

Other diversity-based methods tend to train a model, such
as adversarial networks [57], contrastive networks [100], hier-
archical clustering [44], and pretrained models [53], to help
discriminate labeled and unlabeled sets and select the most
different unlabeled samples. For example, Li et al. [101]
explicitly learn a nonlinear embedding to select representa-
tive samples. Parvaneh et al. [102] explore neighborhoods
around unlabeled data by interpolating features with labeled
points. Li et al. [103] propose an acquisition function that
measures mutual information between a batch of queries
to encourage diversity. To further increase label efficiency,
Citovsky et al. [55] use hierarchical clustering to diversify
batches, requiring only 40% of the labels to achieve the same
target performance. However, since they use ResNet-101 as
their backbone, which contains only 170-MB parameters, more
than 20% labeled samples are required for fine-tuning the
model.

However, the aforementioned representative-based methods,
which solely focus on sampling diverse samples, are always
insensitive to samples that are close to the decision boundary
(excluding hybrid methods that jointly consider representative
and uncertainty), despite the fact that such samples are prob-
ably more important to the prediction model, as suggested by
Zhao et al. [104]. In addition, representative-based methods
work well for a small sample of data and classifiers with a
small number of classes since their computational complexity
is almost quadratic with respect to data size [55].

3) Influence-Based Methods: These aim to select samples
that will have the greatest impact on the performance of the
target model. These techniques can be categorized into three
main groups.

1) The first group is directly measuring the expected
impact on the modal through metrics such as gradient
norm [105], query complexity [106], kernel approx-
imation [107], KL divergence [97], change of loss
function [108], or model parameters [54], and expected
error reduction (EER) [109]. Specifically, EER can be
formulated as

EER(xi ) = Exs

{
Eyi |xi [max

ys
p(ys |xs, xi , yi )]

− max
ys

p(ys |xs)

}
(4)

where xs refers to the labeled sample.
2) The second group incorporates different learning poli-

cies, such as reinforcement learning and imitation
learning, to select samples based on reward signals or
demonstrated actions. Despite the promising advantages,
this requires significant additional training [110]. For
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example, Wertz et al. [111] propose reinforced DAL,
a reinforcement learning policy that uses multiple ele-
ments of the data and the task to dynamically pick the
most useful unlabeled subset during the DAL process.

3) The last group is training a separate model to estimate
the impact on the target model [89]. For example,
Peng et al. [14] propose a knowledge distillation frame-
work to evaluate the impact of samples based on the
knowledge learned by the student model. Elenter et al.
[89] use the dual variables of the original model to
measure the impact on the target model.

However, despite recent advances, influence-based DAL
remains challenging. Directly measuring model changes or
incorporating new learning policies always requires huge time
and space costs, and training a new model will overrely on its
accuracy and often lead to unstable results.

4) Bayesian Methods: These aim to minimize classification
errors and improve model beliefs by leveraging Bayes’ rule.
Most studies have treated Bayesian models (e.g., Gaussian
process [109], BNNs [35], and Bayesian probabilistic ensem-
ble [112]) as uncertainty-based methods, using them to
estimate the informativeness of the sample. However, Bayesian
DAL is better viewed as its own distinct system, with methods
that select batches by directly measuring impact on the target
model, such as BatchBALD [45] and Causal-BALD [113]. For
example, we define a Bayesian model with model parameters
w ∼ p(w|Dtrain), and BALD can be defined to estimate the
mutual information between the model predictions and the
model parameters, formulated as

I(y;w|x,Dtrain) = H(y|x,Dtrain)

− Ep(w|Dtrain)[H(y|x, w,Dtrain)] (5)

where H represents the entropy and E is the expectation.
Compared to standard DNNs, the aforementioned Bayesian

DAL methods, which leverage the advantages of probabilistic
graphical theory [35], can often provide reasonable explana-
tions for why these samples should be selected [45]. However,
they often require extensive accurate prior knowledge and
tend to underperform deep learning models in representation
learning and fitting capacity.

5) Hybrid Methods: These aim to take advantage of the
above multiple query strategies and achieve a tradeoff among
them. Hybrid methods can be further categorized according
to interaction patterns. Serial-form hybrids apply criteria
sequentially within a DAL cycle, filtering out noninforma-
tive samples until the batch is filled [55]. Criteria-selection
hybrids use only one query strategy in one DAL iteration,
in which they select the best query strategy or network archi-
tecture with the highest criterion. For example, DUAL [114]
switches between density- and uncertainty-based selectors to
choose the best criterion for each DAL cycle. Unlike DUAL,
iNAS [115] searches a restricted candidate set to find the
optimal model architecture incrementally in each DAL iter-
ation. Parallel-form hybrids use multiobjective optimization
methods or a weighted sum to merge multiple query criteria
into one for sample selection. For example, Gu et al. [2]
efficiently acquire batches with discriminative and represen-
tative samples by proposing procedures to update labeled
and unlabeled sets based on path-following optimization tech-
niques. Citovsky et al. [55] jointly optimize the uncertainty
and diversity criteria in batch mode using multiobjective
acquisition functions. TOD [54] selects samples with high

model uncertainty and outputs discrepancy through a weighted
combination of both metrics.

Hybrid methods combine the advantages of different query
strategies. However, determining the most effective combina-
tions and tradeoffs between criteria is time-consuming and still
remains open for further investigation.

C. Model Architecture
1) Traditional Machine Learning: Architectures, such as

forest [39] and support vector machine (SVM) [44], are
statistical-based models that do not use neural networks.
They attract great attention in the early stage of the DAL
development.

2) Bayesian Neural Networks: BNNs combine neural net-
works with Bayesian inference, quantifying the uncertainty
introduced by the models in terms of outputs and weights to
explain the trustworthiness of the prediction [116]. Many stud-
ies propose DAL strategies based on BNNs, aiming to improve
efficiency and explainability in samples’ selection [38], [45].

3) Recurrent Neural Networks: RNNs [117] use their rea-
soning from previous experiences to predict upcoming events
and are able to learn features with long-term dependencies.
They have been widely used for sequential data such as text
and audio. DAL is seldom combined with RNNs since they
require large-scale labeled datasets for training. Some special
tasks that easily recognizable patterns, such as malicious word
detection on social networks [118], can be solved with DAL.

4) Convolutional Neural Networks: CNNs [6] are feed-
forward neural networks that can extract features from data
with convolution structures and have been widely used for
image processing with three advantages: local connections,
weight sharing, and downsampling dimensionality reduction.
DAL can be effectively combined with CNNs since Sener
and Savarese [41] proved that a subset of samples (CoreSet)
can geometrically characterize all features of the entire image
set and can be selected by minimizing a rigorous bound.
Following their study, more studies have been conducted [49],
[55].

5) Graph Neural Networks: GNNs [5] learn node rep-
resentations by aggregating neighborhood information and
achieve great success in various tasks, such as node classi-
fication. However, effectively handling graph data with dense
interconnections between samples using limited labeled data
remains an open challenge [119]. DAL can help address
this by selectively querying labels for the most informative
samples and executing only one training epoch to reduce
the annotation cost for various types of graphs, such as
homogeneous graphs [120], heterogeneous graphs [121], and
attribute graphs [122].

6) Variational Autoencoders: VAE is a class of neu-
ral network architecture designed with an encoder–decoder
framework [123]. It aims to capture the underlying data dis-
tribution and learn to generate samples that closely resemble
the input data. VAEs-based DAL methods usually gener-
ate samples to fool discriminators in an adversarial training
manner, thus improving discriminators’ ability to select the
most challenging-to-distinguish samples for training DAL
models [49], [57].

7) Pretrained Language Models: These, based on trans-
formers, utilize multihead self-attention to capture long-term
dependencies. By pretraining on large unlabeled corpora,
PLMs embed substantial general knowledge and transfer to
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Fig. 5. Example for contrastive learning-based query strategies.

downstream tasks, enabling state-of-the-art (SOTA) perfor-
mance [30]. For example, Seo et al. [32] identify the most
informative samples for a given task, focusing on PLMs fine-
tuning, to learn salient patterns with minimal annotation cost.
The combination of a pretraining rich knowledge foundation
and DAL’s sample-efficient tuning unlocks PLMs’ further
potential for many applications.

D. Learning Paradigm

1) Traditional Learning Paradigm: This, as illustrated in
Algorithm 1, iteratively queries and labels samples to train
the models in a vanilla supervised learning manner, without
incorporating any advanced learning paradigms [32], [34].

2) Semisupervised Learning: This, also known as weakly
supervised learning, aims to jointly use real-labeled samples
and pseudolabeled samples to train the models. Current DAL
methods are designed with various efficient strategies to obtain
pseudolabels for unlabeled samples. For instance, DBAL [35]
and CoreSet [41] first predict pseudolabels using their models
and then calculate samples’ confidence scores to judge whether
these pseudolabels should be trusted or not. On the other hand,
LADA [56] and BGADL [48] propose new data augmentation
methods to create more samples based on original labeled
samples using their original real-labeled samples as pseudola-
bels. These studies effectively reduce human labor and achieve
comparable performance compared with traditional supervised
learning using larger labeled samples.

3) Contrastive Learning: This improves feature representa-
tion by pulling similar instances closer together while pushing
dissimilar instances apart [124]. Contrastive methods extract
discriminative features, such as semantics [100] and dis-
tinctiveness [57], to estimate the sample uncertainty during
acquisition. For example, as shown in Fig. 5, Du et al. [125]
extract both semantic and distinctive features with contrastive
learning and then combine them in a query strategy to
choose the most informative unlabeled samples with matched
categories.

4) Adversarial Learning: This enables a model to train fully
differentiable by solving minimax optimization problems [49].
This approach can be used as a generative query technique for
DAL. For example, DAL can be combined with the generative
adversarial network, which consists of a generator and a
discriminator, where the DAL model acts as the discriminator
and the generator explores the distribution of unlabeled data to
generate the most informative and uncertain synthetic samples
for training [57]. Li et al. [122] propose SEAL, as shown in
Fig. 6, which consists of two adversarial components. The
graph embedding network encodes all nodes into a shared
space, with the intention of making the discriminator treat all
nodes as labeled. In addition, a semisupervised discriminator
is used to differentiate unlabeled nodes from labeled ones. The

Fig. 6. The detailed processes of SEAL [122] method.

divergence score of the discriminator is used as an informa-
tiveness measure to actively select the most informative node
for labeling. The two components form a loop to mutually
improve DAL.

5) Meta Learning: This enables DNNs to leverage the
knowledge acquired from multiple tasks, represented in the
network with their weights, to adapt faster to new tasks. Meta
learning can provide an acquisition function for DAL [39],
[126] or favorable model initialization during DAL by con-
trolling the transfer of knowledge from multiple source tasks.
For example, Shao et al. [127] propose a learning-to-sample,
where a boosting model and sampling model dynamically
learn from each other and iteratively improve performance.
Zhu et al. [59] combine both paradigms by initializing an
active learner with meta-learned parameters via meta training
on tasks similar to the target task.

6) Reinforcement Learning: This involves an agent that can
interact with its environment and learn to alter its behavior
in response to received rewards [119]. Given that almost
all DAL methods use heuristic acquisition functions with
limited effectiveness, reinforcement learning frames DAL as
a reinforcement learning problem to explicitly optimize an
acquisition policy. In the DAL with reinforcement learning
setup, an autonomous agent (acquisition selector) controlled
by a deep learning algorithm observes a state st from its envi-
ronment (predictor) at time t . It takes an action at to maximize
the reward rt (prediction accuracy), where at decides whether
to query unlabeled samples [62].

7) Curriculum Learning: This mimics human and animal
learning processes, where the training progresses gradually
from simple to complex samples. This provides a natural way
to exploit labeled data for robust learning [10], [128]. Specifi-
cally, curriculum learning uses a predefined learning constraint
to incrementally incorporate additional labeled samples during
training. Curriculum learning introduces a weighted loss on
all labeled samples, acting as a general regularizer over the
sample weights. For example, Lin et al. [129] use a pseudola-
bel strategy that iteratively assigns pseudolabels to unlabeled
samples with high prediction confidence.

8) Continual Learning: This is developed for constraints
on task-based settings, where the model continuously learns a
sequence of tasks one at a time, where all data for the current
task are labeled and available in increments. However, real-
world systems do not have the luxury of large labeled datasets
for each new task. To address this issue, Mundt et al. [130]
present a detailed analysis of continual learning-based DAL
and out-of-distribution detection works. They suggest a unified
perspective with open-set recognition as a natural interface
between continual learning and DAL. Ayub and Fendley [30]
develop a method that allows an agent to continually learn
new object classes from a few labeled examples.
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Fig. 7. Example for transfer learning-based query strategies.

Fig. 8. Example for imitation learning [131].

9) Transfer Learning: This extracts knowledge from one
or more source tasks and applies it to a target task. It has
two broad categories: transductive and inductive. While trans-
ductive methods adapt models learned from a labeled source
domain to a different unlabeled target domain with the same
task, inductive methods ensure that the domains of source
and target are the same but tasks are different. DAL with
transfer learning can better enhance each other’s performance
by selecting the best target samples with a distribution similar
to the source domain [50]. In addition, transfer learning
can minimize the number of annotation labels needed and
provide auxiliary information for DAL acquisition functions.
For example, as shown in Fig. 7, Xie et al. [87] propose an
energy-based active domain adaptation that balances domain
representation and uncertainty when selecting target data.

10) Imitation Learning: This provides SOTA results in
many structured prediction tasks by learning near-optimal
search policies [92]. Such methods assume access to an
expert during training that can provide the optimal action
in any queried state, essentially asking “what would you
do here?” and learning to mimic that choice. For example,
Bullard et al. [132] use imitation learning to allow an agent
in a constrained environment to concurrently reason about
both its internal learning goals and externally impose envi-
ronmental constraints within its objective function. Löffler
and Mutschler [131] propose an imitation learning scheme
(IALE) that mimics the selection of the best-performing expert
heuristic at each stage of the learning cycle in a batch-
mode setting. As shown in Fig. 8, IALE can well imitate the
entropy- and CoreSet-based methods and, thus, obtain better
performance.

11) Multitask Learning: MTL focuses on formulating
methods to maintain performance across multiple tasks rather
than a single task. Multitask DAL (MTAL) methods combine
multiple individual task-related query strategies into a single
unified approach and jointly optimize the unified one. In con-
trast to single-task query settings, where the uncertainty of
a single selected task classifier is used to query unlabeled
samples, in MTAL, the uncertainty of an instance is deter-
mined by the uncertainties from classifiers across all tasks.
For example, Ikhwantri et al. [133] propose an MTAL frame-
work for semantic role labeling with entity recognition as an
auxiliary task. This alleviated data needs and leverages entity

information to aid role labeling. Their experiments show that
MTAL can outperform single-task DAL and standard MTL,
using 12% less training data than passive learning. Zhou et al.
[84] propose a multitask adversarial DAL framework, where
adversarial learning maintains the effectiveness of the MTL
and DAL modules. A task discriminator eliminates irregular
task-specific features, while a diversity discriminator exploits
heterogeneity between samples to satisfy diversity constraints.

E. Training Process

1) Traditional Training: This first trains a model on an
initialized training dataset and then selects unlabeled samples
to annotate based on the predictions of the current model.
The newly annotated samples are added to the training set for
retraining the model in the next iteration [134]. This iterative
process continues, with the model parameters randomly reini-
tialized before each epoch of retraining [36], until either the
sample budget or the number of DAL iterations is reached.

2) Curriculum Learning Training: This gradually pro-
gresses from easy to complex samples, mimicking human and
animal learning processes. This provides a natural and iterative
way to exploit labeled data for robust learning. For example,
Tang and Huang [135] propose a self-paced DAL approach
that jointly considers the value and difficulty of a sample.
It queries samples from easy to hard to minimize annotation
costs. Wang et al. [43] show that curriculum learning alone
improves the accuracy of object detection by 3.6%, while the
combination of curriculum learning and DAL improves the
accuracy by 4.3%.

3) Pretraining and Fine-Tuning: These have become a
primary training process with the development of large-scale
PLMs [58]. It leverages the rich prior knowledge in PLMs to
solve different downstream tasks. DAL attracts attention as a
sample selection strategy for fine-tuning with only 10%∼20%
of labeled data achieving competitive performance compared
to full data fine-tuning [32]. DAL iteratively selects and anno-
tates batches of informative samples to fine-tune the PLMs for
the downstream task. This satisfies task-specific needs while
also enabling a few-shot learning [30].

V. APPLICATIONS OF DAL

As shown in Table III, the integration of DL and AL is
leading to an increasing application of AL methods in various
domains of life, ranging from agricultural development [82]
to industrial revitalization [82] and from artificial intelli-
gence [137] to biomedical fields [160]. In this section, we aim
to provide a systematic and detailed overview of existing
DAL-related work from a broad application perspective.

A. Applications in NLP

With the emergence of large-scale language models, NLP
has achieved great success using computers to help under-
stand intricate languages. However, fine-tuning these language
models requires a substantial amount of data, computation
resources, and time. DAL provides a strategy for searching for
high-quality small and high-quality samples to help fine-tune
the model and save resources. In the following, we introduce
some of the most influential DAL methods in NLP.
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TABLE III
ILLUSTRATION OF DAL-RELATED APPLICATIONS IN MAIN FIELDS, INCLUDING CLASSIC METHODS WITH THEIR ADVANTAGES AND DISADVANTAGES

1) Text Classification: This aims to classify large-scale text
with particular labels such as topic or sentiment. Researchers
propose several methods to efficiently select informative sam-
ples for training. For example, Yan et al. [83] generate the most
informative examples for training, efficiently skipping the sam-
ple selection process. They approximate the generated example
with a few summary words, which significantly reduces the
labeling cost for annotators, as they only need to read a few
words instead of a long document. Tan et al. [136] develop the
Bayesian estimate of mean proper scores (BEMPS) framework
for DAL, which allows the calculation of scores such as
logarithmic probability to better help select informative and
uncertainty samples. Experiments demonstrate that BEMPS
is more effective than baselines in various text classification
datasets. On the other hand, Schröder et al. [61] use trans-
formers for uncertainty-based sample selection. Interestingly,
they achieve comparable performance in widely used text
classification datasets while training in less than 20% of the
labeled data, which demonstrates their ability to utilize limited
labeled data. In another study, Jelenic et al. [137] conduct an
initial empirical study to investigate the transferability of the
DAL by using PLMs. They find that DAL can effectively adapt
to new datasets with pretrained models.

2) Abstractive Text Summarization: Abstractive text sum-
marization (ATS) aims to compress a document into a
brief, informative, and readable summary that retains the
key information of the original document. However, con-
structing human-annotated datasets is a time-consuming and
costly endeavor. DALs are explored to reduce the amount
of annotation needed while achieving a certain level of ATS
performance. For example, Gidiotis and Tsoumakas [138]

address the issue from a Bayesian view and study uncertainty
estimation for SOTA text summarization models. They aug-
ment the pretrained summarization models with Monte Carlo
dropout, forming the corresponding variational Bayesian PLM
models. By generating multiple summaries from these models,
they approximate Bayesian inference and estimate the sum-
marization uncertainty. Experiments on multiple benchmark
datasets consistently demonstrate their improved summariza-
tion performance with higher Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) scores. Unlike the above
method, as shown in Fig. 9(a), Tsvigun et al. [139] propose
an alternative query strategy for ATS based on diversity prin-
ciples. This strategy, known as in-domain diversity sampling,
involves selecting instances that are dissimilar from annotated
documents but similar to the core documents of the domain.
Given a limited annotation budget, they can improve model
performance and consistency scores.

3) Question Answering: This involves answering questions
about images or passages of text [161]. However, current
models require large-scale training data to achieve high perfor-
mance. DAL methods, such as Datamap [58] and hierarchical
dialogue policies [140], are designed to maximize perfor-
mance with minimal labeling effort. Specifically, in Fig. 9(b),
DataMap [58] is able to detect and eliminate outlier examples
from the unlabeled set, resulting in a significant increase in
model accuracy with fewer labeled examples. Padmakumar
and Mooney [140] develop a joint policy for clarification and
DAL in an interactive image retrieval task. Asking users for
clarification while querying new examples improves the model
performance.
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Fig. 9. Example for samples’ selection of ATS and datamap. (a) ATS
samples’ selection. (b) Datamap for samples’ selection.

4) Information Extraction: This refers to many NLP tasks,
including named entity recognition, keyword extraction, word
segmentation, and so on. Manual annotation of large-scale
sequences is time-consuming, expensive, and, thus, difficult
to realize. To address this, Brantley et al. [92] design a new
DAL annotation manner. They use a noisy heuristic labeling
function to provide initial low-quality labels, train a classifier
to decide whether to trust these labels, and annotate the most
uncertain samples with trustable labels. Their model achieves
high efficiency and effectiveness on many information extrac-
tion tasks. Similarly, Radmard et al. [141] focus on improving
the efficiency of DAL for naming entity recognition by
querying subsequences within each sentence and propagating
labels to unseen identical subsequences in the dataset. They
demonstrate that the DAL strategy requires only 20% of the
dataset to achieve the same results as training on the full
dataset. Hua and Wang [142] propose two model-independent
acquisition strategies for identifying and understanding the
structure of argumentative discourse, achieving competitive
results with fewer computations The former selects samples
with the most novel words for labeling, while the latter
seeks to identify more relation links by matching any of the
18 prominent discourse markers from a manual.

5) Semantic Parsing: This aims to convert a natural lan-
guage utterance to a logical form: a machine-understandable
representation of its meaning [162]. DAL can help reduce
data requirements and improve efficiency for semantic parsing.
For example, Duong et al. [143] design a simple hyper-
parameter selection technique for DAL to accelerate data
annotation. Experiments show that their method significantly
reduces the need for data annotation and improves the model’s
performance on semantic parsing. Li and Haffari [163] also
design a hyperparameter tuning module to reduce the addi-
tional annotation cost. In addition, they design a novel query
strategy that prioritizes examples with various logical form
structures and more lexical choices, which further improves
the performance of semantic parsing. Li et al. [144] propose a
novel DAL method with two new annotation manners, called
HAT. Experiments show that HAT can pick out the most
semantically varied and illustrative utterances, leading to the
highest possible gains in parser performance.

B. Applications in CV
With the remarkable success of CNNs and vision trans-

formers, a valuable insight has been gained that more labeled
image datasets can promote to obtain better performance of the

task. However, as the amount of data increases, training DNNs
becomes time-consuming and resource-consuming. In addi-
tion, even if the number of data increases, the presence of noise
often leads to limited performance improvement. DAL can
effectively reduce noise and time consumption in many CV
tasks. Hereafter, we provide detailed information on specific
tasks and their improvements achieved with DAL in CV.

1) Image Classification: This aims to accurately classify
images based on the provided labels for many specific fields
such as remote sensing [16], medical imaging [164], and face
recognition [129]. We list the most successful DAL methods
for image classification in Section III-C, such as BCBA,
DBAL, and CEAL, which can be referred to for more detailed
information.

2) Image Captioning: This aims to automatically generate
descriptive text about the content of an image. Achiev-
ing high-quality captioning requires large-scale datasets with
diverse images. Unfortunately, creating such a dataset is
time-consuming and costly. To tackle this issue, Zhang et al.
[145] devise a novel adversarial DAL model, which uses
visual and textual information to select the most representative
samples to optimize the performance of image captioning.
Experiments show that they overcome the limitations of
labeled data scarcity and improve the practicality and effec-
tiveness of image captioning. In a similar vein, Cheikh
and Zrigui [146] introduce a knowledge-transferable DAL
framework for low-resource datasets. They take advantage of
existing datasets, translate their captions into Arabic, and train
the model with translated caption datasets as prior knowledge
for low-resource ArabicFlickr1K datasets (which contain only
1095 images). Their model achieves the bilingual evaluation
understudy (BLEU) score of 47%, serving as compelling
evidence for the effectiveness of their approach.

3) Semantic Segmentation: This aims to understand images
at the pixel level, serving as the basis for various applications,
including autonomous driving [80] and robot manipula-
tion [30]. However, training segmentation models requires an
extensive amount of data with pixelwise annotations, a pro-
cess that is burdensome and prohibitively expensive [78].
To solve this challenge, Konyushkova et al. [147] propose
an uncertainty-based DAL method with geometric priors to
expedite and simplify the annotation process for image seg-
mentation. Experiments show that their method can be applied
to both background-foreground and multiclass segmentation
tasks. Qiao et al. [148] introduce a collaborative panop-
tic regional DAL framework for partial annotated semantic
segmentation. By incorporating semantic-agnostic panoptic
matching and region-based selection and extension, their
model strikes a balance between labeling efforts and per-
formance. Similarly, Xie et al. [80] propose an automated
region-based DAL approach for semantic segmentation consid-
ering the spatial adjacency of image regions and the confidence
in prediction. Experiments show that they can use a small num-
ber of labeled image regions while maximizing segmentation
performance.

4) Object Detection: This is transformed into a region
classification task by generating candidate regions of objects
from the input image. Features are typically extracted from
candidate object regions using CNNs, and classifiers are
subsequently employed for the final detection. DAL can
reduce labeled data to better fit numerous parameters of
CNN. Wu et al. [149] propose a novel hybrid query strategy
that jointly considers uncertainty and diversity. Extensive
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experiments are conducted on two object detection datasets
that effectively demonstrate the superiority and effectiveness
of their model. Wang et al. [43] introduce active sample
mining with switchable selection criteria to incrementally train
robust object detectors using unlabeled or partially labeled
samples, avoiding the influence of noisy samples and out-
liers. The effectiveness of the model is demonstrated through
extensive experiments on publicly available object detection
benchmarks. Yuan et al. [150] define an instance uncertainty
learning module that takes advantage of the discrepancy of
two adversarial instance classifiers trained in the labeled set
to predict the instance uncertainty of the unlabeled set. With
iterative instance uncertainty learning and reweighting, they
suppress noisy instances, bridging the gap between instance
and image-level uncertainty.

5) Pose Estimation: This aims to localize the positions of
specific key points in images, which has a wide range of
applications, such as augmented reality, translation of sign
language, and human–robot interaction. Obtaining pose anno-
tations can be extremely expensive and laborious. To address
this issue, Caramalau et al. [151] propose distribution-based
methods for the selection of diverse and representative
samples. Experiments demonstrate their high efficiency and
effectiveness for pose estimation. Similarly, Shukla et al. [152]
use an uncertainty-based query strategy, annotate samples
with the lowest confidence scores, and further improve the
performance with fewer labeled samples. Gong et al. [86]
design a novel meta-agent teaming DAL (MATAL) framework
to actively select and label informative images for effective
learning. MATAL formulates the sample selection procedure
as a Markov decision process and learns an optimal sampling
policy that effectively maximizes the performance of the pose
estimator.

6) Target Tracking: This aims to accurately track targets
in images, which can be applied for numerous applications,
including video surveillance, autonomous vehicles, and so
on. Using DAL can better help train neural networks with
limited labeled samples for target tracking. Yuan et al. [153]
present a new DAL sequence selection method in a multiframe
collaboration way for target tracking. To ensure the diversity
of selected sequences, they measure samples’ similarity by
their temporal relation between multiple frames in each video,
and they use the nearest neighbor discriminator to select the
representative samples. Experiments show that their method
can eliminate background noise and improve efficiency.

7) Person Reidentification: Person reidentification (Re-ID)
aims to match a specific pedestrian using different cameras,
which is an essential task for public security. Previous efforts
mainly concentrate on enhancing the performance of Re-ID
models, relying on large labeled datasets. However, these
efforts often overlook data redundancy issues that can arise
in constructing Re-ID datasets. To address data redundancy in
Re-ID datasets, Liu et al. [46] propose an alternative human-in-
the-loop model based on reinforce learning. In their method,
a human annotator provides binary feedback to fine-tune a
pretrained CNNs Re-ID model. Extensive experiments prove
the superiority of their method compared to existing unsu-
pervised, transfer learning, and DAL models. On the other
hand, Xu et al. [155] focus on learning from scratch with
incremental labeling through human annotators and model
feedback. They combine DAL with an incremental annotation
process to select informative and diverse samples without
redundancy from an unlabeled set in each iteration. These

Fig. 10. Framework of graph policy network [120].

samples are then labeled by human annotators to further
improve the performance of the model.

C. Applications in Graph DM and Learning
There is a substantial increase in content-rich networks from

various domains, such as social networks, citation networks,
and financial networks. Graphs have emerged as a powerful
tool for representing and discovering knowledge, with nodes
representing instances characterized by rich content features
and edges denoting relationships or interactions between
nodes.

1) Node Classification: This is to predict the labels of unla-
beled nodes in a partially labeled network. GNNs rely heavily
on a sufficient number of labeled nodes, which is costly and
time-consuming. To address this problem, many graph-based
DAL methods are proposed. For example, ICA-based meth-
ods [165] leverage label dependence among neighboring
nodes to select diverse samples for node classification, while
AGE [166] and ANRMAB [167] integrate GCNs with three
traditional DAL query strategies and achieve good perfor-
mance on many node classification datasets. As shown in
Fig. 10, Hu et al. [120] present a graph policy network for
transferable DAL on graphs, which formalizes DAL on graphs
as a Markov decision process and learns the optimal query
strategy with reinforce learning. The state is defined based on
the current graph status, and the action is to select a node
for annotation at each query step. The reward is defined as
the performance gain of the GNNs trained with the selected
nodes.

2) Link Prediction: This aims to predict missing or potential
links between nodes in a given network. It involves using
existing connections or relationships to infer the likelihood
of forming new connections. In the context of link prediction,
the challenge arises from the limited availability of existing
link information between nodes in a network. DAL can help
alleviate this issue; for example, DALAUP [168] uses neural
networks to obtain vector representations of user pairs and
utilizes multiple query strategies to select informative user
pairs for labeling and model training, achieving superior
performance compared to existing methods. Cai et al. [156]
design a multiview DAL method that reduces the annotation
cost by selectively querying metadata for the most informative
examples, using a mapping function from the visual view to
the text view. They demonstrate that multiview DAL can use
richer information to help improve performance than using a
single view. Zhao et al. [157] propose a DAL-based transfer
learning framework for link prediction in recommender sys-
tems, which iteratively selects entities from source systems for
target systems using uncertainty-based criteria. Experiments
show that their method successfully improves efficiency and
effectiveness.
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3) Community Detection: This aims to accurately partition
nodes into distinct classes based on the topological structure
of the networks. However, in many practical scenarios, unsu-
pervised methods struggle to achieve the exact community.
To solve this issue, Gupta et al. [158] propose commu-
nity trolling, a DAL-based method for topic-based community
detection. Their method selects relevant samples from polluted
big data, reducing the unreliable dataset to a reliable one for
studying communities. Chien et al. [159] propose a novel
DAL method for geometric community detection. They first
remove many cross-cluster edges while preserving intracluster
connectivity to avoid noise. Then, they interactively query the
label of one node for each disjoint component to recover the
underlying clusters. Experiments show that they can achieve
SOTA performance in community detection.

D. Other Selected Interesting Applications

1) Engineering Systems: DAL methods exhibit remark-
able performance in computationally demanding engineering
systems by significantly reducing running time and computa-
tional costs. For example, Yue et al. [169] introduce two novel
DAL algorithms: the variance-based weighted AL and the
D-optimal weighted AL, designed specifically for Gaussian
processes with uncertainties. Numerical studies demonstrate
the effectiveness of their approach, notably improving pre-
dictive modeling for automatic shape control of composite
fuselage structures. In another vein, Lee et al. [170] optimize
their DAL acquisition function by jointly considering safe
variance reduction and safe region expansion tasks, aiming
to minimize failures without explicit knowledge of failure
regions. This approach is tailored for real systems with
uncertain failure conditions, as demonstrated in the predic-
tive modeling of composite fuselage deformation, achieving
zero failures by considering the composite failure criterion.
Furthermore, Lee et al. [171] introduce a partitioned DAL
method, comprising two systematic steps: global searching
for uncertain design spaces and local searching using local
Gaussian processes. They apply their method to aerospace
manufacturing and materials science, achieving superior per-
formance in prediction accuracy and computational efficiency
compared to benchmarks.

2) Personalized Medical Treatment: This explores how
patient health is affected by taking a drug and how user ques-
tions are answered by search recommendation [172]. Although
modern methods can achieve impressive performance, they
need a significant amount of labeled data. To solve this
issue, Deng et al. [160] propose the use of DAL to recruit
patients and assign treatments that reduce the uncertainty
of an individual treatment effect model. Sundin et al. [173]
propose to use a Gaussian process to model the individual
treatment effect and use the expected information gain over
the S-type error rate, defined as the error in predicting the
sign of the conditional average treatment effect, as their
acquisition function. Jesson et al. [113] develop epistemic
uncertainty-aware methods for DAL of personalized treatment
effects from high-dimensional observational data. In contrast
to previous work that only uses information gain as the
acquisition objective, they propose Causal-BALD because
they consider both information gain and overlap between the
treatment and control groups. Li et al. [174] used DAL to help
people by recognizing their emotions.

VI. CHALLENGES AND OPPORTUNITIES OF DAL

As shown in Table IV, hereafter, we summarize the
challenges and the corresponding potential solutions and
opportunities.

A. Pipeline-Related Issues
1) Inefficient and Costly Human Annotation: DAL assumes

that human annotators are readily available to label new
samples once they are required. However, this assumption may
not hold in some real-world applications. Human annotators
can get tired or need breaks, forcing the DAL process to be
suspended until they reappear. Moreover, human annotation is
time-consuming and needs expert knowledge, resulting in long
waits before models can be retrained with newly labeled data.

To improve efficiency, DAL methods incorporate additional
techniques to reduce human annotation. Wang et al. [36] use
self-supervised learning by adding pseudolabels with high
confidence to help reduce human effort and improve the
performance of the model. Going one step further, Yang and
Loog [85] introduce multiple pseudoannotators that provide
labels for unlabeled samples, achieving good performance
without requiring human expert knowledge. On the other
hand, as shown in Fig. 11, Huang et al. [134] propose a new
annotation strategy to allow servers, workers, and annotators
to cooperate efficiently for sharing candidate queries and
annotations. Experiments show that their model can avoid
annotation noise and save much time for rechecking anno-
tations. To further reduce expert knowledge, others tend to
reduce the search scope in each iteration to improve efficiency.
For example, Yang and Loog [94] restrict candidate samples to
their nearest neighbors of the labeled set rather than scanning
all data.

2) Insufficient Research on Stopping Strategies: Few studies
are designed for stopping strategies of DAL methods [196].
However, stopping strategies are essential for DAL because
they reduce the amount of human labor by limiting the number
of samples that need to be labeled and prevent the inclusion
of noisy and redundant samples, which can negatively affect
the performance of DAL models.

McDonald et al. [175] design two novel stopping strategies
for DAL methods in the document classification task. The
first strategy measures the overall confidence of the classifiers
in correctly classifying the remaining unlabeled documents.
It assumes that when the classifier’s mean confidence level
for the remaining documents stabilizes, the model stops the
DAL process since its effectiveness will no longer improve.
The second strategy measures the confidence of the classifiers
among the selected documents to be reviewed. It assumes
that when the classifier’s confidence stops increasing for these
documents, it has reached its maximal confidence and stops
the DAL process. Benefiting from the idea of the margin
exhaustion criterion, Yu et al. [176] identify two correspond-
ing contour lines in the instance space and assume that the
DAL process can only be stopped when all instances lying
between these two contour lines have been labeled. They
achieve good performance in many classification tasks. Based
on the Bayesian theory, Ishibashi and Hino [177] derive a
novel upper bound for the difference in expected general-
ization errors before and after obtaining new training data.
They then combine this upper bound with a statistical test to
derive a stopping criterion for DAL and significantly improve
efficiency.
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TABLE IV
SUMMARY OF VARIOUS CHALLENGES AND OPPORTUNITIES

Fig. 11. Framework for efficient annotation.

Fig. 12. Example for cold-start data selection. (a) ProbCover selection.
(b) CoreSet selection. (c) γ -ball selection.

3) Cold Start: Most DAL methods fail to improve over ran-
dom selection when the annotation budget is very small, a phe-
nomenon sometimes termed “cold start” [179]. Uncertainty
sampling has been shown to be inherently unsuitable for low
budgets, possibly explaining the cold-start phenomenon [201].
Low budgets can be seen in many applications, especially
those that require an expert tagger whose time is expen-
sive. If we want to expand deep learning to new domains,
overcoming the cold-start problem is an ever-important task.

To relieve the cold-start issue, Yuan et al. [31] use pre-
trained embeddings on unsupervised tasks, decreasing budget
dependence while remaining faithful to uncertainty sampling.
Similarly, Yu et al. [178] try to use pretrained knowledge from

PLMs to avoid cold start. They select few shot samples
to fine-tune large-scale PLM, achieve SOTA performance
in six datasets, and improve the efficiency of labeling
over existing baselines by 3.2%–6.9% on average. On the
other hand, as shown in Fig. 12(a) and (b), Yehuda and
Dekel [180] develop a new DAL initialization strategy to
solve the cold-start issue for low-budget image classification,
which significantly outperforms CoreSet initialization in the
low-budget regime. They also theoretically analyze different
DAL strategies in embedding spaces and improve perfor-
mance on both low- and high-budget scenes. As shown in
Fig. 12(c), Cao et al. [181] apply the informative sampling
policy on the γ tube to solve the cold-start sampling problem.
Mahmood et al. [182] query a diverse set of examples with
minimal Wasserstein distance from unlabeled data. They report
a significant performance boost in the low-budget regime.

B. Task-Related Issues

1) Difficulty in Cross-Domain Transfer: We discuss two
difficulties of cross-domain transfer in DAL. First, machine
learning systems are always deployed on various devices
with the same labeled dataset. However, DAL is often
model-dependent and not directly transferable, i.e., data
queried for one model may be less effective for another [183];
Second, transfer learning biases DAL to select samples that
match the distribution of the source domain to the target
domain, leading to sampling bias and the high cost of transfer
learning.

To benefit multiple target models, some methods aim to
select samples in joint disagreement regions across mod-
els [183], adopt multiagent reinforcement learning for optimal
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Fig. 13. MTL transfer knowledge from sources [84].

selection [154], or leverage MTL to transfer common knowl-
edge from the source domain, as shown in Fig. 13. To avoid
sampling bias, Farquhar et al. [184] apply corrective weighting
using an unbiased risk estimator to maintain the target distribu-
tion during pool-based sampling. Trang et al. [110] introduce
a heuristic query strategy that matches the distribution of
the source domain while retrieving valuable target samples.
Hu et al. [120] learn transferable DAL policies on labeled
source graphs that generalize selection to unlabeled target
graphs. Experiments show that the above methods can achieve
excellent performance and transferability.

2) Unstable Performance: DAL methods always have
unstable performance, i.e., results for the same method vary
significantly with different initialized seeds [108]. Two pri-
mary reasons can explain this instability. First, the DAL
methods are sensitive to the initial labeled dataset. The ini-
tial selected samples have a great influence on the eventual
outcome of the current approaches. With insufficient initial
labeling, subsequent DAL cycles become highly biased, result-
ing in poor selection. Second, current DAL methods always
separate active learning and deep learning methods into two
separate processes, easily leading to suboptimal and unstable
performance [202].

To solve DAL’s sensitivity to the initialization, current
methods always use diverse sampling and pretrained mod-
els. Yu et al. [176] adopt hierarchical clustering to select
10% samples near each clustering center as representative
samples. Their new initialization greatly helps stabilize the
performance. Zlabinger [185] takes into account both diversity
and polarization to effectively select initial samples for DAL
methods that further stabilize the performance of the DAL
process. Yang and Loog [94] select initial samples by eval-
uating the total distance between the unlabeled samples and
the initial samples, showing that the same distance between
them can result in better and stable performance. On the
other hand, Yuan et al. [31] incorporate language information
as prior knowledge to help learn node representations and
use clustering methods to select the initial data. Similarly,
Dor et al. [53] use BERT to learn the representations of the
input sentences and use a hybrid query strategy to select the
most uncertain and diverse samples as the initialized training
data.

To bridge the gap between AL and deep learning models,
Kwak et al. [186] introduce trustworthy AL (TrustAL), a label-
efficient DAL framework by transferring distilled knowledge
from deep learning models to the data selection process.
As shown in Fig. 14, they jointly optimize knowledge dis-
tillation and DAL to obtain a more consistent and reliable
performance compared to the two best performing baselines
on three benchmarks. Similarly, Ma et al. [187] learn nonlinear
embeddings to map inputs into a latent space and introduce a
selection block to choose representative samples in the learned

Fig. 14. Stable performance of TrustAL [186]. (a) CONF. (b) CoreSet.

latent space to achieve stable performance. Schröder et al.
[61] extend the PLMs to continually pretrain on available
unlabeled data to tailor it to the task-specific domain, where
they can benefit from both labeled and unlabeled data at
each DAL iteration. Their experiments show considerable
enhancements in data efficiency and stability compared to the
standard fine-tuning approach, emphasizing the importance of
a suitable training strategy in DAL. Mamooler et al. [188]
try to combine DAL with PLMs in the legal domain, where
they use unlabeled data in three stages: training the model to
adjust it to the downstream task, using knowledge distillation
to direct the embeddings to a semantically meaningful space,
and identifying the initial set.

3) Lack of Scalability and Generalizability: Current DAL
methods lack scalability, as they always require significant
modifications to neural network architectures to adapt to
different query strategies. Another issue with current methods
is their heavy reliance on DAL’s weight parameters, while
the parameters may not be generalizable to different datasets.
Users are required to prepare additional labeled samples as a
validation set to tune parameters by cross-validation, which
contradicts the goal of minimizing the need for labeled data.

In response to the above issues, Maekawa et al. [60]
introduce a novel DAL method, called TYROGUE, which
uses a hybrid query strategy to improve model generalization
and reduce labeling costs. As shown in Fig. 15, uncertainty-
based methods tend to acquire similar data points from a
specific area within an iteration, diversity-based methods tend
to acquire data points similar to the samples acquired in
previous iterations, and TYROGUE balances diversity and
uncertainty by acquiring samples that are diverse and also
closer to the model decision boundary. RMQCAL [104] is a
novel scalable DAL method, which allows for any number
and type of query criteria, eliminates the need for empiri-
cal parameters, and makes the tradeoffs between the query
criteria self-adaptive. On the other hand, Wan et al. [189]
propose an embedded network of nearest-neighbor classifiers
to enhance the generalization ability of models trained in
labeled and unlabeled subspaces in a simple but effective
manner. Deng et al. [190] focus on combining sample anno-
tation and counterfactual sample construction in the DAL
procedure to enhance the model’s out-of-distribution general-
ization. Wang et al. [191] introduce a new training manner to
improve the model’s generalizability and show a strong posi-
tive correlation between convergence speed and generalization
performance under ultrawide conditions.

C. Dataset-Related Issues
1) Outlier Data and Noisy Oracles: DAL methods tend to

acquire outliers since models always assign high uncertainty
scores to outliers. Outliers can damage a model’s learning abil-
ity and fuel a vicious cycle in which DAL methods continue
to select them [43]. Identifying and removing outliers have
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Fig. 15. TYROGUE can select better samples than baselines.

become important directions in improving DAL performance
and robustness. On the other hand, classic DAL methods
assume that annotators have high labeling accuracy. However,
in real-world settings, sample difficulty and annotator expertise
can significantly affect the quality and accuracy of annotation,
which may further degrade model performance.

To remove outliers, Park et al. [126] propose MQ-Net to
adaptively find the best balance between purity and infor-
mativeness of samples, filtering out noisy open-set data.
Elenter et al. [89] introduce a new query strategy based
on Lagrangian duality to select diverse samples, efficiently
removing redundant data. Other studies [14] use knowl-
edge distillation to compress useful knowledge into a small
model, effectively identifying and removing outliers. To make
high-quality annotations, AMCC [81] measures worker anno-
tations considering both their commonality and individuality
to reduce the impact of unreliable workers and improve
effectiveness. Zhao et al. [192] actively select samples that
are relabeled multiple times through crowd-sourcing major-
ity voting. EMMA [193] relabels samples to remove noisy
annotations by analyzing the stimulus based on model mem-
ory retention and greedy heuristics. BALT [203] improves
human expertise during labeling to improve relabel quality
and significantly improve model performance. Zlabinger [185]
trains human annotators on a set of prelabeled samples to
improve the quality of annotations. Huang et al. [134] propose
a multiserver, multiworker framework for DAL, where servers
and workers cooperate to select diverse samples and improve
model performance.

2) Data Scarcity and Imbalance: Data scarcity poses two
critical challenges. First, datasets are difficult to collect and
annotate [204]; Second, DAL methods have the common
underlying assumption that all classes are equal, while some
classes have more samples than others (skewed class dis-
tribution [176]) or some classes may be more difficult to
learn than others, leading to sampling bias in the acquisition
process [205].

For scarce datasets, Chen et al. [12] used data augmentation
to generate diverse samples to expand training data. Other
studies used PLMs as prior knowledge and fine-tuned them
to reduce the required labeled samples [32]. For difficult
annotations, Gudovskiy et al. [97] introduce several novel
self-supervised pseudolabels estimators to correct acquisition
bias by minimizing the distribution shift between unlabeled
data and weakly labeled validation data. To mitigate the class
imbalance, Yu et al. [176] are the first to use cost-sensitive
learning. They choose the extreme weighted learning machine
as the base learner to select samples based on the class
imbalance ratio, class overlap, and small disjunction. They
investigate why DAL can be impacted by a skewed instance
distribution and improve DAL performance on imbalanced
datasets. Choi et al. [194] solve the issue of data imbalance by
considering the probability of mislabeling a class, the probabil-
ity of the data given a predicted class, and the prior probability

Fig. 16. Example of imbalanced sampling [195].

Fig. 17. Methods for solving class distribution mismatch. (a) Seen and unseen
classes identification. (b) Find examples from known classes.

of the abundance of a predicted class, during querying samples
of DAL. Experiments show that they can significantly enhance
the ability of existing DAL methods to handle unbalanced
datasets. As shown in Fig. 16, Zhao et al. [195] propose an
alternate query strategy by using the medial distribution to
find a compromise between importance weighting and class-
balanced sampling. Experiments show that their model can be
easily combined with various DAL methods and successfully
select balanced samples in imbalanced datasets. Hartford et al.
[196] present an exemplar-guided DAL method that shows
strong empirical performance under extremely skewed label
distributions by using exemplar embedding. Zhang et al. [197]
propose a graph-based DAL method that applies a more
sophisticated version of uncertainty sampling. Their strategy
can select more evenly distributed examples for labeling than
standard uncertainty sampling.

3) Class Distribution Mismatch: DAL methods assume that
the labeled and unlabeled data are drawn from the same
class distribution, which means that the categories of both
datasets are identical [200]. However, in real-world scenarios,
unlabeled data often come from uncontrolled sources, and
a large portion of the examples may belong to unknown
classes. For example, when crawling images for binary image
classification using keywords such as “dog” and “cat,” over
50% of the images in the unlabeled dataset are irrelevant to
the task (e.g., “deer” and “horse”). Annotating these irrelevant
images will lead to a waste of the annotation budget as they
are unnecessary for training the desired classifier. Despite this
challenge, existing DAL systems tend to select these irrele-
vant images for annotation, as they contain more uncertain
knowledge.

To address this issue, as shown in Fig. 17(a), He et al. [198]
propose the energy discrepancy to measure the density
distribution between the seen and unseen classes. Then, they
propose an iterative optimization strategy to facilitate the
teacher–student distillation network to avoid selecting samples
from unseen classes. Furthermore, Tang and Huang [199]
propose a dual DAL framework that simultaneously performs
model search and data selection. Their framework effectively
addressed the issue of distribution mismatch and signifi-
cantly improved model performance. As shown in Fig. 17(b),
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Ning et al. [200] introduce a detector-classifier DAL frame-
work, where the detector filters unknown classes using
Gaussian mixture models and the classifier selects uncertain
in-distribution samples for retraining. By actively acquiring
purer in-distribution query sets, this framework improves the
model generalization on class distribution mismatch.

VII. CONCLUSION

Due to the advantages of DAL, such as high efficiency,
good effectiveness, and strong robustness, DAL has been
deployed in both research and industry projects. This article
provides a comprehensive survey of DAL, including its collec-
tion, definition, influential baselines and datasets, taxonomy,
applications, challenges, and some inspiring prospects. First,
we discuss the collection and filtering of DAL papers to ensure
their high quality. Second, we give the definition of DAL
tasks and present its basic pipeline, influential baselines, and
widely used datasets. Third, we present our taxonomy for DAL
methods from several perspectives and discuss their strengths
and weaknesses. From them, we obtain some guidelines for
selecting different query strategies, deep model architectures,
and learning paradigms to apply to different tasks. In addition,
different annotation strategies can significantly reduce manual
labor while also bringing certain drawbacks. In terms of the
training process, curriculum learning training and Pre + FT
can better adapt to the current era of large language models.
Fourth, we discuss some typical applications of DAL. Other
than the commonly used and popular DAL methods used
for CV tasks, we also introduce the carefully designed DAL
method for NLP, DM, and so on. Finally, even though DAL
has many benefits, we reckon that it can be refined further in
terms of pipeline, tasks, and datasets. Specifically, there are
many problems that DAL is hard to handle, such as inefficient
human annotation, difficulty in cross-domain transfer, unstable
performance, lack of scalability, data imbalance, and class
distribution mismatch. We share DAL-related resources on
GitHub. We hope that this work will be a quick guide for
researchers and motivate them to solve important problems in
the DAL domain.
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